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DISSIPATIVE MATRICES AND THE MATRIX A'IA * 

R. C. Thompson 1 

ABS'rRACT. An n X n matrix A is dissipative if the imaginary 
component K in A = H + iK with H, K Hermitian is positive 
definite. In this paper all relationships between the eigenvalues of 

A '1A*, A• A•, (A '1A*)n are characterized when A is dissipative, 
and where, in general, A n denotes the principal submatrix of A 
obtained by deleting the last row and column. 

An n-square complex matrix A, written as A = H + iK where H, K are Hermitian, 

is said to be dissipative if its imaginary component K is positive definite. When A is 

dissipative, A is nonsingular and Fan [1] proved that A-1A * is similar to a unitary 
matrix. Thus the eigenvalues of A-1A * lie on the unit circle. For any n X n matrix B, 

let B n denote the principal submatrix of B obtained by deleting the last row and 

column. Then A n = H n + iK n is dissipative as well, and therefore A•A• also has 
eigenvalues on the unit circle. In [1] Fan established an interesting connection 

between these two sets of eigenvalues: the eigenvalues of A-1A * are interlaced on the 

unit circle by the eigenvalues of Ah 1A•. (The order on the unit circle implied by this 
statement is obtained by deleting the point 1 and taking the increasing sense to be the 

counterclockwise direction.) This interlacing property resembles the interlacing 

property linking the eigenvalues of an n-square Hermitian matrix to the eigenvalues of 

any one of its principal (n-1)-square submatrices. The resemblence is not an exact 

analogy, however, because A'nlA• is not usually a principal submatrix of A-1A *. It is 
natural, therefore, to ask what connections exist between the eigenvalues of A-1A *, 

the eigenvalues of its principal submatrix (A -1A*) n and the eigenvalues of the matrix 
A•A• constructed from a principal submatrix of A, when A is dissipative. Two 
relationships must exist, an obvious one being the interlacing property just mentioned 

between the eigenvalues of A-1A * and those of A•IA•. To see what the second is, let 
dn_l(X) denote the greatest common divisor of the n-1 rowed minors of 3,I- A-1A *, 

1The preparation of this paper was supported by the Air Force Office of Scientific research under 
Grant AFOSR-72-2164. 
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where ?• is an indeterminate. Then dn_l(•) divides det(Mn_l-(A'lA*)n). By 
elementary divisor theory, the minimal polynomial of A'IA * is 

m(•) = det(M - A-1A *)/dn_l(•.). 
It follows that 

det(M - A-1A *) 
• ] det(Mn-1- (A -1A*)n ). 

Because A-1A * is similar to a unitary matrix, its minimal polynomial re(X) has simple 
roots. The second relationship is now evident from the divisibility formula displayed 

above: a multiple eigenvalue of A-1A * is an eigenvalue of (A'IA*) n with multiplicity 
reduced by not more that one. 

We shall demonstrate in this paper that a modest sharpening of these two 

relationships constitute the only connections between the eigenvalues of A-1A *, 

(A-1A*) n, and A•A• when A is dissipative. This means, in particular, that when 
A-1A * has simple eigenvalues (necessarily on the unit circle), the eigenvalues of its 

principal submatrix (A-1A*) n may be arbitrary numbers in the complex plane, even 
when the eigenvalues of A• 1A• are prescribed numbers on the unit circle interlacing 
(and distinct from) the eigenvalues of A-1A *. For the precise statement, see Corollary 
1. 

We begin with a lemma. 

LEMMA. Let x be a row n-tuple, y a column n-tuple. Then a nonsingular matrix 

Y exists with y the last column of Y and x the last row of y-1 if and only ifxy = 1. 
PROOF. Computing the (n,n) entry of y-1y = I shows that xy = 1 is necessary. 

Suppose that xy = 1. Since y 4: 0, there is a nonsingular n-square matrix S such that 

Sy =y = [0,0,0,...,0,1]'. Let x = xS '1 -- Ix 1,...,xn]. Then xy = 1, so that x n = 1. Let 
X, Y be identity matrices except in the last row, which in X is x, and in Y is 

[-Xl,...,-Xn_l,1 ]. Then •T = I; hence •/-1 = •. Set Y = S-IT. Then y-1 = T-is = :•S. 
The last column of Y is S-If = y, and the last row of Y -1 = ,•S is •'S = x, as required. 

Let/31,"',/3n be numbers on the unit circle, different from 1, and numbered such 

that 0 (arg/3 n 4'" • arg/31 (2•r. Let /31 .... ,/3n-1 be further numbers on the unit 

circle, with 0 • arg •_1 • .- '4 arg/31 ( 2•r. We say that/31 ,"',/3n-1 interlace/31 ,'",/3n if 

arg/3n • arg/3n-1 • arg/3n-1 • '" • arg/32 • arg/31 • arg/31' 
Denote by f the Mobius function given by 
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f(z) = (z - i)(z + i) -1 

for all complex numbers z. This function f is an order preserving bijection of the real 

axis (oo excluded) onto the ordered circumference of the unit circle (cut by excluding 

1), counterclockwise being the increasing direction on the cut unit circle. This 

function f will be used in the proof of the main result of this paper, which we now 

state. 

THEOREM. Let /31,...,/3 n, /31 ..... /3n-l, 71 .... ,Tn-1 be complex numbers. Then an 
n X n dissipative matrix A exists such that 

(i) A-1A * has eigenvalues 131 ..... 13 n, 
(ii) A-nlA •has eigenvalues •1 ..... •n-1, 
(iii) (A-1A *)n has eigenvalues 71 ..... 7n-1, 

if and only if 

(a) •l,'",•n are on the unit circle and not equal to 1, 

(b) •l,...,•n_ 1 are also on the unit circle and on this circle cut at i interlace 

/•l ,...,/•n, 

(c) the multiplicity of l•/ among 71 ..... 7n-1 is not less than { the multiplicity of 
l•/ among l• 1 ..... l•n } -1, with strict inequality whenever l•/ has multiplicity among 
1•1 ..... l•n-1 as great as among 1•1 ..... 13n,' / -- 1 ..... n. 

PROOF. Let A be a dissipative matrix such that (i), (ii), (iii) all hold. We wish to 

prove that (a), (b), (c) all hold. Take c• 1 •>"-•> c• n to be the eigenvalues of the 
Hermitian matrix K-V2HK -V2, where A = H + iK. Then a nonsingular matrix X exists 
such that 

XKX* = I, XHX* = diag(o• 1 .... ,O•n) , 
so that 

A = X- 1 diag(a 1 +i,... ,an+i)X*- 1. 
Hence 

(1) A-1A * = X*diag(/31,...,/3n)X*-I , 
where 

(2) /3 t = f(o•t), t = 1 .... ,n. 

Since f maps the real axis to the unit circle cut at 1, this proves (a). 

With X an indeterminate, from (1) we get 

XI - A-1A * = X* diag(X-l•l,...,X-l•n)X *-1 , 



140 

and thus 

Multiplying by 

we get 
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(M - A-1A*) '1 = X* diag((X-•31)-I ,...,(X-•3n)-l)x *-1 . 

g(X) = det(M - A-1A *) = (X-/•i) ..- (X-/3n) , 

(3) adj(XI - A-1A *): X* diag(..., g(X)/(X-/3t) , ...)X *-1, 
where adj indicates adjugate. The (n,n) element of adj(XI -A-1A *) is the characteristic 

polynomial of (A-1A*) n. Let the last row of X* be (x 1 ..... x n) and let the last column 
of X *-1 be (Yl .... ,yn )' . Equating the (n,n) elements of each side of (3), we get 

n 

(4) det(XI - (A-1A*)n) = • xtYtg(X)/(X-/3t). 
t=l 

From (1) we see that the eigenvalues/31,...,/3 n of A-1A * are linked to the roots 
c• 1 ,...,o• n of 

det(H - XK) = det K ß (al-X) --' 

by (2). Applying this fact to the (n-1)-square dissipative matrix A n = H n + iKn, we see 

that eigenvalues/•1 ..... /•n-1 of A• 1A• are linked to the roots (call them •l,...,•n_l) of 
det(H n - XK n) by 

(5) •t = f(o•t), t = 1,...,n-1. 

In particular, fil,'",/•n-1 are also on the cut unit circle, establishing the first part of (b). 
From 

H - XK = X- 1 diag(o• 1 -X,... ,O•n-X)X*- 1 
we get 

Multiplying by 

(H - XK)-1 = X* diag((cr 1 -X)- 1 ,--. ,(an_h )- 1 )X. 

h(X) = det(H - XK) = det K'(Crl-X) --- (an-h) , 
yields 

(6) adj(H - XK) = X*diag(..., h(X)/(o•t-X),...)X. 

The (n,n) entry of adj(H - XK) is det(Hn-XKn). Equating the (n,n) entry of each side of 

(6) thus produces n 

(7) det(H n - XKn) = • Ixtl2h(X)/(o•t-X ). 
t=l 

Let/a 1 > .-. >/a s be the distinct numbers among o• 1 •> --- •> O•n, with/at having 
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multiplicity et, for t = 1,...,s. Set 

•'t = f(#t), t = 1 ,...,s, 

so that by (2) Vl,...,v s are the distinct numbers among /31,...,/3n, with vt having 

multiplicity et, t = 1 ,...,s. Using 

we may rewrite (4) as 

,q 

g(X) =H (X-v t) , 
t=l 

(8) det(Mn-(A-1A*)n)= t •'I(x-et)et-ll l• [ j•xjyj] I•l(X-ek) I. t=l t=l ' k=l 

The sum in square parentheses here (and in (9) below) is over all e t values of j for 

which o•j = #t' Using s 
h(X) = det K' H (#t 'x)et, 

t=l 

we may rewrite (7) as 

(9) det(Hn-XKn)=detKl l•I(#t-x)et-11 I • [•lxj12 ] t=l t=l j 
H(#k-X) . 

In the next paragraph we derive consequences of the basic formulas (8) and (9). 

By hypothesis (iii) 

(10) det(M- (A'IA*)n) = (XQ1) -.- (XQn_l). 
Comparing (8) and (10), we see that the numbers '71 ,...,'7n_ 1 consist of 

(11) el (el-1 times),'",Ps (es-1 times), 
together with s-1 further numbers which we denote by 

r/1 ..... r/s_ 1 ß 

Cancelling the common factors 
et-1 

(X-p t ) , t= 1 .... ,s, 

from the equality produced by equating the right-hand sides of (8) and (10), we are 

led to s s 

(12)(X-r/1)'"(X-r/s_l)=t•=l 0tg(X-Vk ), 
k-•-t 
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where 
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(13) 0t= •xjyj, ß 

t = 1,...,s. 

By hypothesis (ii), (5), and the remarks above (5), 

(14) det(H n -XK n) = det Kn(Cr 1 -X) '-' (Crn_l-X). 

Comparing (9) and (14), we see that the numbers cr 1,...,crn_ 1 consist of 

(15) gl (el-1 times),' ", #s (es-1 times) 
together with s-1 further real numbers which we denote by 

• 1,'",•s-l' 

Applying f then shows that the numbers /51,...,/5n_ 1 consist of the numbers (11) 

together with s-1 additional numbers f(•l),...,f(•s_l). Denote these latter numbers by 

•'l,'"d's-1, so that •'t = f(•t), t = 1,...,s-1. Cancelling the common factors 

(gt_x)et -1 
from the equality produced by equating the right-hand sides of (9) and (14), we are 

led to 

(16) det K n det K-I(•i-X) ... (•s_l-X) = • •o t k:I• 1 (gk-X) t=l = 
kg:t 

where 

(17) •o t = •lxjl 2, 
J 
o•=/-t t 

t= 1,...,s. 

Evaluating (16) at gt yields 

(18) det K n det K'l(•l-gt ) '" (•s-l-gt) = •øt k..I•l (gk'gt)' 
k:•-t 

Since •o t •> 0 and g l > "' > gs, the right-hand side of (18) has sign (-1) s-t whenever 
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•0 t :/: 0. If all of •01,...,•0 s are nonzero the polynomial on the right-hand side of (16) 

therefore takes alternate signs at #l,...,#s, so that its roots interlace #l,...,#s. By a 

continuity argument this still holds if some of •01,...,•0 s are zero. Thus •l,'",•s-1 

interlace #l,...,#s, and hence •l,"',•s-1 augmented with the numbers (15) interlace 

#l,...,#s augmented with (15); that is, c• 1 ,...,C•n_ 1 interlace C•l,...,c• n. Therefore 

•31 = f(c•l),...,/3n_ 1 = f(C•n_ 1) interlace •31 = f(c•l),...,/3 n = ffC•n) on the cut unit circle. 

This finishes the proof of (b). We also see from (18) that at least one of •l,'",•s-1 

equals #t if and only ifs0 t = 0; thus (by (17)), 

(19) #t lies among •l,"',•s-1 iffxj = 0 for allj with c•j = #t' 
Let j be fixed and suppose t is such that •3j = v t , so that the multiplicity of 

among •31,...,/3 n is e t. From ( 1 1) we observed that the multiplicity of v t (and therefore 

•3j) among •'l,-'-,•'n-1 is at least et-1. This proves the first part of (c). If •3j has 
multiplicity at least e t among •,...,/3'"n_ 1 then c•j = f-1 (•3j) = #t has multiplicity at least 
e t among •1 = f-l(•l'),'",•'•-i = f-l(•'n-1), implying (see (15)) that at least one of 
•l,...,•s_ 1 equals #t and therefore by (19) that xj = 0 for everyj with c•j = #t' By (13) 
this implies 0 t = 0. Evaluating (12) at v t then produces 

$ 

(vt-nl) '" (vt-ns-1) = 0t k•I• (vt-Vk) = 0, 
k:•-t 

and yields the conclusion that at least one of 71,...,•s-1 equals vt. But this means (see 

the discussion above and below (11)) that the multiplicity of v t = if#t)= f(c•j)=•3j 
among •'l,...,•'n_ 1 is at least e t. This proves the second part of assertion (c) and 
completes the proof that (i), (ii), (iii) together imply (a), (b), (c). 

Suppose now that numbers •31,...,/3n, •31,...,/3n_1, 3'l,..-,•'n-1 are given, satisfying 
conditions (a), (b), (c). We wish to construct a dissipative matrix A for which (i), (ii), 

(iii) are satisfied. We let 

el (el times),'",Vs (es times) 

be the distinct numbers among •31,...,/3n; then (by (b)) •31,...,/3n_ 1 consist of the 

numbers displayed in (11) together with s-1 additional numbers interlacing v 1 .... ,rs_ 1 

on the cut unit circle and which we choose to denote by •l,...,•s_l; and by (c) 

•'l,".,•'n-1 consist of the numbers (1 1) together with s-1 additional numbers which we 

elect to denote by •l,...,•s_l. Furthermore, by the last part of (c), if at least one of 
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•l,'-',•s-1 equals v t then at least one ofr/1,...,r/s_ 1 equals vt, for each fixed t = 1,2 .... ,s. 
Let 

o• t = f-l(/3t), t = 1,...,n, •t t = f-l(•t), t = 1 .... ,s, 
so that the distinct numbers among o• 1,...,a n are 

•1 (el times) .... ,•s (es times). 

Then the numbers f'l(•l) .... ,f'l(•n_ 1) consist of the numbers (15) together with s-1 
additional numbers which we denote by •1 = f'l(•'l),'",•s-1 = f-l(•'s-1)' Since 
•'l,...,•'s_l interlace •l,...,•s on the cut unit circle, •l,-'.,•s-1 interlace •l,..',•s on the 
real axis. 

We begin by choosing nonnegative numbers SOl .... ,SOs, not all zero, such that the 
polynomial 

s s 

k:J:t 

has •l,...,•s_ 1 as its roots, i.e., shall equal 

(21) (•l-X) -.- (•s_l-X). 

We determine sot by evaluating both (20) and (21) at gt; equating the results yields 

s-1 s 

(22) SOt = N (•k-gt)./ II (gk-gt)- 
k=l k=l 

k=P-t 

Because •l,"',•s-1 interlace gl,'",gs, the numerator of the righthand side of (22) has 
sign (-1) s-t, or zero, and the denominator has sign (-1) s-t. Thus the number SOt given by 
(22) is nonnegative. For this choice of SOt, t = 1,...,s, the polynomials (20), (21), of 
degree at most s-l, are equal at s distinct values of X and thus are equal polynomials. 

Observe that SOt = 0 if and only if at least one of •l,"',•s-1 is gt' Having found values 

for SOl,"',SOs, we use (17) to obtain values for Xl,...,x n. These numbers x 1 .... ,x n are not 
unique: any choice such that (17) holds for t = 1,...,s will do. From (17) and the fact 

that so t = 0 if and only if at least one of •l,...,•s_ 1 is gt, we see that (19) holds. In due 
course x 1,'",Xn will be placed in the last row of a certain matrix. 

We next choose numbers 01 .... ,0 s such that the polynomial identity (12) holds. 

Evaluating each side of (12) at Pt leads to the choice 
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s-1 S 

(23) 0t= H (vt-r/k) / H (vt-Vk). 
k=l k--1 

k:•-t 

With 0 t defined by (23) for t = 1,...,s, the two sides of (12) are polynomials of degree 

at most s-1 equal for s distinct values of),, and therefore are equal polynomials. Thus 

(12) will hold if 01,...,0 s are given by (23). Having specified by (23) the value of the 

0 t, we construct numbers Y l,'",Yn such that (13) holds for t = 1,...,s. (The quantities 

Xl,...,x n in equation (13) were selected in the last paragraph.) There always will be 

values of Yl ,'",Yn such that (13) holds, provided that 0 t = 0 whenever xj = 0 for each j 
such that aj = #t' To see that this condition is satisfied, note that when xj = 0 for all j 

with aj = #t, we obtain from (19) that at least one of •l,'",•s-1 equals #t; therefore at 
least one of •'1 = f(•l),'",•'s-1 -- f(•s-1) equals v t = if#t), and hence (by a remark in the 

middle of the paragraph above (20)), at least one of r/1 .... ,r/s_ 1 equals vt. This means 

(by (23)) that 0 t is indeed zero. The numbers Yl .... 'Yn just constructed will in due 
course be placed in the last column of a certain matrix. 

The numbers x 1 .... ,Xn, Y l .... ,Yn constructed in the last two paragraphs are such 

that if 0 t for t = 1,...,s are defined by (13), then (12) holds and ifs0 t fort = 1,...,s are 

defined by (17) the right-hand side of (16) equals (21). Comparing the leading 

coefficients in these polynomial equations, we see that 

n n 

(24) j=•lxjYj=l, j=•llXJ 12=1' 
Now let X be a nonsingular matrix with Xl,...,x n in the last row of X* and 

Yl .... ,Yn in the last column of X *-1. This matrix exists by the first part of (24) and the 
lemma. For this X, let 

H = X -1 diag(al,...,an)X*-I , K = X-1X *-1, 
and put A = H + iK. Then K is positive definite, so that A is dissipative. For this K we 

find that K -1 =X*X and a comparison of the (n,n) elements shows that 

det Kn/det K = Z]•=i Ixjl 2 = 1; therefore det K n = det K. We now apply to this A the 
calculations in the first part of the proof. By construction the eigenvalues of A-1A * 

are f(al) =/31,...,f(an) =/3 n. The eigenvalues (A-1A*)n are the roots of the polynomial 
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(8). This polynomial shows roots given by (1 1), and s-1 further roots obtained from 

the polynomial on the right-hand side of (12). By construction the two sides of (12) 

are equal, meaning (by the definitions of Vl,...,p s, ,/1,...,r/s_l) that (8) equals 

(3,-3,1) '" (X-3,n_l). Thus (A-1A*)n has the required eigenvalues. The eigenvalues of 
A•IA• will be the function f applied to the roots of det(H n - XKn), that is, applied to 
the roots of the right-hand side of (9). Polynomial (9) shows roots given by (15), and 

s-1 further roots given by the polynomial on the right-hand side of (16). By 

construction the right-hand side of (16) equals (21), and since det K = det K n, we see 
that the right-hand side of (16) equals the left-hand side of (16). Thus the right-hand 

side of (9) has roots (15) and •l,-'.,•s-1- Applying f to these roots produces the 

numbers (11) and •1 ,'",•s-1, that is,/•1 ,'",/•n-l' The proof is complete. 

COROLLARY 1. Given distinct numbers/•l,...,/3n, t31,...,/3n_ 1 on the unit circle 

cut at 1, with /•l,'",/•n-1 interlacing/• 1,"',/•n, there exists a dissipative matrix A such 

that A-I A * has eigenvalues /•l,...,/3n, A•I A • has eigenvalues /•l,...,/3•n_l, and (A-IA *)n 
has arbitrarily given complex numbers 3'1 .... ,3'n-1 as eigenvalues. 

COROLLARY 2. If A-1A* has precisely s distinct eigenvalues, then (A-1A*)n 
has at most s-1 eigenvalues not on the unit circle. If these eigenvalues are denoted by 

'11,'",*Is- 1, then 

s-1 

(25) s II Ilnkl-1 I/2 s-1 •< (Xmax(K)/Xmin(K)) «, 
k=l 

where Xmax(K), Xmin(K) denote the greatest and least eigenvalues of the imaginary 
component K of A. 

PROOF. The fact that (A-1A*)n can have at most s-1 eigenvalues not on the unit 
circle follows from the first part of the proof of the theorem; in the notation of that 

proof these eigenvalues are */1,'",*/s-l' The following argument will work even if some 

of ,/1,...,r/s_l are on the unit circle, but then yields a trivial result. Evaluating both 

sides of (12) at Pt yields (23), with 0 t given by (13). Hence 

(26) 

s-1 s 

kI•__l I Pt-r/k [/k:I•l IPt-Pk '• •. 1:•' [yj[. = j 

k =#t oj=g t 
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Since the v t are on the unit circle, Ivt-vkl •< 2. Since the least distance from •k to the 

unit circle is II •k I-11, from (26) we get 

Summing over r yields 

• I I•kl- ll/2 s-1 • • Ixjl lyjl. 
k=l J 

s-1 n 

s II I lnkl-ll/2 s-1 •< • Ixjl lyjl k=l j=l 

n 

Now Z•= 1 [xjl 2 is the (n,n) element of X*X = K -1 and hence is bounded above by 
Xmax(K -1) = Xmin(K) -1. Also Z•= 1 lyj 12 is the (n,n) element of X-1X *-1= K, and 
thus is bounded above by Xmax(K). Inserting these estimates yields the result. 

Inequality (25) shows that assigning large eigenvalues to (A'iA*) n forces 
substantial structure on the imaginary component K of A. 

Further inequalities linking the eigenvalues of A-1A * and AhlA• will be found in 
[1] and [2]. The author is indebted to Professor Fan for providing him with a 

preprint of [ 1 ]. 
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