DISSIPATIVE MATRICES AND THE MATRIX A⁻¹A* R. C. Thompson ¹

ABSTRACT. An $n \times n$ matrix A is dissipative if the imaginary component K in A = H + iK with H, K Hermitian is positive definite. In this paper all relationships between the eigenvalues of $A^{-1}A^*$, $A_n^{-1}A_n^*$, $(A^{-1}A^*)_n$ are characterized when A is dissipative, and where, in general, A_n denotes the principal submatrix of A obtained by deleting the last row and column.

An n-square complex matrix A, written as A = H + iK where H, K are Hermitian, is said to be *dissipative* if its imaginary component K is positive definite. When A is dissipative. A is nonsingular and Fan [1] proved that $A^{-1}A^*$ is similar to a unitary matrix. Thus the eigenvalues of $A^{-1}A^*$ lie on the unit circle. For any n \times n matrix B, let B_n denote the principal submatrix of **B** obtained by deleting the last row and column. Then $A_n = H_n + iK_n$ is dissipative as well, and therefore $A_n^{-1}A_n^*$ also has eigenvalues on the unit circle. In [1] Fan established an interesting connection between these two sets of eigenvalues: the eigenvalues of $A^{-1}A^*$ are interlaced on the unit circle by the eigenvalues of $A_n^{-1}A_n^*$ (The order on the unit circle implied by this statement is obtained by deleting the point 1 and taking the increasing sense to be the counterclockwise direction.) This interlacing property resembles the interlacing property linking the eigenvalues of an n-square Hermitian matrix to the eigenvalues of any one of its principal (n-1)-square submatrices. The resemblence is not an exact analogy, however, because $A_n^{-1}A_n^*$ is not usually a principal submatrix of $A^{-1}A^*$. It is natural, therefore, to ask what connections exist between the eigenvalues of $A^{-1}A^*$. the eigenvalues of its principal submatrix $(A^{-1}A^*)_n$ and the eigenvalues of the matrix $A_n^{-1}A_n^*$ constructed from a principal submatrix of A, when A is dissipative. Two relationships must exist, an obvious one being the interlacing property just mentioned between the eigenvalues of $A^{-1}A^*$ and those of $A_n^{-1}A_n^*$. To see what the second is, let $d_{n-1}(\lambda)$ denote the greatest common divisor of the n-1 rowed minors of λI - $A^{-1}A^*,$

 $^{^{1}}$ The preparation of this paper was supported by the Air Force Office of Scientific research under Grant AFOSR-72-2164.

R. C. THOMPSON

where λ is an indeterminate. Then $d_{n-1}(\lambda)$ divides $det(\lambda I_{n-1}^{-1}(A^{-1}A^*)_n)$. By elementary divisor theory, the minimal polynomial of $A^{-1}A^*$ is

$$m(\lambda) = \det(\lambda I - A^{-1}A^*) / d_{n-1}(\lambda).$$

It follows that

$$\frac{\det(\lambda I - A^{-1}A^*)}{m(\lambda)} \quad \Big| \quad \det(\lambda I_{n-1} - (A^{-1}A^*)_n).$$

Because $A^{-1}A^*$ is similar to a unitary matrix, its minimal polynomial $m(\lambda)$ has simple roots. The second relationship is now evident from the divisibility formula displayed above: a multiple eigenvalue of $A^{-1}A^*$ is an eigenvalue of $(A^{-1}A^*)_n$ with multiplicity reduced by not more that one.

We shall demonstrate in this paper that a modest sharpening of these two relationships constitute the only connections between the eigenvalues of $A^{-1}A^*$, $(A^{-1}A^*)_n$, and $A_n^{-1}A_n^*$ when A is dissipative. This means, in particular, that when $A^{-1}A^*$ has simple eigenvalues (necessarily on the unit circle), the eigenvalues of its principal submatrix $(A^{-1}A^*)_n$ may be arbitrary numbers in the complex plane, even when the eigenvalues of $A_n^{-1}A_n^*$ are prescribed numbers on the unit circle interlacing (and distinct from) the eigenvalues of $A^{-1}A^*$. For the precise statement, see Corollary 1.

We begin with a lemma.

LEMMA. Let x be a row n-tuple, y a column n-tuple. Then a nonsingular matrix Y exists with y the last column of Y and x the last row of Y^{-1} if and only if xy = 1.

PROOF. Computing the (n,n) entry of $Y^{-1}Y = I$ shows that xy = 1 is necessary. Suppose that xy = 1. Since $y \neq 0$, there is a nonsingular n-square matrix S such that $Sy = \widetilde{y} = [0,0,0,...,0,1]'$. Let $\widetilde{x} = xS^{-1} = [x_1,...,x_n]$. Then $\widetilde{xy} = 1$, so that $x_n = 1$. Let \widetilde{X} , \widetilde{Y} be identity matrices except in the last row, which in \widetilde{X} is \widetilde{x} , and in \widetilde{Y} is $[-x_1,...,-x_{n-1},1]$. Then $\widetilde{X}\widetilde{Y} = I$; hence $\widetilde{Y}^{-1} = \widetilde{X}$. Set $Y = S^{-1}\widetilde{Y}$. Then $Y^{-1} = \widetilde{Y}^{-1}S = \widetilde{X}S$. The last column of Y is $S^{-1}\widetilde{y} = y$, and the last row of $Y^{-1} = \widetilde{X}S$ is $\widetilde{x}S = x$, as required.

Let $\beta_1,...,\beta_n$ be numbers on the unit circle, different from 1, and numbered such that $0 < \arg \beta_n \leq \cdots \leq \arg \beta_1 < 2\pi$. Let $\widetilde{\beta}_1,...,\widetilde{\beta}_{n-1}$ be further numbers on the unit circle, with $0 \leq \arg \widetilde{\beta}_{n-1} \leq \cdots \leq \arg \widetilde{\beta}_1 < 2\pi$. We say that $\widetilde{\beta}_1,...,\widetilde{\beta}_{n-1}$ interlace $\beta_1,...,\beta_n$ if $\arg \beta_n \leq \arg \widetilde{\beta}_{n-1} \leq \arg \beta_{n-1} \leq \cdots \leq \arg \beta_2 \leq \arg \widetilde{\beta}_1 \leq \arg \beta_1$.

Denote by f the Mobius function given by

DISSIPATIVE MATRICES

$$f(z) = (z - i)(z + i)^{-1}$$

for all complex numbers z. This function f is an order preserving bijection of the real axis (∞ excluded) onto the ordered circumference of the unit circle (cut by excluding 1), counterclockwise being the increasing direction on the cut unit circle. This function f will be used in the proof of the main result of this paper, which we now state.

THEOREM. Let $\beta_1,...,\beta_n$, $\beta_1,...,\beta_{n-1}$, $\gamma_1,...,\gamma_{n-1}$ be complex numbers. Then an $n \times n$ dissipative matrix A exists such that

- (i) $A^{-1}A^*$ has eigenvalues β_1, \dots, β_n ,
- (ii) $A_n^{-1}A_n^*$ has eigenvalues $\widetilde{\beta}_1, \dots, \widetilde{\beta}_{n-1}$,
- (iii) $(A^{-1}A^*)_n$ has eigenvalues $\gamma_1, \dots, \gamma_{n-1}$,

if and only if

(a) $\beta_1,...,\beta_n$ are on the unit circle and not equal to 1,

(b) $\tilde{\beta}_1,...,\tilde{\beta}_{n-1}$ are also on the unit circle and on this circle cut at 1 interlace $\beta_1,...,\beta_n$,

(c) the multiplicity of β_j among $\gamma_1, \dots, \gamma_{n-1}$ is not less than { the multiplicity of β_j among β_1, \dots, β_n } - 1, with strict inequality whenever β_j has multiplicity among $\beta_1, \dots, \beta_{n-1}$ as great as among β_1, \dots, β_n ; $j = 1, \dots, n$.

PROOF. Let A be a dissipative matrix such that (i), (ii), (iii) all hold. We wish to prove that (a), (b), (c) all hold. Take $\alpha_1 \ge \cdots \ge \alpha_n$ to be the eigenvalues of the Hermitian matrix $K^{-\frac{1}{2}}HK^{-\frac{1}{2}}$, where A = H + iK. Then a nonsingular matrix X exists such that

XKX* = I, XHX* = diag($\alpha_1,...,\alpha_n$),

so that

A =
$$X^{-1}$$
diag $(\alpha_1 + i, ..., \alpha_n + i)X^{*-1}$.

Hence

(1) $A^{-1}A^* = X^* \operatorname{diag}(\beta_1, \dots, \beta_n) X^{*-1}$,

where

(2) $\beta_t = f(\alpha_t), \quad t = 1,...,n.$

Since f maps the real axis to the unit circle cut at 1, this proves (a).

With λ an indeterminate, from (1) we get

$$\lambda I - A^{-1}A^* = X^* \operatorname{diag}(\lambda - \beta_1, \dots, \lambda - \beta_n)X^{*-1},$$

and thus

$$(\lambda I - A^{-1}A^*)^{-1} = X^* \operatorname{diag}((\lambda - \beta_1)^{-1}, ..., (\lambda - \beta_n)^{-1})X^{*-1}$$

Multiplying by

$$g(\lambda) = det(\lambda I - A^{-1}A^*) = (\lambda - \beta_1) \cdots (\lambda - \beta_n),$$

we get

(3) $adj(\lambda I - A^{-1}A^*) = X^* diag(..., g(\lambda)/(\lambda - \beta_t), ...)X^{*-1}$,

where adj indicates adjugate. The (n,n) element of $adj(\lambda I - A^{-1}A^*)$ is the characteristic polynomial of $(A^{-1}A^*)_n$. Let the last row of X^* be $(x_1,...,x_n)$ and let the last column of X^{*-1} be $(y_1,...,y_n)'$. Equating the (n,n) elements of each side of (3), we get

(4)
$$\det(\lambda I - (A^{-1}A^*)_n) = \sum_{t=1}^n x_t y_t g(\lambda) / (\lambda - \beta_t).$$

From (1) we see that the eigenvalues $\beta_1,...,\beta_n$ of $A^{-1}A^*$ are linked to the roots $\alpha_1,...,\alpha_n$ of

$$det(H - \lambda K) = det K \cdot (\alpha_1 - \lambda) \cdots (\alpha_n - \lambda)$$

by (2). Applying this fact to the (n-1)-square dissipative matrix $A_n = H_n + iK_n$, we see that eigenvalues $\widetilde{\beta}_1, ..., \widetilde{\beta}_{n-1}$ of $A_n^{-1}A_n^*$ are linked to the roots (call them $\widetilde{\alpha}_1, ..., \widetilde{\alpha}_{n-1}$) of det $(H_n - \lambda K_n)$ by

(5) $\widetilde{\beta}_t = f(\widetilde{\alpha}_t), \quad t = 1,...,n-1.$

In particular, $\tilde{\beta}_1, ..., \tilde{\beta}_{n-1}$ are also on the cut unit circle, establishing the first part of (b).

From

H -
$$\lambda K = X^{-1} \operatorname{diag}(\alpha_1 - \lambda, \dots, \alpha_n - \lambda) X^{*-1}$$

we get

$$(H - \lambda K)^{-1} = X^* \operatorname{diag}((\alpha_1 - \lambda)^{-1}, \dots, (\alpha_n - \lambda)^{-1})X.$$

Multiplying by

$$h(\lambda) = det(H - \lambda K) = det K \cdot (\alpha_1 - \lambda) \cdots (\alpha_n - \lambda),$$

yields

(6)
$$\operatorname{adj}(H - \lambda K) = X^* \operatorname{diag}(..., h(\lambda)/(\alpha_t - \lambda),...)X.$$

The (n,n) entry of $adj(H - \lambda K)$ is $det(H_n - \lambda K_n)$. Equating the (n,n) entry of each side of (6) thus produces

(7)
$$\det(H_n - \lambda K_n) = \sum_{t=1}^{n} |x_t|^2 h(\lambda) / (\alpha_t - \lambda)$$

Let $\mu_1 > \cdots > \mu_s$ be the distinct numbers among $\alpha_1 \ge \cdots \ge \alpha_n$, with μ_t having

140

multiplicity e_t , for t = 1,...,s. Set

$$v_{t} = f(\mu_{t}), \quad t = 1, ..., s_{t}$$

so that by (2) $\nu_1,...,\nu_s$ are the distinct numbers among $\beta_1,...,\beta_n$, with ν_t having multiplicity e_t , t = 1,...,s. Using

$$g(\lambda) = \prod_{t=1}^{s} (\lambda - \nu_t)^{e_t},$$

we may rewrite (4) as

(8)
$$\det(\lambda I_n - (A^{-1}A^*)_n) = \left\{ \prod_{t=1}^s (\lambda - \nu_t)^e t^{-1} \right\} \left\{ \sum_{t=1}^s \left[\sum_{\substack{j \\ \alpha_j = \mu_t}} x_j y_j \right] \prod_{\substack{k=1 \\ k \neq t}}^s (\lambda - \nu_k) \right\}$$

The sum in square parentheses here (and in (9) below) is over all e_t values of j for which $\alpha_j = \mu_t$. Using

$$h(\lambda) = \det K \cdot \prod_{t=1}^{s} (\mu_t \cdot \lambda)^{e_t},$$

we may rewrite (7) as

(9)
$$\det(H_n - \lambda K_n) = \det K \left\{ \prod_{t=1}^{s} (\mu_t - \lambda)^{e_t - 1} \right\} \left\{ \sum_{t=1}^{s} \left[\sum_{\substack{j \\ \alpha_j = \mu_t}} |x_j|^2 \right] \prod_{\substack{k=1 \\ k \neq t}}^{s} (\mu_k - \lambda) \right\}$$

In the next paragraph we derive consequences of the basic formulas (8) and (9).

By hypothesis (iii)

(10) $\det(\lambda I - (A^{-1}A^*)_n) = (\lambda - \gamma_1) \cdots (\lambda - \gamma_{n-1}).$

Comparing (8) and (10), we see that the numbers $\gamma_1, ..., \gamma_{n-1}$ consist of

(11) ν_1 (e₁-1 times),..., ν_s (e_s-1 times),

together with s-1 further numbers which we denote by

$$\eta_1, ..., \eta_{s-1}$$

Cancelling the common factors

$$(\lambda - \nu_t)^{e_t - 1}, \qquad t = 1, \dots, s,$$

from the equality produced by equating the right-hand sides of (8) and (10), we are led to

(12)
$$(\lambda - \eta_1) \cdots (\lambda - \eta_{s-1}) = \sum_{t=1}^s \theta_t \prod_{\substack{k=1 \ k \neq t}}^s (\lambda - \nu_k),$$

where

(13)
$$\theta_t = \sum_{j} x_j y_j, \quad t = 1,...,s$$

 $\alpha_j = \mu_t$

By hypothesis (ii), (5), and the remarks above (5),

(14) $\det(H_n - \lambda K_n) = \det K_n(\widetilde{\alpha}_1 - \lambda) \cdots (\widetilde{\alpha}_{n-1} - \lambda).$ Comparing (9) and (14), we see that the numbers $\widetilde{\alpha}_1, ..., \widetilde{\alpha}_{n-1}$ consist of

(15) μ_1 (e₁-1 times),..., μ_s (e_s-1 times)

together with s-1 further real numbers which we denote by

Applying f then shows that the numbers $\tilde{\beta}_1,...,\tilde{\beta}_{n-1}$ consist of the numbers (11) together with s-1 additional numbers $f(\xi_1),...,f(\xi_{s-1})$. Denote these latter numbers by $\zeta_1,...,\zeta_{s-1}$, so that $\zeta_t = f(\xi_t)$, t = 1,...,s-1. Cancelling the common factors $(\mu_t - \lambda)^{e_t - 1}$

from the equality produced by equating the right-hand sides of (9) and (14), we are led to

(16) det
$$K_n$$
 det $K^{-1}(\xi_1 - \lambda) \cdots (\xi_{s-1} - \lambda) = \sum_{t=1}^s \varphi_t \prod_{\substack{k=1 \ k \neq t}}^s (\mu_k - \lambda)$

where

(17)
$$\varphi_t = \sum_{\substack{j \\ \alpha_j = \mu_t}} |x_j|^2, \quad t = 1,...,s.$$

Evaluating (16) at μ_t yields

(18) det
$$K_n$$
 det $K^{-1}(\xi_1 - \mu_t) \cdots (\xi_{s-1} - \mu_t) = \varphi_t \prod_{\substack{k=1 \ k \neq t}}^s (\mu_k - \mu_t).$

Since $\varphi_t \ge 0$ and $\mu_1 > \cdots > \mu_s$, the right-hand side of (18) has sign (-1)^{s-t} whenever

142

DISSIPATIVE MATRICES

 $\varphi_t \neq 0$. If all of $\varphi_1, \dots, \varphi_s$ are nonzero the polynomial on the right-hand side of (16) therefore takes alternate signs at μ_1, \dots, μ_s , so that its roots interlace μ_1, \dots, μ_s . By a continuity argument this still holds if some of $\varphi_1, \dots, \varphi_s$ are zero. Thus ξ_1, \dots, ξ_{s-1} interlace μ_1, \dots, μ_s , and hence ξ_1, \dots, ξ_{s-1} augmented with the numbers (15) interlace μ_1, \dots, μ_s augmented with (15); that is, $\alpha_1, \dots, \alpha_{n-1}$ interlace $\alpha_1, \dots, \alpha_n$. Therefore $\widetilde{\beta_1} = f(\alpha_1), \dots, \widetilde{\beta_{n-1}} = f(\alpha_{n-1})$ interlace $\beta_1 = f(\alpha_1), \dots, \beta_n = f(\alpha_n)$ on the cut unit circle. This finishes the proof of (b). We also see from (18) that at least one of ξ_1, \dots, ξ_{s-1} equals μ_t if and only if $\varphi_t = 0$; thus (by (17)),

(19) μ_t lies among ξ_1, \dots, ξ_{s-1} iff $x_i = 0$ for all j with $\alpha_i = \mu_t$.

Let j be fixed and suppose t is such that $\beta_j = \nu_t$, so that the multiplicity of β_j among $\beta_1,...,\beta_n$ is e_t . From (11) we observed that the multiplicity of ν_t (and therefore β_j) among $\gamma_1,...,\gamma_{n-1}$ is at least e_t -1. This proves the first part of (c). If β_j has multiplicity at least e_t among $\widetilde{\beta}_1,...,\widetilde{\beta}_{n-1}$ then $\alpha_j = f^{-1}(\beta_j) = \mu_t$ has multiplicity at least e_t among $\widetilde{\alpha}_1 = f^{-1}(\widetilde{\beta}_1),...,\widetilde{\alpha}_{n-1} = f^{-1}(\widetilde{\beta}_{n-1})$, implying (see (15)) that at least one of $\xi_1,...,\xi_{s-1}$ equals μ_t and therefore by (19) that $x_j = 0$ for *every* j with $\alpha_j = \mu_t$. By (13) this implies $\theta_t = 0$. Evaluating (12) at ν_t then produces

$$(\nu_t - \eta_1) \cdots (\nu_t - \eta_{s-1}) = \theta_t \prod_{\substack{k=1 \ k \neq t}}^{s} (\nu_t - \nu_k) = 0,$$

and yields the conclusion that at least one of $\eta_1, ..., \eta_{s-1}$ equals ν_t . But this means (see the discussion above and below (11)) that the multiplicity of $\nu_t = f(\mu_t) = f(\alpha_j) = \beta_j$ among $\gamma_1, ..., \gamma_{n-1}$ is at least e_t . This proves the second part of assertion (c) and completes the proof that (i), (ii), (iii) together imply (a), (b), (c).

Suppose now that numbers $\beta_1,...,\beta_n$, $\tilde{\beta}_1,...,\tilde{\beta}_{n-1}$, $\gamma_1,...,\gamma_{n-1}$ are given, satisfying conditions (a), (b), (c). We wish to construct a dissipative matrix A for which (i), (ii), (iii) are satisfied. We let

 v_1 (e₁ times),..., v_s (e_s times)

be the distinct numbers among $\beta_1,...,\beta_n$; then (by (b)) $\beta_1,...,\beta_{n-1}$ consist of the numbers displayed in (11) together with s-1 additional numbers interlacing $\nu_1,...,\nu_{s-1}$ on the cut unit circle and which we choose to denote by $\zeta_1,...,\zeta_{s-1}$; and by (c) $\gamma_1,...,\gamma_{n-1}$ consist of the numbers (11) together with s-1 additional numbers which we elect to denote by $\eta_1,...,\eta_{s-1}$. Furthermore, by the last part of (c), if at least one of

 $\xi_1,...,\xi_{s-1}$ equals ν_t then at least one of $\eta_1,...,\eta_{s-1}$ equals ν_t , for each fixed t = 1,2,...,s. Let

$$\alpha_t = f^{-1}(\beta_t), \quad t = 1,...,n, \quad \mu_t = f^{-1}(\nu_t), \quad t = 1,...,s,$$

so that the distinct numbers among $\alpha_1, ..., \alpha_n$ are

 μ_1 (e₁ times),..., μ_s (e_s times).

Then the numbers $f^{-1}(\widetilde{\beta}_1),...,f^{-1}(\widetilde{\beta}_{n-1})$ consist of the numbers (15) together with s-1 additional numbers which we denote by $\xi_1 = f^{-1}(\zeta_1),...,\xi_{s-1} = f^{-1}(\zeta_{s-1})$. Since $\zeta_1,...,\zeta_{s-1}$ interlace $\nu_1,...,\nu_s$ on the cut unit circle, $\xi_1,...,\xi_{s-1}$ interlace $\mu_1,...,\mu_s$ on the real axis.

We begin by choosing nonnegative numbers $\varphi_1,...,\varphi_s$, not all zero, such that the polynomial

(20)
$$\sum_{t=1}^{s} \varphi_t \prod_{\substack{k=1\\k\neq t}}^{s} (\mu_k \lambda)$$

has ξ_1, \dots, ξ_{s-1} as its roots, i.e., shall equal

(21) $(\xi_1 - \lambda) \cdots (\xi_{s-1} - \lambda).$

We determine φ_{t} by evaluating both (20) and (21) at μ_{t} ; equating the results yields

(22)
$$\varphi_{t} = \prod_{k=1}^{s-1} (\xi_{k} - \mu_{t}) / \prod_{\substack{k=1\\k\neq t}}^{s} (\mu_{k} - \mu_{t})$$

Because $\xi_1,...,\xi_{s-1}$ interlace $\mu_1,...,\mu_s$, the numerator of the righthand side of (22) has sign (-1)^{s-t}, or zero, and the denominator has sign (-1)^{s-t}. Thus the number φ_t given by (22) is nonnegative. For this choice of φ_t , t = 1,...,s, the polynomials (20), (21), of degree at most s-1, are equal at s distinct values of λ and thus are equal polynomials. Observe that $\varphi_t = 0$ if and only if at least one of $\xi_1,...,\xi_{s-1}$ is μ_t . Having found values for $\varphi_1,...,\varphi_s$, we use (17) to obtain values for $x_1,...,x_n$. These numbers $x_1,...,x_n$ are not unique: any choice such that (17) holds for t = 1,...,s will do. From (17) and the fact that $\varphi_t = 0$ if and only if at least one of $\xi_1,...,\xi_{s-1}$ is μ_t , we see that (19) holds. In due course $x_1,...,x_n$ will be placed in the last row of a certain matrix.

We next choose numbers $\theta_1,...,\theta_s$ such that the polynomial identity (12) holds. Evaluating each side of (12) at ν_t leads to the choice

(23)
$$\theta_t = \prod_{k=1}^{s-1} (\nu_t - \eta_k) / \prod_{\substack{k=1 \ k \neq t}}^{s} (\nu_t - \nu_k).$$

With θ_t defined by (23) for t = 1,...,s, the two sides of (12) are polynomials of degree at most s-1 equal for s distinct values of λ , and therefore are equal polynomials. Thus (12) will hold if $\theta_1,...,\theta_s$ are given by (23). Having specified by (23) the value of the θ_t , we construct numbers $y_1,...,y_n$ such that (13) holds for t = 1,...,s. (The quantities $x_1,...,x_n$ in equation (13) were selected in the last paragraph.) There always will be values of $y_1,...,y_n$ such that (13) holds, provided that $\theta_t = 0$ whenever $x_j = 0$ for each j such that $\alpha_j = \mu_t$. To see that this condition is satisfied, note that when $x_j = 0$ for all j with $\alpha_j = \mu_t$, we obtain from (19) that at least one of $\xi_1,...,\xi_{s-1}$ equals μ_t ; therefore at least one of $\zeta_1 = f(\xi_1),...,\zeta_{s-1} = f(\xi_{s-1})$ equals $\nu_t = f(\mu_t)$, and hence (by a remark in the middle of the paragraph above (20)), at least one of $\eta_1,...,\eta_{s-1}$ equals ν_t . This means (by (23)) that θ_t is indeed zero. The numbers $y_1,...,y_n$ just constructed will in due course be placed in the last column of a certain matrix.

The numbers $x_1,...,x_n$, $y_1,...,y_n$ constructed in the last two paragraphs are such that if θ_t for t = 1,...,s are defined by (13), then (12) holds and if φ_t for t = 1,...,s are defined by (17) the right-hand side of (16) equals (21). Comparing the leading coefficients in these polynomial equations, we see that

(24)
$$\sum_{j=1}^{n} x_{j}y_{j} = 1, \qquad \sum_{j=1}^{n} |x_{j}|^{2} = 1.$$

Now let X be a nonsingular matrix with $x_1,...,x_n$ in the last row of X* and $y_1,...,y_n$ in the last column of X*⁻¹. This matrix exists by the first part of (24) and the lemma. For this X, let

H = X⁻¹ diag(
$$\alpha_1,...,\alpha_n$$
)X*⁻¹, K = X⁻¹X*⁻¹,

and put A = H + iK. Then K is positive definite, so that A is dissipative. For this K we find that $K^{-1} = X^*X$ and a comparison of the (n,n) elements shows that det $K_n/\det K = \sum_{j=1}^n |x_j|^2 = 1$; therefore det $K_n = \det K$. We now apply to this A the calculations in the first part of the proof. By construction the eigenvalues of $A^{-1}A^*$ are $f(\alpha_1) = \beta_1, ..., f(\alpha_n) = \beta_n$. The eigenvalues $(A^{-1}A^*)_n$ are the roots of the polynomial

(8). This polynomial shows roots given by (11), and s-1 further roots obtained from the polynomial on the right-hand side of (12). By construction the two sides of (12) are equal, meaning (by the definitions of $\nu_1,...,\nu_s$, $\eta_1,...,\eta_{s-1}$) that (8) equals $(\lambda - \gamma_1) \cdots (\lambda - \gamma_{n-1})$. Thus $(A^{-1}A^*)_n$ has the required eigenvalues. The eigenvalues of $A_n^{-1}A_n^*$ will be the function f applied to the roots of det $(H_n - \lambda K_n)$, that is, applied to the roots of the right-hand side of (9). Polynomial (9) shows roots given by (15), and s-1 further roots given by the polynomial on the right-hand side of (16). By construction the right-hand side of (16) equals (21), and since det K = det K_n, we see that the right-hand side of (16) equals the left-hand side of (16). Thus the right-hand side of (9) has roots (15) and $\xi_1,...,\xi_{s-1}$. Applying f to these roots produces the numbers (11) and $\zeta_1,...,\zeta_{s-1}$, that is, $\tilde{\beta}_1,...,\tilde{\beta}_{n-1}$. The proof is complete.

COROLLARY 1. Given distinct numbers $\beta_1,...,\beta_n$, $\tilde{\beta}_1,...,\tilde{\beta}_{n-1}$ on the unit circle cut at 1, with $\tilde{\beta}_1,...,\tilde{\beta}_{n-1}$ interlacing $\beta_1,...,\beta_n$, there exists a dissipative matrix A such that $A^{-1}A^*$ has eigenvalues $\beta_1,...,\beta_n$, $A_n^{-1}A_n^*$ has eigenvalues $\tilde{\beta}_1,...,\tilde{\beta}_{n-1}$, and $(A^{-1}A^*)_n$ has arbitrarily given complex numbers $\gamma_1,...,\gamma_{n-1}$ as eigenvalues.

COROLLARY 2. If $A^{-1}A^*$ has precisely s distinct eigenvalues, then $(A^{-1}A^*)_n$ has at most s-1 eigenvalues not on the unit circle. If these eigenvalues are denoted by $\eta_1, ..., \eta_{s-1}$, then

(25) s
$$\prod_{k=1}^{s-1} ||\eta_k| - 1 |/2^{s-1} \leq (\lambda_{\max}(K)/\lambda_{\min}(K))^{\frac{1}{2}},$$

where $\lambda_{\max}(K)$, $\lambda_{\min}(K)$ denote the greatest and least eigenvalues of the imaginary component K of A.

PROOF. The fact that $(A^{-1}A^*)_n$ can have at most s-1 eigenvalues not on the unit circle follows from the first part of the proof of the theorem; in the notation of that proof these eigenvalues are $\eta_1,...,\eta_{s-1}$. The following argument will work even if some of $\eta_1,...,\eta_{s-1}$ are on the unit circle, but then yields a trivial result. Evaluating both sides of (12) at ν_t yields (23), with θ_t given by (13). Hence

(26)
$$\prod_{k=1}^{s-1} |\nu_t \eta_k| / \prod_{\substack{k=1 \ k \neq t}}^{s} |\nu_t \nu_k| \le \sum_{\substack{j \ \alpha_j = \mu_t}} |x_j| |y_j|.$$

Since the ν_t are on the unit circle, $|\nu_t - \nu_k| \le 2$. Since the least distance from η_k to the unit circle is $||\eta_k| - 1|$, from (26) we get

$$\prod_{k=1}^{s-1} \left| |\eta_k| - 1 \right| / 2^{s-1} \leq \sum_j |x_j| |y_j|.$$

$$\alpha_j = \mu_t$$

Summing over t yields

$$\begin{split} s \prod_{k=1}^{s-1} ||\eta_k| - 1| / 2^{s-1} &\leq \sum_{j=1}^n ||x_j|| ||y_j| \\ &\leq \left\{ \sum_{j=1}^n ||x_j|^2 \right\}^{\frac{1}{2}} \left\{ \sum_{j=1}^n ||y_j|^2 \right\}^{\frac{1}{2}}. \end{split}$$

Now $\sum_{j=1}^{n} |x_j|^2$ is the (n,n) element of $X^*X = K^{-1}$ and hence is bounded above by $\lambda_{\max}(K^{-1}) = \lambda_{\min}(K)^{-1}$. Also $\sum_{j=1}^{n} |y_j|^2$ is the (n,n) element of $X^{-1}X^{*-1} = K$, and thus is bounded above by $\lambda_{\max}(K)$. Inserting these estimates yields the result.

Inequality (25) shows that assigning large eigenvalues to $(A^{-1}A^*)_n$ forces substantial structure on the imaginary component K of A.

Further inequalities linking the eigenvalues of $A^{-1}A^*$ and $A_n^{-1}A_n^*$ will be found in [1] and [2]. The author is indebted to Professor Fan for providing him with a preprint of [1].

REFERENCES

- 1. Ky Fan, On strictly dissipative matrices, Linear Algebra and Appl., 9(1974), 223-241.
- R. C. Thompson, Dissipative matrices and related results, Linear Algebra and Appl, 11(1975), 155-169.

Institute for Algebra and Combinatorics University of California, Santa Barbara Santa Barbara, California

Received April 25, 1975

.....