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EXTREMAL METRICS AND GEOMETRIC STABILITY

GANG TIAN

Abstract. This paper grew out of my lectures at Nankai Institute as well

as a few other conferences in the last few years. The purpose of this paper is

to describe some of my works on extremal Kähler metrics in the last fifteen

years in a more unified way.

In [Ti4], [Ti2], the author developed a method of relating certain stability

of underlying manifolds to Kähler-Einstein metrics. A necessary and new

condition was derived in terms of the stability for a Kähler manifold to admit

Kähler-Einstein metrics with positive scalar curvature. It was clear then

that similar results should also hold for general extremal Kähler metrics.

Extremal Kähler metrics were introduced by Calabi [Ca]. Extremal Kähler

metrics are critical points of the K-energy introduced by T. Mabuchi. Most

extremal metrics are Kähler metrics of constant scalar curvature. It was

conjectured by the author before that the existence of Kähler metrics with

constant scalar curvature is equivalent to the properness of the K-energy.

This has been verified for the case of Kähler-Einstein metrics ([Ti2]).

We will explain how extremal metrics are related to the stability of the

underlying manifolds and compare it with the standard picture from sym-

plectic geometry. We will outline the proof of the Calabi’s conjecture for

complex surfaces. We will also list a few problems and indicate the difficul-

ties in solving them.

1. Symplectic Quotients in Finite Dimensions

Let (M, ω) be a symplectic manifold and K be a compact Lie group acting on
M by symplectic diffeomorphisms of ω. Denote by k∗ the dual of the Lie algebra
k of K, then K acts on k∗ by the co-adjoint representation. A moment map is a
K-equivariant map µ : M 7→ k∗ such that

d〈µ, a〉(v) = ω(Xa, v), a ∈ k, v ∈ TM,
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where 〈·, ·〉 is the natural pairing between k∗ and k and Xa is the vector field on
M induced by the action of the one-parameter group {exp(ta)} ⊂ K.

If K = U(1), then the existence of the moment map simply means that K is
generated by the integral curve of a Hamiltonian field. In general, the existence of
the moment implies that K acts on M by Hamiltonian diffeomorphisms. In par-
ticular, if M is simply-connected, a moment map always exists. In the following,
I will collect a few standard facts about moment maps (cf. [At], [GS], [Ki]).

Let µ be a moment map of the above (M, ω) with the action of K. If 0 is the
regular value of µ, then the Marsden-Weinstein reduction theorem implies that
the quotient N = µ−1(0)/K is a symplectic manifold equipped with a natural
symplectic form π∗ω|µ−1(0), where π : µ−1(0) 7→ N is the projection. If M

is further a Kähler manifold, so is the quotient N . Usually, N is called the
symplectic quotient of M .

Suppose now that (M, ω) is a Kähler manifold and there exists a complexication
G = KC of K which acts on M by holomorphic transformations. We further
assume that the natural inclusion ι : K 7→ G induces a surjection ι∗ : π1(K) 7→
π1(G). Then we can construct a functional F : M × G 7→ R as follows: For any
x ∈ M , we will first construct Fx : G 7→ R.

Lemma 1.1. Let σ : [0, 1] 7→ G be any loop with σ(0) = I, then

(1.1)
∫ 1

0

〈µ(σ(t)x),−
√
−1π(σ′(t))〉 dt = 0,

where π : Tσ(t)xG ∼= k ⊕
√
−1k 7→

√
−1k.

Now we can define Fx by

(1.2) Fx(τ) =
∫ 1

0

〈µ(σ(t)x),−
√
−1π(σ′(t))〉 dt, τ ∈ G,

where σ : [0, 1] 7→ G is a path from σ(0) = I to σ(1) = τ .
Then we simply put F (x, τ) = Fx(τ). It follows from the above lemma that F

is well-defined. Furthermore, F has the following properties:
(1) If τ, σ ∈ G, then F (x, τ) + F (τ(x), σ) = F (x, σ · τ);
(2) For any κ ∈ K and τ ∈ G, F (x, κ · τ) = F (x, τ) and F (x, 1) = 0;
(3) For any κ ∈ K and τ ∈ G, F (κ(x), τ) = F (x, κ−1 · τ · κ);
(4) τ ∈ G is a critical point of Fx if and only if µ(τ(x)) = 0;
(5) For any x ∈ M and a ∈ k, ∂2F

∂t2 (x, e
√
−1ta) ≥ 0 and the equality holds if and

only if va(e
√
−1tax) = 0.
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It follows from (4) and (5) that there is a unique τ ∈ G such that µ(τ(x)) = 0
if and only if the functional Fx is proper on G. By (1), if Fx is proper, so is Fτ(x).
The properness of Fx can be thought as an analytic stability of x.

More generally, there is a τ ∈ G with µ(τ(x)) = 0 if and only if Fx is proper
on G/Gx, where Gx is the isotropy group {τ ∈ G|τ(x) = x}. If µ(τ(x)) = 0 for
τ = τ1, τ2, then τ1 = τ2σ for some σ ∈ Gx.

If M = CPn with the Fubini-Study metric ω and K = SU(n + 1), then its
complexication is G = SL(n + 1, C) and its moment map is defined by

〈µ([z0 : · · · : zn]), A〉 =
√
−1z∗Az

z∗z
,

where A ∈ su(n + 1) is a skew-Hermitian matrix with vanishing trace and z =
(z0, · · · , zn)T and z∗ is the conjugate transpose of z.

Now let M be a complex submanifold in CPN with ω being the restriction
of the Fubini-Study metric to M , let G be a subgroup of SL(N + 1, C) acting
on CPN in the usual way and K be its maximal compact subgroup. Then the
moment map is simply

〈µ([z0 : · · · : zN ]), A〉 =
√
−1z∗Az

z∗z
,

where A ∈ k ⊂ su(N + 1) and z = (z0, · · · , zN )T with [z0 : · · · : zN ] ∈ M .
If G0 = {σ(s)|s ∈ C∗} is a one-parameter algebraic subgroup of G, then by

changing coordinates if necessary, we may assume that

σ(s)(z) = (sα0z0, · · · , sαN zN )T ,

where x = [z0 : · · · : zN ] ∈ M and αi ∈ Z with
∑N

i=0 αi = 0. Put λ(G0) =
max{αi|zi 6= 0}, i.e., the maximal weight of G0. Then a direct computation
shows that

λ(G0) = lim
t→∞

Fx(σ(et)).

It follows that if Fx is proper on G, then λ(G0) > 0 for every such a G0. Its
converse is also true.

On the other hand, the Hilbert numerical criterion for stability states that
x ∈ M is a stable point of G-action if and only if λ(G0) > 0 for every one-
dimensional algebraic subgroup G0 of G. Here z being stable means that its
lifting z ∈ CN+1 satisfies: The orbit of z under the action of G = SL(N + 1, C)
on CN+1 is closed and the stabilizer of z is finite.

Therefore, the existence of zeroes for the moment µ in case of an algebraic
manifold M is equivalent to either the analytic stability or algebraic stability of
x in M .
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2. Extremal Kähler Metrics

Let M be a compact Kähler manifold of dimension n with a Kähler metric. A
Kähler metric can be given by specifying its Kähler form ω, in local coordinates
z1, · · · , zn. It is of the form

ω =
√
−1
2

n
∑

i,j=1

gij̄dzi ∧ dz̄j ,

where {gij̄} is a positive Hermitian matrix-valued function such that dω = 0. We
will simply use ω to denote both a metric and its Kähler form.

Recall that the Kähler class of ω is the cohomology class [ω] in H2(M, R)
represented by ω. It follows from the Hodge theory that if ω′ is another Kähler
metric with [ω′] = [ω], then there is a smooth function ϕ on M such that

ω′ = ω +
√
−1
2

∂∂ϕ.

We will often denote the right side by ωϕ. Thus, the space K[ω] of Kähler metrics
with the same Kähler class [ω] can be identified with

{ϕ ∈ C∞(M, R) |
∫

M

ϕωn = 0, ω +
√
−1
2

∂∂ϕ > 0}.

Consider the functional on K[ω],

Ca(ω) =
∫

M

s(ω)2ωn.

E.Calabi proved in [Ca] that ω is a critical metric of Ca in K[ω] if and only if there
is a holomorphic vector field v on M such that ivω = ∂s(ω). Following Calabi,
we call such a critical metric extremal metric.

Clearly, a Kähler metric ω is an extremal metric if its scalar curvature s(ω) is
constant. If ω has constant scalar curvature, then

s(ω) =
nc1(M) ∪ [ω]n−1([M ])

[ω]n([M ])
,

where c1(M) is the first Chern class and [M ] denotes the fundamental class of
M .

If ω has constant scalar curvature and c1(M) = λ[ω] for some constant λ, then
ω is a Kähler-Einstein metric, that is, Ric(ω) = λω, where Ric(ω) is the Ricci
curvature form, in local coordinates z1, · · · , zn,

Ric(ω) = −
√
−1
2

∂∂ log det(gij̄).
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Basic problems include the uniqueness and existence of extremal metrics as
well as their moduli spaces and applications to the geometry of Kähler manifolds.

Let η(M) be the space of holomorphic vector fields on M and ω be any fixed
Kähler metric with Kähler class Ω ∈ H2(M, R). Then one can define the Calabi-
Futaki invariant as

fΩ(v) =
∫

M

v(hω)ωn, v ∈ η(M),

where hω is determined by the equations

s(ω)− sω = ∆hω,

∫

M

(

ehω − 1
)

ωn = 0,

where sω denotes the average of s(ω). It was proved ([Fut]) that fΩ(v) is actually
independent of the choice of ω. Therefore, it is an invariant. Consequently, if M

admits an extremal metric with the Kähler class Ω and constant scalar curvature,
then fΩ ≡ 0. On the other hand , there are examples of Kähler manifolds with
nonvanishing Calabi-Futaki invariant for certain Kähler classes, so there do not
exist metrics of constant scalar curvature for those Kähler classes. Also, extremal
metrics with the Kähler class Ω have constant scalar curvature if and only if the
Calabi-Futaki invariant fΩ vanishes identically.

In 1986, T. Mabuchi introduced the K-energy which can be defined as follows:
For any ϕ ∈ K[ω], let ϕt be any path joining 0 to ϕ, then

Tω(ϕ) = −
∫

M

ϕ̇t(s(ωϕt)− sω)ωn
ϕt

.

It can be proved that Tω(ϕ) is independent of the choice of the path. Its critical
points are clearly Kähler metrics of constant scalar curvature. A straightforward
computation shows

Tω(ϕ) + Tωϕ(ψ) = Tω(ϕ + ψ).

In fact, one can show that the K-energy is certain Donaldson functional restricted
to the space of Kähler metrics. The Donaldson functionals were first introduced
in [Do] in terms of the Bott-Chern classes [BC].

Here is a brief summary of known results on extremal metrics. The cele-
brated solution of Yau [Ya] for the Calabi conjecture established the existence
of a Ricci-flat metric, now named as Calabi-Yau metric, in each Kähler class on
a compact Kähler manifold M with c1(M) = 0. If c1(M) < 0, the existence of
Kähler-Einstein metrics was proved by Aubin [Au] and Yau [Ya], independently.
Not every M with c1(M) > 0 admits a Kähler-Einstein metric and additional
geometric conditions are needed to assure the existence. If M is a complex sur-
face with c1(M) > 0, then it admits a Kähler-Einstein metric if and only if the
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Lie algebra of holomorphic vector fields is reductive[Ti3]. For general M with
c1(M) > 0, the existence of Kähler-Einstein metrics is equivalent to certain ana-
lytic stability which is related to certain geometric stability[Ti2]. The existence
of extremal metrics other than Kähler-Einstein ones is basically open, but C. Le-
brun constructed scalar-flat Kähler metrics on blow-ups of ruled surfaces by using
the twistor method. Also, examples were constructed on manifolds with many
symmetries.

The uniqueness problem of extremal metrics is also highly nontrivial. The
uniqueness for Kähler-Einstein metrics of nonpositive scalar curvature was al-
ready known to Calabi in the 50’s. In 1986, Bando and Mabuchi [BM] proved
the uniqueness for Kähler-Einstein metrics with positive scalar curvature. Their
proof is very nice and highly nontrivial. So far, the best uniqueness result on
general extremal metrics was due to X.X. Chen [Ch]. He proved the uniqueness
of extremal metrics in any Kähler class on a Kähler manifold with nonpositive
first Chern class.

Compactness theorems on Kähler-Einstein metrics were established in [Ti2]
(also see [An]) for complex dimension two and in [CCT] for general dimensions.
There are still many open questions to be solved, especially in higher dimensions.
For general extremal metrics, very little is known.

In the following, we will only concentrate on the existence problem and discuss
its relation to the geometric stability of underlying manifolds. We will not fol-
low the chronicle order and present our results in contrast with those properties
discussed in the first section.

3. Scalar Curvature As Moment Map

Our discussions in this section follow [Ma], [Fuj] and [Do]. We will show that
the scalar curvature in Kähler geometry can be thought as an infinite dimensional
moment map in a formal sense as we discussed in Section 1. Then in the next
two sections, we explain how my previous theorems on Kähler-Einstein metrics
fit into the picture for the finite dimensional moment maps described in Section
1.

Let (X, ω) be a compact Kähler manifold. An ω-compatible almost complex
structure is an endomorphism J : TX 7→ TX such that J2 = −Id and gJ(u, v) =
ω(u, Jv) (u ∈ TX) defines a Hermitian metric with respect to J . It is integrable if
it induces a complex structure on X. We put Jω to be the set of all ω-compatible,
integrable almost complex structures. For simplicity, we will often abbreviate it
as J . Let K be the group of all Hamiltonian diffeomorphisms of (X, ω). Then K
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acts naturally on Jω: For any φ ∈ K and J ∈ Jω, φ∗(J) = dφ−1 · J · dφ. The Lie
algebra g of K is made of all Hamiltonian vector fields vh defined by

ω(vh, u) = u(h), u ∈ TX,

where h is any smooth function. Therefore, the Lie algebra of K is naturally
identified with C∞(M, R)0 of all smooth functions h satisfying

∫

X

hωn.

For any J ∈ J , the tangent space TJJ consists of all endomorphisms µ :
TX 7→ TX which anti-commutes with J and is symmetric with respect to gJ .
Clearly, Jµ ∈ TJJ whenever µ is. So we can define a complex structure  on J
by (µ) = Jµ for any µ ∈ TJJ . There is also a metric 〈·, ·〉 on J : For each J ,

〈µ, µ′〉J =
∫

X

gJ(µ, µ′)ωn,

where we also denote by gJ the induced metric on TX ⊗ T ∗X. This metric is
-invariant and induces naturally a two form Ω on J which is actually closed,
at least in a formal sense. So (J , Ω) becomes an infinite dimensional symplectic
manifold. Moreover, the above action of K on J is made of symplectomorphisms
of (J , Ω).

For any J ∈ J , let K(J) be the orbit of K passing through J , its tangent
space at J is

{Lvh
J | h ∈ C∞(M, R)0}.

Thus, any h ∈ C∞(X, R)0 induces a vector field Vh on J defined by

Vh(J) = Lvh
J ∈ TJK(J) ⊂ TJJ .

It can be shown in [Ma], [Fuj] and [Do] (also see [Ti5]) that

d

dt

∫

X

s(gJt)h ωn
∣

∣

t=0
= Ω(Vh, µ)|J , h ∈ C∞(MR)0, J ∈ J ,

where s(gJ) is the scalar curvature of the metric gJ , {Jt} is any path in J with
J0 = J and dJt

dt |0 = µ. Through the L2 inner product on the left side of the
above, we may regard C∞(M, R)0 as the dual g∗ of the Lie algebra g. Also
any gJ is a Kähler metric, so the average s of its scalar curvature is determined
by the first Chern class and ω. Thus, we have a map m : J 7→ g∗ defined by
m(J) = s(gJ)− s. The above identity simply means that m is a moment map of
the action by K with respect to the symplectic structure Ω (in a formal sense).

Now let us see how this fits into the problem of extremal Kähler metrics and
why the discussions in Section 1 are relevant.
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Define a distribution D ⊂ TJ :

DJ = {Lvh
J, LJvh

J | h ∈ C∞(M, R)}.

One can show that D is involutive.1 Let us construct maximal integral manifolds
of D in J . Any J ∈ J gives rise to a complex structure on X. We may assume
that ω is a Kähler form. Any other Kähler metric with the Kähler class [ω] is
of the form ωϕ for some ϕ ∈ C∞(X, R)0. By Moser’s theorem on deformation of
symplectic forms, we can get a smooth map F : C∞(X, R)0 ×X 7→ X such that
for each ϕ, Fϕ = F (ϕ, ·) defines a diffeomorphism of X satisfying: F ∗ϕωϕ = ω.
Define

ι : C∞(X, R)0 ×K 7→ J , ι(ϕ, ψ) = ψ∗ · F ∗ϕJ.

One can prove that its image M is a maximal integral manifold of D through J .
For this, we suffice to prove that TM is contained in D. It is also preserved by
K. Therefore, we can regard the space of Kähler metrics with the Kähler class
[ω] as the quotient M/K. It follows from these discussions

Proposition 3.1. The moduli space of Kähler metrics with constant scalar cur-
vature and Kähler class being [ω] is the symplectic quotient m−1(0)/K.

Furthermore, we observe that the K-energy Tω in the last section is just the
infinite dimensional version of the function in (1.1). This makes us consider two
problems analogous to those at the end of Section 1, namely, the existence of
constant scalar curvature Kähler metrics versus the properness of the K-energy
and geometric stability. For example, is there a notion of the Hilbert criterion
for extremal Kähler metrics? These problems will be studied in the following two
sections.

As in the case of finite dimensional moment maps, the K-energy Tω is convex
on the space of Kähler metrics with a fixed Kähler class. Hence, many profound
understanding towards extremal Kähler metrics can be studied by using this con-
vexity ([Do]). However, since the space of Kähler metrics is of infinite dimension,
it is unclear if this space is complete with the L2-metric on Kähler potentials. For
example, is there a geodesic joining any two given metrics? In [Do] (also [Se]), the
existence of geodesics is reduced to solving a degenerate complex Monge-Ampere
equation. Though it seems very hard to solve this equation, X. Chen [Ch] proved
existence of its weak solutions. Following a suggestion of S. Donaldson, he used
them to prove the uniqueness of extremal metrics under certain negativity condi-
tions.

1The Hamiltonian group K does not have any complexification, but it admits a complexica-

tion on the level of Lie algebra through the distribution D.



EXTREMAL METRICS AND GEOMETRIC STABILITY 419

4. Analytic Stability

In Section 1, we have seen that on a finite dimensional symplectic manifold
(M, ω) with an action by a compact group K, the associated moment map µ has
a zero if and only if the function defined in (1.1) is proper. In this section, we
study its analogue for constant scalar curvature Kähler metrics. First, we need
to introduce the notion of the analytic stability, which is equivalent to certain
properness of Tω.

Because of infinite dimension, the properness of Tω depends on the norms we
use. The space of Kähler metrics with a fixed Kähler class [ω] is

K[ω] = P (M, ω)/ ∼, P (M, ω) = {ϕ ∈ C∞(M, R) | ω +
√
−1
2

∂∂ϕ > 0}.

Here ϕ ∼ ϕ′ means ϕ = ϕ′ + c for some constant c. Note that Tω can be lifted
to P (M, ω).

Define

(4.1) Iω(ϕ) =
1
V

∫

M

ϕ(ωn − (ω +
√
−1
2

∂∂ϕ)n),

where V =
∫

M
ωn. Also define

(4.2) Jω(ϕ) =
∫ 1

0

Iω(tϕ)
t

dt =
1
V

n−1
∑

i=0

i + 1
n + 1

√
−1
2

∫

M

∂ϕ ∧ ∂ϕ ∧ ωi ∧ ωn−i−1
ϕ .

Then

Iω(ϕ)− Jω(ϕ) =
1
V

n−1
∑

i=0

n− i

n + 1

√
−1
2

∫

M

∂ϕ ∧ ∂ϕ ∧ ωi
ϕ ∧ ωn−i−1.

Notice that Iω(ϕ) ≥ 0 whenever ϕ ∈ P (M, ω). We will denote by (M, Ω), where
Ω ∈ H2(M, R) ∩ H1,1(M, C), a compact Kähler manifold polarized by a Kähler
class Ω. By an automorphism of (M, Ω), we mean a biholomorphism σ of M such
that σ∗Ω = Ω. Denote by Aut(M, Ω) the group of all such automorphisms.

Recall

Definition 1. We say that (M, [ω]) is analytically stable, or equivalently, the
K-energy Tω is proper, if there is an increasing function a(t) ≥ 0 (t ∈ (−∞,∞))
such that limt→∞ a(t) = ∞ and for any ϕ ∈ P (M, ω),

(4.3) Tω(ϕ) ≥ a(Iω(ϕ)).

We say that (M, [ω]) is analytically semi-stable if Tω is bounded from below.
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If G is a compact Lie group acting on M by automorphisms of (M, [ω]), then
we say that (M, [ω]) is analytically G-stable if (4.3) holds for all G-invariant ϕ

in P (M, ω) for some G-invariant metric ω in [ω].

Since the K-energy satisfies the cocycle condition

Tω(ϕ) = Tω(ψ) + Tωψ
(ϕ− ψ),

the analytic stability is independent of the choice of ω representing the Kähler
class [ω].

Conjecture 4.1. (cf.[Ti5]) A compact Kähler manifold M admits an Kähler
metric of constant scalar curvature and with the Kähler class Ω if and only if
the polarized manifold (M, Ω) is analytically G-stable for some maximal compact
subgroup G of Aut(M, Ω).

This conjecture has a counterpart in finite dimensional case, which is true as
shown in Section 1. This conjecture was solved in the case of Kähler-Einstein
metrics (cf. [Ti5]). Precisely, we have

Theorem 4.2. Let (M, Ω) be a compact polarized Kähler manifold such that
c1(M) = λΩ for some constant λ. Then M admits a Kähler-Einstein metric
within the Kähler class Ω if and only if (M, Ω) is analytically G-stable for some
maximal compact subgroup G of Aut(M, Ω).

Let us outline its proof here by using a result in [Ti2]. A simple computation
shows that when c1(M) = λΩ and ω is a metric with [ω] = Ω,

Tω(ϕ) =
∫

M

log
ωn

ϕ

ωn
ωn

ϕ −
∫

M

hω(ωn − ωn
ϕ)− λ V (Iω(ϕ)− Jω(ϕ)) .

Following [Ti1], we introduce the invariant α(M, Ω) for any polarized compact
Kähler manifold (M, Ω): Let G be a maximal compact subgroup of Aut(M, Ω).
Choose a G-invariant Kähler metric ω with [ω] = Ω. Define

(4.4) α(M, Ω) = sup{α | ∃Cα, s.t.
∫

M

e−α(ϕ−supM ϕ)ωn ≤ Cα, ∀ϕ ∈ PG(M, ω)},

where PG(M, ω) consists of all G-invariant functions in P (M, ω). It can be shown
that it is independent of the choice of ω and it is always positive (cf. [Ti1]). It
follows that for any α < α(M, Ω) and ϕ ∈ PG(M, ω),

(4.5)
1
V

∫

M

e− log
ωn

ϕ
ωn−α(ϕ−supM ϕ)ωn

ϕ =
1
V

∫

M

e−α(ϕ−supM ϕ)ωn ≤ Cα.
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Taking the logarithm on both sides and using its concavity, we get

1
V

∫

M

log
ωn

ϕ

ωn
ωn

ϕ ≥
α

V

∫

M

(sup
M

ϕ− ϕ)ωn
ϕ − log Cα.

Therefore, Tω is proper if λ ≤ 0.2 On the other hand, by [Ya], M admits a unique
Kähler-Einstein metric with the Kähler class Ω whenever λ ≤ 0.

It remains to show the theorem when λ > 0, say λ = 1. Recall

Fω(ϕ) = Jω(ϕ)− 1
V

∫

M

ϕωn − log
(

1
V

∫

M

ehωωn

)

.

Similarly, one can define the properness of Fω. The following theorem was proved
in [Ti2].

Theorem 4.3. Let (M, c1(M)) be a polarized compact Kähler manifold with
c1(M) positive. Then M admits a Kähler-Einstein metric if and only if Fω is
G-proper for a maximal compact subgroup of Aut(M, c1(M)), where ω is any fixed
G-invariant Kähler metric in c1(M).

We will deduce Theorem 4.3 from this theorem when λ = 1. A direct compu-
tation shows

Fω(ϕ) =
1
V

Tω(ϕ) +
1
V

∫

M

hωϕωn
ϕ −

1
V

∫

M

hωωn.

It follows that Fω ≤ Tω +c for some constant c. So the necessary part of Theorem
4.3 follows. On the other hand, in order to prove the existence, it is sufficient to
establish the properness of Fω along solutions of (cf. [Ti1])

(4.6)
(

ω +
√
−1
2

∂∂ϕ

)n

= ehω−tϕωn, t ∈ [0, 1].

If ϕ solves (4.4) for t, then hωϕ = −(1 − t)ϕ, however, Bando-Mabuchi showed
(cf. [BM]) that (1 − t)ϕ is bounded if the K-energy Tω is bounded from below.
So Theorem 4.3 follows.

Remark. The necessary part of Conjecture 4.2 would follow if one could prove
that K[ω] is geodesically complete with respect to the L2-metric as pointed out
by S. Donaldson.

Theorem 4.4 can be used to construct many Kähler-Einstein manifolds with
positive scalar curvature (cf. [Ti5]).

2In fact, Tω is proper and so M has a Kähler-Einstein metric whenever α(M, Ω) > nλ
n+1

. So

Theorem 4.3 implies the main result in [Ti1].
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5. Kähler-Einstein Metrics On Complex Surfaces

The existence problem for Kähler-Einstein metrics on a complex surface has
been completely solved due to Yau [Ya] in the case of vanishing first Chern class,
Aubin-Yau [Au], [Ya] in the case of negative first Chern class and myself [Ti3] in
the case of positive first Chern class. More precisely, if (M, Ω) is a polarized Kähler
surface with c1(M) = λΩ for some constant λ and vanishing Futaki invariant, then
M admits a unique Kähler-Einstein metric with Kähler class Ω. Of course, the
condition on the Futaki invariant is void if c1(M) is not positive. Now we recall
the main result of [Ti3].

Theorem 5.1. Let M be a compact complex surface with positive first Chern
class. Then M admits a Kähler-Einstein metric if and only if it has vanishing
Futaki invariant.

In rest of this section, we will outline the proof of this theorem following ar-
guments in [Ti3]. Hopefully, it will make the readers easier to understand the
proof which was very long in [Ti3]. What we really did in [Ti3] is to get the
properness of Fω on certain finite dimensional space of “algebraically” defined
Kähler metrics. This properness is equivalent to certain stability condition as we
will see in the next section.

Without loss of generality, we may assume that c1(M) = Ω. By the classifica-
tion theory of complex surfaces, M is either CP 2 or S2 × S2 or the blow-up Σm

of CP 2 at generic m points (1 ≤ m ≤ 8). Here the genericity means that none
of three points are collinear, none of six points are on a common quadratic curve
and, if m = 8, not all eight points lie on a cubic curve with a cusp which is one of
the blow-up points. The first two surfaces are homogeneous and so have canonical
Kähler-Einstein metrics. It was proved by Futaki that M has a Kähler-Einstein
metric only if its associated Futaki invariant vanishes. It was also known that the
Futaki invariant of M = Σm is nonzero if and only if m = 1 or 2. Therefore, we
suffice to establish the existence of Kähler-Einstein metrics on Σm for 3 ≤ m ≤ 8.
Denote by Mm the moduli spaces of Σm. It consists of all possible m points in
CP 2 in general position. Clearly, it is connected.

The proof in [Ti3] consists of three steps. In the first step, we proved that
there is at least one complex surface M in Mm which admits a Kähler-Einstein
metric. It was actually done in [TY] as an application of the main theorem in
[Ti1]. In [Ti1], it was proved that if the invariant α(M), the abbreviation of
α(M, c1(M)) in last section, is greater than n/n + 1, where n = dimC M , then
M admits a Kähler-Einstein metric. Here is a brief summary of estimates on the
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invariant α(M) in [TY]: (1) There is only one complex surface M ∈ M3 whose
α(M) ≥ 1; (2) The only one surface M ∈M4 has α(M) ≥ 3/4; (3) Every surface
M ∈M5 is a complete intersection in CP 4 defined by two quadratic polynomials
∑4

i=0 z2
i = 0 and

∑4
i=0 λiz

2
i = 0, then α(M) ≥ 1; (4) Every surface in M6 is

a cubic surface in CP 3. If M is the Fermat surface, then α(M) ≥ 1; (5) Every
surface M in M7 is a double branch covering of CP 2 along a quartic curve Q.
Then α(M) ≥ 3/4 when Q is a quartic curve with certain finite symmetries 3; (8)
Certain M in M8 with finite symmetries has α(M) ≥ 5/6 (cf. [TY] for details).
These surfaces described above admit a Kähler-Einstein metric.

Next we used the continuity method: For each m ≥ 5, let Em be the subset of
all M ∈Mm which admits a Kähler-Einstein metric. It follows from the first step
that Em is nonempty. Choose a smooth family of Kähler metrics ωτ on Mτ ∈Mm

with Kähler class c1(Mτ ). Then Mτ admits a Kähler-Einstein metric if and only
if the following Monge-Ampere equation is solvable

(5.1) (ωτ +
√
−1
2

∂∂ϕ)2 = ehτ−ϕω2
τ , ωτ +

√
−1
2

∂∂ϕ > 0 on Mτ ,

where hτ is determined by

Ric(ωτ )− ωτ =
√
−1
2

∂∂hτ ,

∫

Mτ

(ehτ − 1)ω2
τ = 0.

Since m ≥ 5, any surface Mτ does not have any nontrivial holomorphic vector
fields, it follows that if (5.1) is solvable on Mτ , so is every Mτ ′ sufficiently close to
Mτ . This is a simple application of the Implicit Function Theorem. So Em is open.
It remains to show that Em is closed in Mm. In order to deduce this closedness,
we need an a prior C3-estimate on solutions of (5.1). As we explained in [Ti1],
this C3-estimate follows from an a prior C0-estimate. In general, there does not
exist such an estimate for an equation of the type like (5.1). The idea of [Ti2]
is to get a partial C0-estimate and then use geometric information of underlying
manifolds to check if the required C0-estimate holds. Now let us recall the partial
C0-estimate.

Theorem 5.2. There are two constants c > 0 and l0 > 0 such that for any
Kähler-Einstein surface (M, ω) with Ric(ω) = ω, there is some l ∈ [l0, 2l0] such
that

(5.2) c ≥ 1
l

log

(

N
∑

i=0

||Si||2
)

≥ −c,

3As an application of the main theorem in [Ti2], it was shown in [Ti5] that every surface M

in M7 has proper Fω , and consequently has a Kähler-Einstein metric.
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where {Si}0≤i≤N is any orthonormal basis of H0(M, K−l
M ) with respect to the

inner product induced by ω. 4

Let us first explain why it implies a partial C0-estimate. Let ϕ be a solution
of (5.1). Write ω for ωτ +

√
−1
2 ∂∂ϕ. Choose a Hermitian metric || · ||τ on K−1

M

such that its curvature form is ωτ . This Hermitian metric and ωτ induce an
inner product on H0(M, K−l

M ). We may choose {Si} in (5.2) such that {µiSi}
is an orthonormal basis of this inner product associated to ωτ for some positive
constants µi (i = 0, · · · , N). It follows from the Maximum principle

(5.3) ϕ− 1
l

log

(

∑N
i=0 ||Si||2τ

∑N
i=0 ||Si||2

)

= c′,

where c′ is some constant. Write σi = µiSi. We may arrange µ0 ≥ µ1 ≥ · · · ≥ µN

and put λi = µN/µi. Then λ0 ≤ λ1 ≤ · · · ≤ λN = 1 and

(5.4) ||ϕ− sup
M

ϕ− 1
l

log(
N

∑

i=0

λ2
i ||σi||2τ )||C0 ≤ C.

Note that C always denotes a uniform constant. In particular, ϕ − supM ϕ is
bounded away from the zero locus of σN . So we have a partial C0-estimate of
ϕ− supM ϕ.

Now let us say a few words about the proof of Theorem 5.2. It follows from
a compactness theorem on Kähler-Einstein metrics. Fix m, let Mm,KE be the
set of M ∈Mm which admits a Kähler-Einstein metric. If (M, ω) is any Kähler-
Einstein surface in Mm,KE with Ric(ω) = ω, it has uniformly bounded diameter,
fixed volume and by the Gauss-Bonnet formula, the L2-norm of its curvature is
uniformly bounded. It was then proved in [Ti3] that Mm,KE can be compact-
ified in the Cheeger-Gromov topology by adding Kähler-Einstein orbifolds with
isolated singularities. Those singularities are of the form U/Γ, where U ⊂ C2 and
Γ is a finite group of U(2) with uniformly bounded order. Next, using the L2-
estimate for holomorphic sections, we proved in [Ti3] that the function in (5.2) is
continuous with respect to the Cheeger-Gromov topology. Then one can deduce
(5.2) by choosing l = ak, where a is the product of all orders of possible Γ for the
singularities.

The third step of the proof in [Ti3] is to prove

(5.5) Fωτ (ϕ) ≥ εIωτ (ϕ)− C,

4In [Ti3], (5.2) is actually proved for any l = 6k > 0. It was also conjectured that (5.2) holds

for any l sufficiently large.
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where ε is a fixed positive constant and ϕ solves (5.1).5 Note that we always use
C to denote a uniform constant.

Now let us explain why (5.5) implies Theorem 5.1. Since ϕ solves (5.1), we
have

Fωτ
(ϕ) =

√
−1

3V

∫

M
∂ϕ ∧ ∂ϕ ∧ ωτ +

√
−1

6V

∫

M
∂ϕ ∧ ∂ϕ ∧ ω − 1

V

∫

M
ϕω2

τ

= − 1
3V

∫

M
ϕω2 − 2

3V

∫

M
ϕω2

τ +
√
−1

6V

∫

M
∂ϕ ∧ ∂ϕ ∧ ωτ .(5.6)

Recall the following facts from [Ti1] (also see [Ti5]):

Fωτ (ϕ) ≤ 0;(5.7)

sup
M

ϕ ≤ 1
V

∫

M

ϕω2
τ + C;(5.8)

− inf
M

ϕ ≤ C

(

1− 1
V

∫

M

ϕω2

)

.(5.9)

It follows from the above that

||ϕ||C0 ≤ C(1 + Iωτ
(ϕ)),(5.10)

− inf
M

ϕ ≤ 2 sup
M

ϕ + C.(5.11)

Hence, Theorem 5.1 follows from (5.5).

Lemma 5.3. For any α < 2/3, there is a uniform constant Cα such that6

(5.12)
∫

M

e−α(ϕ−supM ϕ)ω2
τ ≤ Cα.

This lemma can be proved by using geometry of M and L2-estimate.
Using the concavity of logarithm and (5.1), we get

α sup
M

ϕ +
1− α

V

∫

M

ϕω2

≤ log
(

1
V

∫

M

eαsupM ϕ+(1−α)ϕehτ−ϕω2
τ

)

− 1
V

∫

M

hτω2

≤ log Cα −
1
V

∫

M

hτω2.

For any small ε > 0, choose α = 2/3− ε, then

(5.13) sup
M

ϕ ≤ −1 + ε

2V

∫

M

ϕω2 + C.

5This implies that Fωτ is proper along the solutions of (5.1).
6In fact, by using the L2-estimate for ∂-operator, one can show that α(M) ≥ 2/3 for any M

in Mm (3 ≤ m ≤ 8).
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Hence, by (5.4), (5.6), (5.7), (5.8) and (5.13), (5.5) follows from the following

(5.14)
√
−1

2V

∫

M

∂ψ ∧ ∂ψ ∧ ωτ ≥ −10ε inf
M

ϕ− C,

where ψ = 1
l log(

∑N
i=0 λ2

i ||σi||2τ ).

Lemma 5.4. Define Dk = ∩i≥kσ−1
i (0) and a by requiring that Da+1 contains a

divisor while Da is isolated. Then for any δ, there is a uniform Cδ such that for
any k ≥ a ,

(5.15)
√
−1

2V

∫

M

∂ψ ∧ ∂ψ ∧ ωτ ≥
2π(1− δ)(− log λk)

l2 V

∫

Dk

ωτ +
4
l

log λk+1 − Cδ.

Proof. Put

ψk =
1
l

log(
∑

i≤k

λ2
i ||σi||2τ +

∑

i>k

||σi||2τ ).

Then ψk ≥ ψ ≥ ψk + 2
l log λk+1 − log 2, so

√
−1

2V

∫

M

∂ψ ∧ ∂ψ ∧ ωτ ≥
√
−1

2V

∫

M

∂ψk ∧ ∂ψk ∧ ωτ +
4
l

log λk+1 − 2 log 2.

Then (5.15) follows from estimating the integral on the right of the above inequal-
ity. £

The following can be proved by using L2-estimate of ∂-operator.

Lemma 5.5. Let a be defined in last lemma. Then for η sufficiently small, we
have

(5.16)
∫

M

1
(
∑

i≥a ||σi||2τ )
1
l ( 2

3+η)
ω2

τ ≤ C.

It follows from (5.16) and the concavity of logarithm that

(5.17) −η inf
M

ϕ ≤ −2
l

log λa + C.

Then (5.14) follows from (5.15) and (5.17) by choosing ε ¼ η. Theorem 5.1 is
proved.

Remark. It will be an interesting problem when there is a Kähler-Einstein orbifold
metric on complex surfaces with isolated quotient singularities. Part of the proof
of Theorem 5.1 can be extended for this problem, but there are substantial new
difficulties due to presence of singularities.
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Remark. In the course of proving Theorem 5.2, we proved that the moduli space
of Kähler-Einstein surfaces with positive scalar curvature can be compactified by
adding Kähler-Einstein orbifolds with isolated singularities. Furthermore, certain
constraints were shown on the singularities (cf. [Ti3]). It was conjectured that
the moduli space can be compactified by adding only Kähler-Einstein orbifolds
with rational double points.

6. The K-stability

In Section 1, we have seen that a moment map on an algebraic manifold asso-
ciated to a linear group action has a unique zero along an orbit if and only if this
orbit is stable in Geometry Invariant Theory. Further, this algebraic stability can
be checked through the Hilbert criterion. We will discuss its analogue in the case
of extremal Kähler metrics in this section. Our results here were already pre-
sented in [Ti2] for Kähler-Einstein metrics. Their extension to general extremal
Kähler metrics is straightforward.

First let us introduce the K-stability (cf. [Ti2]). Let (M, c1(L)) be a com-
pact Kähler manifold polarized by a line bundle L.7 By the Kodaira embed-
ding theorem, for m sufficiently large, a basis of H0(M, Lm) gives an embedding
φm : M 7→ CPNm , where Nm + 1 = dimC H0(M, Lm). Any other basis gives an
embedding of the form σ · φm, where σ ∈ G = SL(Nm + 1, C). Let || · || be a
Hermitian metric on L such that its curvature form ω is a Kähler metric. Then
for any σ ∈ G, there is a unique function ϕσ such that

(6.1) φ∗mσ∗(|| · ||
2
m

FS) = e−ϕσ || · ||2,

where || · ||FS is a Hermitian metric on the hyperplane bundle over CPNm whose
curvature form is the Fubini-Study metric.

Lemma 6.1. Let G0 = {σt}t∈C∗ be any one-parameter algebraic subgroup of
SL(Nm + 1, C). Then

(6.2) − lim
t→−∞

d

dt
Tω(ϕσ(et))

exists. We will denote it by w(M, L, G0), called the weight of G0 associated to
(M, L) and often abbreviated as w(G0).

7It is also possible to define the K-stability for general polarized Kähler manifolds, for in-

stance, through geodesic rays in the space of Kähler metrics. It was explained in [AT] that

geodesic rays correspond to special degenerations used in the definition of the K-stability for

algebraic manifolds.
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This lemma was proved in [DT] under some further conditions on G0, but it
actually holds for general G0 and can be proved with slightly more efforts. It was
also proved in [DT] that w(G0) is equal to the generalized Futaki invariant of
Re(σ′(1)) on limt→0 σ(t)(φm(M)) if the limit is a normal variety. Furthermore, if
the limit has only quotient singularities [DT] or M is a hypersurface [Lu], then
the generalized Futaki invariant can be computed in terms of localization.

Let G0 be any one-parameter subgroup of SL(N + 1). Here for simplicity, we
write N = Nm. Then there is a coordinate system z0, · · · , zN in which σ(t) ∈ G0

is represented by

diag(tα0 , · · · , tαN ), t ∈ C∗,

where α0 ≤ · · · ≤ αN are integers. Define a height h(M, G0) or simply h(G0) to
be the smallest αN − αi such that φ∗mzi, · · · , φ∗mzN have no common zero on M .
It is easy to show that ϕσ(t) − supM ϕσ(t) is unbounded on t ∈ C∗ if and only if
h(G0) > 0.

Definition 2. We say that M is K-semistable with respect to Lm if w(G0) ≥ 0
for any one-parameter algebraic subgroup G0 ∈ SL(Nm + 1). We say that M

is K-stable with respect to Lm if it is K-semistable and w(G0) > 0 whenever
h(G0) > 0.8

Definition 3. Let (M, L) be a compact Kähler manifold polarized by L. We say
that (M, L) is asymptotically K-stable if M is K-stable with respect to Lm for
sufficiently large m.

Let Aut(M, L) be the group of all automorphisms which can be lifted to L.

Conjecture 6.2. Let (M, L) be a compact Kähler manifold polarized by a line
bundle L. For simplicity, assume that Aut(M, L) is finite. Then M admits a
Kähler metric with constant scalar curvature and Kähler class c1(L) if and only
if (M, L) is asymptotically K-stable.9

Let us give some evidence for this conjecture. The same arguments in [Ti2]
show that for any m, Tω(ϕσ) is proper over σ ∈ SL(Nm + 1) if and only if M is
K-stable with respect to Lm. On the other hand, we have [Ti2]

8The K-stability was first introduced in [Ti2] for Fano manifolds in a slightly weaker sense.

But I believe that two definitions should be equivalent
9In general, (M, L) admits a constant scalar curvature metric if and only if M is asymptot-

ically weakly K-stable. The weak K-stability means that M is semistable and w(G0) > 0 for

any G0 with h(G0) > 0 and transverse to identity component of Aut(M, L) in a suitable sense.
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Theorem 6.3. Let (M, ω) be a Kähler-Einstein manifold with c1(M) = λ[ω] =
λc1(L) for some constant λ. Assume that the Lie algebra of holomorphic vector
fields is trivial. Then (M, L) is asymptotically K-stable.

If λ ≤ 0, then the converse is automatically true because of the main theorem
in [Ya]. If λ > 0, the converse can be derived from the following partial C0-
estimate proposed in [Ti6]. To see this, we assume that (M, ω) is a n-dimensional
compact Kähler manifold with [ω] = c1(M). Then there is a unique hω such that

Ric(ω)− ω =
√
−1
2

∂∂hω,

∫

M

(ehω − 1)ωn = 0.

The existence of Kähler-Einstein metrics is equivalent to the solvability of the
following complex Monge-Ampere equation at t = 1,

(6.3) (ω +
√
−1
2

∂∂ϕ)n = ehω−tϕωn, ϕ ∈ P (M, ω),

where t ∈ [0, 1]. It can be proved that the set of t ∈ [0, 1] contains 0 and is open.
The more difficult part is to prove the closedness. As we said in the last section
(cf. [Ti1]), the closedness follows from an a prior C0-estimate for solutions of
(6.3). In general, such an estimate does not exist. In our case, we need to use the
stability to get this C0-estimate. The stability condition can be used only after
we can approximate a solution of (6.3) by ϕσ for some σ ∈ SL(Nm + 1) for m

sufficiently large. This is exactly what the partial C0-estimate gives. Here is the
general conjecture on the partial C0-estimate [Ti6].

Conjecture 6.4. For any ε > 0, there are constants m0, δm (m ≥ 1) and an
integer A, depending only n and ε, such that if (M, ω) satisfies Ric(ω) ≥ εω and
c1(M) = [ω], then for m = Al ≥ m0 ,

(6.4)
1
m

log(
Nm
∑

i=0

||Si||2) ≥ δm,

where {Si} is an orthonormal basis of H0(M, K−m
M ) with respect to any inner

product induced by ω and a Hermitian metric || · || on K−1
M with ω as its curvature

form. Note that || · || induces a Hermitian metric on K−m
M , still denoted by || · ||.

Remark. It will be an interesting question to find the smallest A. Is A possible
to be one?

If ϕ is a solution of (6.3) at t, then the equation implies that ωϕ has its Ricci
curvature no less than t > 0. If the above conjecture is true, then for some m
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sufficiently large, ϕ − ϕσ is bounded for some σ ∈ SL(Nm + 1). The stability
implies that Fω is proper along these ϕσ and we get the required estimate.

Remark. The existence of Kähler metrics is also related to the stability of un-
derlying manifolds in Geometric Invariant Theory. We will discuss it in detail
elsewhere. We refer the readers to [Ti2] for discussions in the case of Kähler-
Einstein metrics.

Theorem 6.3 can be used to prove that certain Fano 3-folds without holomor-
phic vector fields do not admit any Kähler-Einstein metrics (cf.[Ti2]). In fact,
these manifolds do not have any extremal Kähler metrics.

7. Extremal Metrics vs Complex Structures

Not every Kähler manifold admits an extremal metric. However, I still believe
that essentially all Kähler manifolds admit extremal Kähler metrics. Let us ex-
plain this in the following. Let Kn be the set of all polarized Kähler manifolds
(M, Ω) of dimension n. First let us introduce a partial ordering on Kn.

Definition 4. Let (M, Ω) and (M ′, Ω′) be two polarized Kähler manifolds. We
say (M ′, Ω′) ¿ (M, Ω) if there is a fibration π : Y 7→ ∆ ⊂ C from a polarized
manifold (Y,Φ) onto the unit disk ∆ such that (π−1(0), Φ|π−1(0)) = (M, Ω) and
there is a fiber-preserving biholomorphic map ψ from Y \π−1(0) onto M ′ × ∆∗

such that ψ∗Ω′ = Φ.

For any (M, Ω), we denote by [M, Ω] the subset of all polarized manifolds
(M ′Ω′) ¿ (M, Ω) of Kn. Clearly, if (M ′, Ω′) ¿ (M, Ω), then [M ′, Ω′] ⊂ [M, Ω].
In this way, we can decompose Kn into a disjoint union of subsets. Further, one
should be able to show that each subset is of the form [M, Ω] for some polarized
Kähler manifold (M, Ω). Such a (M, Ω) will be called a minimal polarized Kähler
manifold. We conjecture that each minimal polarized Kähler manifold admits
an extremal Kähler metric within the given Kähler class.10 One may have the
following uniqueness theorem in strong form: Each [M, Ω] contains at most one
polarized manifold with an extremal metric.

A similar conjecture was proposed before for Kähler manifolds polarized by the
first Chern class. It is believed that every minimal polarized (M, c1(M)) admits a
unique Kähler-Ricci soliton, that is a Kähler metric ω such that Ric(ω) = ω+LXω

for some holomorphic vector field X on M . The uniqueness part was proved in
[TZ].

10In this conjecture, one may need to allow minimal polarized (M, Ω) to be a Kähler varieties

with only mild singularities, such as singularities of quotient type.
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