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LOCALIZATION AND DUALITY IN ADDITIVE CATEGORIES 

J. Lambek and B.A. Rattray 1 

By a duality between two categories we shall mean an equivalence between one 

and the opposite of the other. We propose to establish a common categorical setting 

for a number of well-known duality theorems in mathematics. While we do not claim 

that the proof of any one of these theorems will thus be simplified, the categorical 

approach should help the lazy mathematician who is interested in more than one of 

these classical results. As a byproduct of our machinery we also obtain some new 

duality theorems. 

The mathematical literature abounds with examples of duality. It is clearly 

impossible to discuss them all here, but we shall consider some cases of duality for 

non-additive categories in a sequel to this paper. 

1. Categorical setting for duality. Keimel and Hofmann [2] have pointed out 

the importance of adjoint functors in connection with duality theorems. It is fairly 
F 

obvious that, if A •B is a pair of adjoint functors with adjunctions r/: id -> UF and 
e: FU -> id, they induce an equivalence between the full subcategories 

Fix(UF,r/) = { A C A I r/(A) is iso } 

of A and 

Fix(FU,e) = ( B C B le(B) is iso ) 

of B._. Surprisingly, the condition which ensures that Fix(UF,r/) is a reflective 

subcategory of A will also ensure that Fix(FU,e) is a coreflective subcategory of B__•. 
F 

THEOREM 1.1. Let A •B be a pair of adjoint functors with adjunctions 
• U• 

fl.' id -> UF and e.' FU -> id. Then these induce an equivalence between Fix(UF, ri) and 

Fix(FU, e). Moreover, the following statements are equivalent.' 

(1) the triple (UF, ri, UeF) on A is idempotent, 

(2) flu is a natural isomorphism, 

(3) the cotriple (FU, e,FriU) on B is idempotent, 

i Both authors had support from the National Research Council of Canada. 
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(4) 6F is a natural isomorphism. 

If these conditions hold, Fix(UF, rl) is a reflective subcategory of__A and Fix(FU, 6) is a 

corefiective subcategory of B.c. 

PROOF. Suppose A CFix(UF,r/), that is, r/(A) is an isomorphism. Since 

(6F(A))(Fr/(A)) = 1, 6F(A) is an isomorphism, that is F(A)C Fix(FU,6). Thus F 

induces a functor 

F': Fix(UF,r/) • Fix(FU,e), 

and simila•.y U induces a functor U' which will be right adjoint to F'. Clearly, 
U'F' -• id and F'b' • id. 

We shall now show that (1) • (2) =} (3) • (4) • (1). 

We note that if r/(A)' A • UF(A) has a left inverse g, then the following is a split 

equalizer diagram' 

g UF(g) 

If (UF,r/,U •F) is an idempotent triple, it is known [15] that rtUF = UFrt, and it 

follows that r/(A) is an isomorphism. 

Now r/U(B) always has a left inverse Ue(B), hence (1) = (2). 

Now assume (2). Then, for each object B of• eFU(B) is an isomorphism, as was 

shown at the beginning of this proof. Thus (2) =• (3). 

We observe that FoP: A.• øp • B__ øp (indistinguishable from F) is the right adjoint 

of uøP: B__ øp • A øp (indistinguishable from U). Therefore also (3) =• (4) =•(1). 

Finally, we observe that, when (UF,r/,UeF) is idempotent, A• UF(A)is a 
reflector from_A.A to Fix(UF,r/) with reflection r/(A)' A -• UF(A). Similarly B • FU(B) 

is a corefiector from A__to Fix(FU,e)with corefiectione(B)' FU(B) -• B. 

REMARK 1.2. In applications we often put B = C øp, so that F: A-• C._ øp being 
left adjoint to U: C øp -•A implies that uøP: C • A øp is left adjoint to F øp' A øp 
a more symmetrical situation. The equivalent statements of Theorem 1.1 then involve 

two idempotent triples and the conclusion asserts the duality between their fixed 

subcategories. 

Isbell [3] has called a pair of adjoint functors between A and C øp a "Galois 
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connection" between A and C_if it satisfies conditions (2) and (4) of Theorem 1.1. He 

mentions the duality between the reflective subcategories when both conditions hold 

but does not point out the equivalence of the two conditions. 

Many,'.if not all, equivalence and duality theorems in mathematics can be put 
. 

into thd above setting. The real work will then consist in proving that one of the 
triples is idcmpotcnt and in identifying the two fixed subcategories. 

This .job can be made a little easier, if we begin by searching for idcmpotent 

triples. We recall the following result from [10, 1 1], which shows that many triples 

give rise to idempotcnt triples by a simple process due to Fakir [ 1 ]. 
F 

PROPOSITION 1.3. Let A • • be a pair of adjoint functors with adjunction 

7.' id • UF. Assuming __A has equalizers, let X.' Q -• UF be the equalizer of the two 
nUF 

natural transformations UF • (UF) 2, and let •.' id • Q be the unique morphism 
UFn 

such that XX = •1. Then the following statements are equivalent.' 

( 1 ) (Q, •) is an idempotent triple,' 

(2) for all A in _A and B in B and each f: Q(A)•U(B) there exists g.' 

UF(A) • U(B) such that gX(A) = f,' 

(3) Fix(Q,X) is the limit closure of the class of all U(B) with B in__B. 

In explanation of (1) we remark that, while a triple requires three data, an 

idcmpotcnt triple requires only two. The limit closure of a class of objects is the 

smallest full subcategory of A which contains this class and which is closed under 

limits. 

When the equivalent conditions of Proposition 1.3 hold we sometimes call (Q,3,) 

the idempotent co-approximation of (UF,ri,UcF). 

REMARK 1.4. Of special interest is the case whcreB is the category of sets, I is 

an object of__A all powers of which exist, F = Hom(-,I) and U = I(-). Then (2) and (3) 
may be replaced by the following: 

(2') for all A in A__ and each f: Q(A) -• I there exists g: UF(A) • I such that 

gx(A) = f; 

(3') Fix(Q,X) is the limit closure of I. 

Because of (2'), we call the object I x-injective. We call Q the localization functor 

associated with I. 

It was shown in [10], that x(A): Q(A) --> UF(A) may also be characterized as the 
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joint equalizer of all pairs of morphisms •,•;: UF(A) • I such that qr/(A) = •;r/(A). 

We also recall from [ 10, Proposition 2], the following notion. An object P of A is 

called a regular generator if for every object A of•A there is a regular epimorphism 

(that is, a morphism which happens to be a coequalizer) from some sum of copies of P 

to A. It was shown that, when P is a x-projective regular generator and Q is the 

colocalization functor associated with P, then the canonical morphism Q(A) --> A is an 

isomorphism. 

2. Duality and equivalence in additive categories. A category A--is called additive 

if itom(A,B) is an abelian group, for each pair of objects A,B, and if composition of 

morphisms is bilinear. An object I of an additive category A is called co-small if the 

functor Hom(-,I) sends products of A to coproducts in the category of abelian groups. 

This means that, for every family {Ax[ x C X} of objects in A_&, each morphism 

x C II XAx --> I factors through some finite sub-product. 
THEOREM 2.1. Let__A be a complete additive category, I a x-injective co-small 

object, E its ring of endomorphisms. Then the functor F--Hom(-,I).'__A -> (E Mod) øp 

has a right adjoint U, (UF, rl) is an idernpotent triple on .4 (in fact, UF is the 

localization functor associated with I), (FU, e) is an idempotent cotriple on 

(EMod) øp, and F induces an equivalence between Fix(UF, rl) and Fix(FU, e). 

Moreover, Fix(UF, rl) is the limit closure of I in A._. 

PROOF. The existence of the right adjoint U is well-known (see for instance [6, 

Proposition 1.2] for the dual situation). In view of Theorems 1.1 and 1.3, we need 

only show that the triple (UF,r/,UeF) coincides with the idempotent triple (Q,X), 

where Q is the localization functor associated with I. The fact that Fix(UF,r/) is the 

limit closure of I follows from Remark 1.4. 

A proof that UF = Q was sketched in [ 10, Example 5]. We shall give another 

proof here, which uses less of the theory of triples. We pass to the dual statement, 

which is more useful in some applications. 

THEOREM 2.1'. Let A be a cocoreplete additive category, P a x-projective small 

object, E its ring of endomorphisms. Then the functor U = Hom(P,-).'__A -> Mod E has a 

left adjoint F, (FU, e) is an idempotent cotriple on__A (in fact, FU is the colocalization 

functor Q associated with P), (UF, e) is an idempotent triple on Mod E, and U induces 

an equivalence between Fix(FU, e) and Fix(UF, rl). Moreover, Fix(FU, e) is the colimit 
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closure of? in A. 

PROOF. We need only show that FU = Q. Let U 0' Mod E--> Set be the usual 

forgetful functor with left adjoint F 0, given by F0(X) = Z E, and adjunction xGX 

e0: F0U 0 --> id. Then U' = U0U has left adjoint F' with F'(X) = Z P. We can choose xGX 

F so that F' and FF 0 are equal, not merely isomorphic. We must choose F(E) = P, 

F( GZX E)= GZX P. Then the adjunction for F' is given by e'(A)= x x 

(•(A))(F•0U(A)): f:p2_,,.AP -> A. 
We note that •0U(A)' E E-,' U(A) is the joint cokernel of all v: E--> E E f: P-,'A f: P-->A 

such that (•0U(A))v = 0. This is clear, e.g. in view of Remark 1.4, because E is a 
x-projective regular generator of Mod E. 

Since F preserves coequalizers, F e0U(A) ß 1; P--> FU(A) is the joint cokernel f: P-->A 

of all F(v)' P --> E P such that (•0U(A))v = 0. f: P-->A 

Given any morphism g: P--> A, by adjointness there is a unique homomorphism 

g': E --> U(A) such that •(A)F(g') = g. Taking g = •'(A)F(v), we see that g' = (•0U(A))v. 
Consequently 

(e0U(a))v = 0 '• d(A)F(v) = 0. 

Now, by Remark 1.4, x(A): f:pZ__>AP --> Q(A) is the joint cokernel of all morphisms 
f:P-,' Z P such that •'(A)f= 0. Thus, in any case, we obtain a unique morphism 

f: P-->A 

a(A): FU(A) -> Q(A) such that 

a(A)(Fe0U(A)) = x(A). 
Moreover, a(A) will be an isomorphism if every morphism g: P--> E P has the 

f: P->A 

form F(v) for some v: P --> E E. Since P is small, g can be factored thus: 
f: P->A 

g 
P > E P 

h• • P->A 
• P 1G 

f• G 

where G is a finite subset of Hom(P,A) and i G is the canonical injection of a subsum. 

Now, clearly, i G = F(i•), where i• is the corresponding injection 

2 E--> i•_>A E in Mod E. Moreover, if kf:P-• • P and • P-•P are the fGG f: fGG Pf:f•G 
usual canonical injections and projections, we have 

= = • kfhf, h fG• kfpfh f•G 
where hf = pfh G E. Hence 
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h = Z F(k•) F(h•), 
where k• is the corresponding injection E -• Z E in Mod E and h•: E -• E is defined fEG 

by left multiplication with hf. This is easily seen from the explicit construction of F. 

COROLLARY 2.2. Under the assumptions of Theorem 2.1', we have.' 

(a) Fix(FU, e) --A__ if and only if P is a regular generator. 

(b) Fix(UF,•) = Mod E if and only if the restriction of U to Fix(FU, e) preserves 

colimits. 

(c) U is an equivalence between A and Mod E if and only if P is a regular 

generator and U preserves colimits. 

PROOF. (a) the notion of "regular generator" was discussed in Remark 1.4. 

(b) Suppose the restriction of U to Fix(FU,e) preserves colimits, then it takes 

colimits in Fix(FU,e) (which are also colimits in A_&) to colimits in Mod E. Now F takes 

any colimit of Mod E to a colimit of A_&.which lies in Fix(FU,e). Hence UF preserves 

colimits, and so Fix(UF,•) is closed under colimits in Mod E. Since this subcategory 

contains E, it is equal to Mod E. 

The converse is clear. 

(c) Put together (a) and (b). 

We note that U preserves colimits if and only if it preserves coproducts, that is, P 

is small, and it preserves coequalizers. When.•A is abelian, the second condition means 

that U preserves epimorphisms, that is, P is projectire. Moreover, in that case every 

generator is a regular generator. Thus we have the following theorem of Mitchell and 

Gabriel as a special case (this is not the easiest proof)' 

COROLLARY 2.3. An additive category is equivalent to a module category if 

and only if it is cocomplete A belian and has a small projectire generator. 

This last result has several important applications. Taking A_&.= Mod R, one 

obtains Morita equivalence. Taking 3, to be the opposite of the category of compact 

Abelian groups, with P = R/Z, one obtains Pontrjagin duality. In the last case, the crux 

of the proof consists in showing that P is a small projectire. 

We note that the conclusions of Theorem 2.1' remain valid if we replace the 

assumption that P is x-projective and small by the assumptions that P is a generator 

and that A_&is Abelian with exact direct limits. In fact, in that case UF is the identity 

functor. This result is one half of the Gabriel-Popescu Theorem [6, Corollary to 
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Proposition 4.4], the other half asserting that F is exact. We shall resist the temptation 

of inserting another proof of this result here. 

3. Duality for modules. Given an associative ring R with unity element, we shall 

consider the category Cont R defined as follows' its objects are right R-modules which 

are at the same time topological abelian groups on which the elements of R act 

continuously; its morphisms are continuous R-homomorphisms. We shall take I to be a 

quasi-injective module in Mod R equipped with the discrete topology. 

I is called quasi-injective if, for every submodule B of I, every homomorphism 

B -> I can be extended to I -> I. Harada had proved that, for every finite n and every 

submodule B of I n, every homomorphism B • I can then be extended to I n-• I [9, 

Lemma 4.1]. It was shown in [9, Proposition 5.2] that, for every set X and every 

regular submodule B of I X in Cont R, every continuous homomorphism B -• I can be 
extended to I X -> I. Consequently, I is x-injective in Cont R. 

PROPOSITION 3.1. Let I be a quasi-injective right R-module equipped with the 

discrete topology. Then I is co-small in Cont R. 

PROOF. Let A = •I-IxA x with projections Px: A->Ax and consider any x 

fC ContR(A,I ). Since I is discrete, ker f is an open neighborhood of zero; so, in view 

of the way the product topology on A is defined, 

C3 -.. r3 ker ker f D-- ker px 1 px n 
= ker p, 

n 

where p = (px 1 .... ,Pxn>'A-> II Axi. Therefore, there exists an R-homomorphism n i=l 

g:i--• Axi -> I such that gp = f. 
We are now ready to apply Theorem 2.1 to the situation in hand, but a little 

more preparation is necessary if we want to identify the fixed subcategory of 

(E Mod)øP. 

The I-adic topology on a module A 0 C Mod R has a fundamental system of open 

neighborhoods of zero consisting of all kernels of homomorphisms A 0 • I n. If only 
some of these kernels are contained in the system of neighborhoods we shall speak of 

a sub-I-adic topology. Thus, both the I-adic topology and the indiscrete topology are 

sub-I-adic topologies. 

PROPOSITION 3.2. Let A 0 be an R-module, I a quasi-injective R-module. Then 

there is a lattice anti-isomorphism between the lattice of sub-I-adic topologies on A 0 
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and the lattice of E-submodules of HomR(A O,D.' 

(1) with each E-submodule B of HomR(Ao, D associate the topology T B on A 0 
which has a fundamental system of open neighborhoods of zero of the form ker b 1 

fl ... Cl ker b n with b 1 ..... b n G B,' 

(2) with each sub-I-adic topology T on A 0 associate BT= ContR((A O, T),D, 
where I is endowed with the discrete topology. 

PROOF. Starting with B C HomR(A0,I) , we note that, in fact, 

B C_ ContR((A0,TB),I ). Suppose c C ContR((A0,TB),I), then 

kerc_Dkerbl C•-o. C•kerb n=kerb, 

where b = (b 1 .... ,bn): A 0 -> I n. Consequently, there exists g C HomR(im b, I) such that 
gb(a) = c(a), for all a GA. By Harada's Lemma, we may extend g to h: I n -> I. Let 

Xi: I-> I n and rri: I n -> I be the canonical injections and projections, for i = 1,...,n. 
Then 

n n 

c = hb = h Z __Z (hxi)(rrib), i= 1 Xirrib = i 1 

and this belongs to B, since hxi G E. Therefore B = ContR((A0,TB),I). 

On the other hand, let T be any sub-I-adic topology on A 0, then TBT has a 
fundamental system of open neighborhoods of zero of the form 

ker b 1 Cl --- Cl ker bn, where b 1,...,b n G B T = ContR((A0,T),I). Since the b i are 

continuous, ker biG T. Thus TBT c_ T. Conversely, any fundamental open 
neighborhood of zero in T has the form ker c, for some c C HomR(A0,In). Then 

c G ContR((A 0, T,In), hence rr 1 c,...,rrnC G B T and so ker c G TBT. Therefore TBT = T. 
THEOREM 3.3. Let I be a quasi-injective right R-module endowed with the 

discrete topology, E its ring of endomorphisms, then F = COntR(-,D.' 
Cont R ->(EMod) øp induces a duality of categories between the limit closure of I in 

Cont R and the full subcategory of E Mod cogenerated by E I, that is, consisting of all 

E-modules isomorphic to submodules of powers of EI. 

PROOF. Clearly, F has right adjoint U= HomE(-,I) , where U(B) = 

HomE(B,I ) C_ I B has the topology induced by the product topology of I B. Moreover, 
(UF,r/,UeF) is an idempotent triple on Cont R, as was shown in [9, Proposition 5.3]. 

This also follows from our Theorem 2.1, in view of the observation that I is x-injective 

[9, Proposition 5.2] and co-small, which was shown in Proposition 3.1. Therefore, by 
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Theorem 2.1, we have a duality between the limit closure of I in Cont R and 

Fix(FU,e). It remains to identify the latter subcategory. This is done in the following 

Lemma. 

First, let us describe the adjunction morphism e(B)' FU(B) • B in (E Mod) øp. 

Passing to E Mod, we have e(B): B • ContR(HOmE(B,I),I) given by 

e(B)(b)(O = fib) 

for all b C B and f C HomE(B,I). 

LEMMA 3.4. Under the assumptions of Theorem 3.3, the following statements 

concerning a left E-module B are equivalent.' 

(1) e(B).' B -> FU(B) is an isomorphism of E Mod, 

(2) B is cogenerated by E l, 
(3) e(B) is a monomorphism, 

(4) B is isomorphic to a submodule of HomR(AO,I) for some A 0 in Mod R, 
(5) B • P-fA) forsome A in ContR. 

PROOF. We shall show that (1) =} (2) =} (3) =} (4) =} (5) :• (1). 

(1) =} (2), since FU(B) C_ IU(B) 

(2) =•(3)' Suppose e(B)(b)= 0, then fib)= 0 for all f G HomE(B,I). Suppose 

B C_ I X and let f be the restfiction of Px to B for x • X, where Px: IX-"' I is the 
canonical projection. Then we deduce that Px(b) = 0 for all x • X, hence b = 0. 

(3) =• (4). Take A 0 to be the underlying module of U(B). 

(4) =• (5). By Proposition 3.2, any submodule of HomR(A0,I) has the form F(A) 

for A = (A0,T), T being a suitable topology on A 0. 
(5) =•(1). Since the triple (UF,r/,UeF) on Cont R is idempotent, eF(A) is an 

isomorphism by Theorem 1.1. 

4. Examples of module duality. The fixed subcategories of Cont R and E Mod 

can be described more neatly in some special cases, particularly the former. To do this 

we need the following proposition which comprises a number of known density 

theorems (see [9]). 

PROPOSITION 4.1. Given A in Cont R, and I in Mod R equipped with the 

discrete topology. Suppose that, for any finite n and any f G ContR(A,In), In/ff A) is 
cogenerated by I. Then the image of ,I(A).'A -> UF(A) is dense in the topology of 

U•A). 
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PROOF. (as in [9, Application 3.4]) For any f = (fl,'",fn) C ContR(A,In), let f* 
be the homomorphism UF(A) -} I n defined by 

f*(s) = (s(f 1),...,s(fn)) 

for s C UF(A)= HOmE(ContR(A,I),I). UF(A) is topologized as a subspace of the 
product space I CøntR(A'I), so the kernels of the homomorphisms f* form a 
fundamental system of open neighborhoods of zero. Thus, we must prove that, for 

any sGUF(A) and any fGContR(A,In), there is an aGA such that 
s-(,/(A))(a) G ker f*. 

Consider the mapping 

in e m iX •rx • In/f(A) • • I 

where e is the canonical surjection, m the assumed monomorphism and •r x 

canonical projection associated with x C X. Then 

We have fi = Pi f, 

and 

the 

•r x reef = 0. 

n 

f*(s) = i=•l kis(fi) , 

•rxmef*(s ) = lql •rxmekis(Pif) i= 

n 

= s( i=21 •rxmekiPif) 
= S0rxmef) = s(0) = 0. 

This is so, because rrxmek i G E and s is an E-homomorphism. It follows that mef* = 0, 
hence ef* = 0, that is, im f* C_ im f. This means that, for any s G UF(A), there exists 

a G A such that 

that is, 

f*(s) = ffa) = f*r/(A)(a), 

s - r/(A)(a) • ker f*, 

as was to be shown. 

This result could also have been proved by a variation of the dual of the 

argument used for Theorem 2.1 * 

REMARK 4.2. The assumptions of the above proposition hold in the following 

known cases: 
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(1) I is a cogenerator of Mod R, 

(2) I is completely reducible, 

(3) I is a nice injecfive and the underlying abstract module of A is I-torsionfree 

divisible. 

PROOF. Case (1) is clear. In case (2) we may take I X = I n. For case (3) we recall 
that an abstract module is called I-torsion free divisible if it lies in the limit closure of I 

in Mod R, and that I is called nice if this limit closure is closed under cokernels [7]. 

We deduce from (3) that f(A) is I-torsionfree divisible, hence that In/f(A)is 

I-torsionfree, that is, cogenerated by I. 

PROPOSITION 4.3. If I is either completely reducible or a quasi-in/ective 

cogenerator of Mod R, its limit closure in Cont R consists of all R-modules with a 

sub-I-adic topology which are Hausdorff and complete in this topology. If I is a nice 

injectire in Mod R, its limit closure in Cont R consists of all I-torsion free divisible 

R-modules with a sub-I-adic topology which are complete and Hausdorff in this 

topology. 

PROOF. Any object in the limit closure of I is of the form U(B), for some B in 

E Mod. A fundamental open neighborhood of zero in U(B) = HomE(B,I) _ I B has the 
form 

{ g G HomE(B,I)Ig(b 1) = 0&...&g(b n) = 0 } = ker •, 
where •: U(B) -> I n is defined by 

/3(g) = (g(b 1 ),'",g(bn))' 

Thus the topology of U(B) is sub-I-adic. 

Let A be any object in the limit closure of I. Then A is Hausdorff and complete, 

because the class of all such modules contains I and is closed under limits. Moreover, 

the underlying abstract module of A is I-torsionfree divisible, because the forgetful 

functor from Cont R to Mod R preserves limits and because the class of I-torsionfree 

divisible modules in Mod R contains I and is closed under limits. 

On the other hand, if A is Hausdorff in a sub-I-adic topology, then 

ker r/(A) = (3 { ker flf • ContR(A,I) } = 0, 

hence A-> im ,/(A) is a module isomorphism. It is continuous, as we already know, 

and open, because 

r/(A)(ker f) = ker f* (him r/(A), 
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for any f C ContR(A,In), f* being defined as in the proof of Proposition 4.1. Thus 
A --• im •?(A) in Cont R. 

If A is also complete, then im r/(A) is a closed submodule of UF(A). Now, under 

the assumptions of the proposition, in view of Proposition 4.1 and Remark 4.2, 

im r/(A) is dense in UF(A). Therefore, im r/(A) = UF(A), and so A C Fix(UF,r/). 

PROPOSITION 4.4. Let I be an injectire Artinian R-module endowed with the 

discrete topology. Then F= COntR(-,I): ContR-•(EMod) øp induces a duality 
between discrete Artinian R-modules which are I-torsionfree divisible and finitely 

generated E-modules which are cogenerated by E I. Moreover, for any A in Cont R, the 

following statements are equivalent_: 

( 1 ) A • Fix(UF,,1) 

(2) A is a limit of discrete A rtinian modules which are I-torsion free divisible, 

(3) A is a filtered limit of discrete Artinian modules which are I-torsionfree 

divisible. 

We shall call an object of Cont R pro-Artinian if it is a filtered limit of discrete 

Artinian modules. 

PROOF. Assume A is discrete Artinian. Then ContR(A,I) is easily seen to be a 
finitely generated left E-module; moreover, it follows that UF(A) has the discrete 

topology and coincides with the module of quotients of A with respect to I [9, 

Proposition 5.5]. In particular, if A is I-torsionfree divisible, then A is in Fix(UF,r/). 

Moreover, its image F(A) in E-Mod is cogenerated by E I, by Theorem 3.3. 

Conversely, assume B is a finitely generated left E-module. Then there is an exact 

sequence 

0-• K-• En-• B -• 0 

in E Mod. Applying the functor HOmE(-,I) to this and observing that 

HomE(En,I ) • I n, 
we obtain the exact sequence 

0 -• HomE(B,I) -• I n. 

Since I is Artinian, so will be HomE(B,I). Moreover, HomE(B,I) is I-torsionfree. Since 

I is injective, we actually have an exact sequence 

0 -• HomE(B,I) -• I n -• HomE(K,I) -• 0. 

Since HomE(K,I) C_ I K is I-torsionfree, HomE(B,I) is I-divisible [6, Proposition 0.6]. 
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If also B is cogenerated by E I then B is in Fix(FU,e) by Theorem 3.3. 

Finally, we shall prove that (3)=•(2)=•(1)=•(3). Clearly, (3)=•(2), and 

(2) =• (1) since Fix(UF,r•) is closed under limits and contains all discrete Artinian 

modules. It remains to show that (1) =• (3). 

We know that any A E Fix(UF,r•) has the form HomE(B,I), where B is a 

submodule of some power of I. We may represent any E-module B as a filtered colimit 

of finitely generated submodules B x of B, where x E X, say. Now U = ltOmE(-,I) is a 
right adjoint, hence it converts colimits of E Mod to limits of Cont R. Thus A is a 

filtered limit of the ttomE(Bx,I), and these modules are discrete Artinian as well as 
I-torsionfree divisible, by the part of the proposition already proved. 

EXAMPLE 4.5 Let R be a commutative Noetherian ring, P a prime ideal, I the 

injective hull of R/P, E its ring of endomorphisms. Matlis [16] (see also [18]) has 

shown that I is Artinian and that E --• Rp, the P-adic completion of the localization Rp 

of R, so we may identify E Mod with Mod Rp. 

In view of [7,8], Rp = UF(R), and so the I-torsionfree divisible R-modules are 

precisely the Rp-modules. Moreover, I is a cogenerator of Mod Rp. 

Thus Proposition 4.4 allows us to recapture Matlis duality between discrete 

Artinian Rp-modules and abstract finitely generated Rp-modules. More generally, it 

yields a duality between pro-Artinian Rp-modules and abstract Rp-modules. Here the 

pro-Artinian Rp-modules have the inverse limit topology, in fact a sub-I-adic topology, 

and they are Hausdorff and complete. 

REMARK 4.6. When R is a discrete rank one valuation ring, this last duality was 

first noticed by Kaplansky [4], who used "linearly compact" in place of our 

"pro-Artinian". The relation between linearly compact modules and inverse limits of 

Artinian modules is discussed by MacDonald [ 13]. 

While Theorem 3.3 and its consequences are in line with Kaplansky's program 

(see the last two pages of his book [5 ] ), Leptin, MacDonald and Milllet have gone off 

in a different direction, replacing abstract E-modules by linearly topol'ogized 

E-modules (see the summary at the beginning of [17] ). 
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