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A NOTE ON THE CARTAN INTEGERS 

Morton Curtis and Alan Wiederhold 

With each pair of roots of a Lie algebra there is defined a normalized inner 

product which tums out to be an integer. These are called the Cartan Integers. In this 

note we show how these integers may be defined for a compact, connected, 

semisimpie Lie group without recourse to Lie algebra. They turn out to be intersection 

numbers of certain subgroups or, alternatively, they are the degrees of certain maps of 

the circle S 1 to itself. Along the way we get the roots and coroots of a group without 
Lie algebras or even the adjoint representation. 

Our main motivation for doing without Lie algebras is to be able to define and 

study these things for H-spaces. 

1. Coroots and roots. Let G be a compact connected Lie group of dimension n 

and rank r. Let T be a maximal torus in G, N its normalizer and W = N/T the Weyl 

group. Thus we have 
P 

0 >T >N • W-•-• 1, 

and, since T is abelian, W acts on T (by conjugation; i.e., if w E W and t E T, then w 

sends t to ntn -1 where n • p-l(w)). 
Let w • W be a reflection. Precisely this means that if w: T -> T is lifted to the 

covering space 

•: R r • R r, 

then • is reflection in an (r-1)-hyperplane H in R r. Let T'= p-l(w). Since 
w 2 = 1 = p(T) we see that if x • T' then x 2 • T. 

DEFINITION 1: For the reflection w E W we let V be the set of fixed points of 

the action of w on T. 

Clearly V is a closed subgroup of T, and since a neighborhood of 1 in V is the 

image of a neighborhood of 0 in H under the covering map, we see that dim V = r-1. 

The identity component V ø of V is thus an (r-1)-torus. 

Let qb' G -> G be the squaring map 
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•(x) = x 2. 
Then •(T •) C V. Forif x • T • we have x 2 • T and 

x(x2)x -1 = x 2. 

DEFINITION 2: Q= {tGTlxtx -1 =t -1 forxGT'}. 
Q is a closed subgroup of T. Clearly every element of Q • V is its own inverse; 

i.e., it is a square root of 1 in T. Thus Q c3 V is finite and since dim V = r-1 we see that 

dim Q = 1. Thus Q is topologically a disjoint finite set of circles. 

LEMMA 1' •(T') is a component of V. 

PROOF: We look at the fibers of•. If •(x) = •(y); i.e., x 2 - y2, we see that 
x(xy-1)x -1 = x2y-lx-1 = y2y-lx-1 = yx-1 = (xy-1)-I 

so xy -1 C Q. Thus the fibers of this (smooth) map • have dimension one so •(T') is a 
closed connected (r-1)-manifold in V and is thus a component of V. 

Let QO be the identity component of Q, so that QO is a circle group. Let o• G QO 

be the square root of 1 (4= 1) in QO. Obviously o• G V. 

LEMMA 2: V has at most two components. 

PROOF: If V had three or more components QO and V would have at least three 

points in common, but QO c3 V = { 1,o• } since each point of this intersection must be 

a square root of 1 in QO. 

We have noted that the identity component V ø of V is an (r-1)-torus. By taking 

an appropriate line segment in R r and projecting to T by the covering map we can get 

a circle subgroup C of T such that C rh V o = { 1 }. Then C and V ø together are a 

"coordinate system" for T. In particular, any homomorphism of T to another group is 

determined by specifying its restriction to C and V ø. We are going to define a 

homomorphism 0' T -• S 1 (a root) corresponding to the reflection w G W. 
Let U = VøU •(T'). This is going to be the kernel of the homomorphism 0. 

There are two cases: 

(i) a G U and 

(ii) u. 

(Case (i) occurs when the simisimple group associated to the root is S3; case (ii) occurs 
when it is S0(3) .) In case (i) the homomorphism is to be such that the combined map 

QO incl.• T 0 > S1 has degree 2. In case (ii) this combined map is to have degree 
1. To accomplish these things we specify the degree on C. In case (i) we may have 
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o• • V ø in which case the degree on C is to be 1 (since QO already "goes around 

twice"). If ½(T •) :# V ø then o• must be in ½(T') and then 0 is to have degree 2 on C 

(since QO goes around only once). Now case (ii) can occur only if •(T •) = V ø (and 

o• • Vø), so in this case the degree on C is to be 1. 

DEFINITION3: The homomorphism 0:T-•S 1 just defined is the root 
associated with the reflection w. The homomorphic inclusion QO_> T is the coroot 

associated with the reflection w. 

Since U is the kernel of 0 it is a subgroup of T. Let P be the centralizer of U; i.e., 

P= {x•Glxu=uxforallu•U). 

LEMMA 3: P is connected. 

PROOF: If U is connected it is a torus and the centralizer of a torus is connected 

([ 1], Prop. 4.25). If Z( ) denotes "centralizer of", then we have 

zo(u) _c z(u) c_ z(uo). 

The end terms are connected and all terms are closed manifolds. Furthermore they all 

have dimension •-2 because Zø(U)/U and Z(Uø)/U ø both have rank 1 and hence 

dimension 3 (recall dim U = r-l). Thus all three terms are equal and Z(U) is connected. 

LEMMA 4: Let j: T-> P be the inclusion and let •: S 1 -> T be the inclusion of 

the coroot QO. Then in •rl(P) we have 

21#I•1 =o. 
PROOF: Let p be a path in P from 1 to a point x in T' (P is connected and, 

clearly, T'C P). Then conjugation by p(t) gives a homotopy from the identity to 

conjugation by x which is the inverse map on QO. This proves the lemma. 

2. Cartan Integers. Let Wl,W2,...,w k be all of the reflections in W. These 

generate W, and, if G is semisimpie some r of them generate W. For each w i we have 

defined in section 1 a coroot 13i: S 1 •T and a root 0i: T->S 1. Thus for each pair 
wi,w j we have a map 

S 1 13i )T 0j •S 1 
and we denote by dij the degree of 0j13 i. 

Also for each w i we have defined the degree d i of [13 i] in el(G). By Lemma 4 d i 
is either 1 or 2. 

DEFINITION 4: For each pair wi,w j of reflections we have an integer Cji = didij- 
These are called the Cartan Integers of G. 



32 MORTON CURTIS and ALAN WIEDERHOLD 

THEOREM: If G is semisimpie and Wl,W 2 ..... w r generate W, then the Cartan 
Integers defined above agree with the usual Cartan Integers. 

PROOF: Let (,) be an inner product on œ(T)* (the dual of the Lie algebra œ(T) 

of T) which is invariant under the action of the Weyl group ([1], page 116). The 

Cartan Integers are defined by 

(oi, o j) 
cji= 2 (0 i, 0 i ) 

or, equivalently, 

Cji = 0j(ri) 
where r i is the i th basic translate ([2], page 4 1). 

First we note that the degree dij defined above is the same as the intersection 
number of Q? and Uj which we denote by 

Q? 91 Uj. 
Now it suffices to prove the theorem in case G is simple. We first prove the 

theorem when G is also simply connected. Then we want to show that Cji = dij = 
Qi 91 Uj. In œ(T) we have the line œ(Qi) and the hyperplane œ(Uj), œ(Uj) being in a 
family of equally spaced parallel hyperplanes; viz. d0jl(z), with œ(Uj) = d0jl(0). 

_ 

Let œ(Qi ) be the segment of œ(Qi ) from 0 out just far enough to cover Qi once 

under the exponential map. We see that Qi 91 Uj (at least in absolute value) is just the 

number of the hyperplanes in d0jl(z) crossed by œ-•Qi) (including one end of•(Qi)). 
(Note that if 0 i and 0j are perpendicular roots then Qi c Uj and the intersection 
number is zero.) 

Since we are assuming rrl(G) = 0 we have that the basic translates { r k } generate 
-- 

the integer lattice I. So in the simply connected case œ(Qi ) = r i. Thus we have 

IQ i 91 UjI = 10j(ri)l = Irjil. 
To get the signs we need to consider orientations. We orient the Qi's and Ui's so 

that each Qi 91 Ui is positive. Then Qi 91 Uj and Qj 91 U i will have the same sign (since 
Qi is perpendicular to Ui). So we orient the Qi's and Ui's by starting at any end of the 

Dynkin diagram and orient each new Qj and Uj to give the right sign. Since the Dynkin 
diagram contains no cycles this is always possible. 

Now suppose •rl(G) is not necessarily zero. Then the number of points of the 

integer lattice lying on r i (counting one end) is just the order of Q i in •rl(G), and we 
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must multiply the intersection number by this to get 0j(r i) = Cji. 
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