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AN LP-INEQUALITY WITH APPLICATION 

TO ERGODIC THEORY 1 
Alexandra Bellow 

(A. Ionescu Tulcea) 

In the last few years a large number of papers have appeared in the literature 

dealing with the weak convergence of iterates of contractions and strong convergence 

of their averages. The trend started with the Blum-Hanson Theorem [3]. The latest 

result in this direction is due to Akcoglu and Sucheston [ 1 ], [2]. The purpose of this 

paper is to give a simple, straightforward proof of the Adcoglu-Sucheston theorem; the 

present proof avoids approximation by finite-dimensional operators for which the 

contraction case is reduced to the invertible isometry case, and thus avoids altogether 

the application of Akcoglu's "Dilation Theorem". 

Let (X,F_,#) be a measure space and for 1 < p < o% let LP = LP(X,F,#) denote the 

usual Banach space. We write LP+= { fG LPIf•>0} . The following inequality was 

suggested to us by [ 1 ] (where a particular case of this inequality appears): 

The LP-Inequality. Let 1 < p < oo. Let f • L• g • LP+. Then for any 0 < e < 1 
1 

we have, with o• = (p - 1) + p-l: 

(1) f fp-1 g d#•ellfll•+e IIgll• +e•-f f. gp-1 d#. 
PROOF: We may assume without loss of generality that g > O. Let 0 < •/< K 

and define 

Then 

A={f<r/g}, B={f>Kg}, C={ r/g•<f•<Kg}. 

f fp-lg d# •< f r/P-1 gp-lg d# •< r/P-1 IIg II• 
A A 

f fp-lg d# < f fp-1 '1• < -• ,If II• 
B B 

f fp-lg d# <f (Kg)p-lg d# = KP-1 f gp-lg d# 
C C C 

•< Kp_ 1 f gp. lfd# •< KP--1 œ gp-lf 
C • 

1 Research supported by the U.S. Army Research Office (Durham) under contract No. DAHCO4 
68 C005. 
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whence f fp-lg dti •< t/p-1 IIgllpP + • IIfll• + K---P'2 f gp-lf dti. 
1 Setting t/P -1 = e, •-= e in the preceding inequality, we obtain inequality (1). 

Application to Ergodic Theory. We first need some preliminary results. In 

Lemmas 1 and 2 below we assume that pisfixed, 1 •p•o% and that •:LP-•Lq 

(•+-•= 1) is the "canonical duality map" given by qb(u) = sgn u jul p-1. We shall omit 
the subscripts p and q when writing the norm of an element in LP or Lq. We recall 

that for every u G LP, 

(u,•(u)) = Ilu II I[•(u)II and II•(u)II--Ilu lip-1. 

When p = 2, qb is simply the identity mapping, qb(u) -- u for all u G L 2. 

A linear mapping T' LP --, LP is called positive if T(L•) C L• and is called a 
contraction if lit II •< 1. 

LEMMA 1. For each 

such that.' 

(1) For any contraction S.' LP -• LP, and 

(2) For any u G LP with Ilu l[ = 1 and Ilu II - IL•u II •< b we have I[S*(•(Su)) - 

cI,(u) I1 •< e. 

PROOF: Let ½(t) = tP -1, the "gauge function" corresponding to q•. 
By the uniform convexity of Lq (see for instance [5], p. 473), there is • = •(e,q) 

(depending only on q and e ) 0) such that 

(2) xGLq, yGLq IIx II •< 1, Ily II 

IIV2(x + y) II 

Since t -> t½(t) is continuous, there is b > 0 such that 

(3) t •< 1 and 1 - t 

Let now S' X-> X be a contraction and u C X with Ilull = 1 and Ilull- IISull-- 

1 - IISu II •< b. We have: 

II•(u) II = ½( Ilu II ) = ½(1) = 1, 

II S*(•(Su))II •< II•(Su)II = ½( IlSu II) •< ½(1) = 1. 

On the other hand, by (3), 

IIS*(•(Su)) + •(u)II >• (u,S*(•(Su)) + •(u)) 

= (u,S*(•(Su))) + (u,•(u)) 

= (Su,•(Su)) + (u,•(u)) 
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= IlSu II [l•(Su II 4- Ilu II II•(u) II 

-- IlSu II 4( IlSu I1) 4- 1' •b(1) 

• •b( 1)- •/+ •b( 1 ) > 2(•b( 1)- •/) = 2( 1 - 

and hence by (2) 

IlS*(•(Su)) - •(u)II • e. 

This completes the proof of Lemma 1. 

REMARK. Let X be a Banch space, X' its dual and let •b: R+-*R+ be a 

continuous strictly increasing mapping with •b(0)= 0. We recall that •: X-* X ' is 

called a "duality map with gauge function •b" if for each u • X the following 

conditions hold (see for instance [4], p. 370): 

(u,,I,(u)) = Ilu II II,I,(u) II and II,I,(u) II = •( Ilu II). 

It is clear that Lemma 1 remains valid if we replace LP by X and ß by xI,; the only 

property needed in the proof is the uniform convexity of X'. 

We now return to the LP-space; with the notation of Lemma 1 we have: 

COROLLARY 1. For each e> 0 there is 8 = 8(e,p) > 0 such that: For any 

contraction S: LP -. LP, any g • LP with I[g II - IlSg II •< 8 IIg II, and any h • LP we have: 

I(Sh,•(Sg)) - (h,•(g))l •< e II•(g)II [Ih II. 

PROOF: Straightforward consequence of Lemma 1. 

LEMMA 2. Let T.' LP-+LP be a positive contraction (in the case p =2, 

T: L 2 -* L 2 an arbitrary, not necessarily positive, contraction). Suppose that for some 

f • LP+ (in the case p = 2, f • L 2) the sequence (Tnf)n •>1 converges to 0 weakly in 
LP. Then 

lira (Tif,•(TJf)) = 0 
li-jl ->oo 

PROOF: We may assume without loss of generality that Ilfll • 1. Let now 

C= {g6EEI IIgll•<l} ifp4:2, 

respectively 

C = { g 6 L2111g II •< 1 } when p = 2. 
Then it is clear that T: C • C. By the LP-inequality it is also clear that for each e > 0 

we may find a constant A(e) > 0 such that: 

(*) u • C, v • C =• I(u,•(v))l •< e + A(e)l(v,•(u))l. 

Since T is a contraction, 
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Ill II • IITf II • -.. • IITnf II • lit n+ 1 f II. 

If lim IITnfll = 0, the conclusion of the Lemma is trivial. Hence assume that 
n 

lim I[rnf II = a > 0. 
n 

By assumption, 

lim (Tnf,(I)(0) = 0. 
n 

By (*), since f C C, Tnf C C, we also have 

lim (f,(I)(Tn0) = 0. 
n 

Hence given e > 0, there is N' = N'(e) such that 

(4) n 
On account of (*), it is enough to show that 

lira (Tif,•(TJf)) = 0 
j>i 

Hence we consider the case j > i, j = i+n; we must evaluate 

(Tif,•(TJf)) = (Tif,•(Ti+nf)). 
We now apply Corollary 1. Note first that there is N" = N"(e) such that 

N") n• 

(5) i•> 1 •=• IlTnfll-IITn+i f[[•< 6 (•-) a•<6 (• IITnfll. 
For any n•>N" and any i•> 1, apply Corollary 1 with the following 

identifications: 

S = T i, g = Tnf, h = f. 
We obtain 

(6) [ (Tif,•(T n+i 0)- (f,•(Tn0)l •<•-I[•(Tn0 II I[fl[ •<•. 
Combining (4) and (6) and letting N O = max(N•,N ") we obtain 

n•>No } e e • I (Tif, tb(T n+i O) I •< •' + •- = e. 
i•>l 

This completes the proof of Lemma 2. 

REMARK. Under the assumptions of Lemma 2, the weak convergence to 0 (in 

LP) of the sequence (Tn0n•> 1 implies the weak convergence to 0 (in Lq) of 
((I)(Tnf))n •> 1' If we remove the positivity assumption on f, in the case p 4= 2, this is 
no longer true, as the following simple example illustrates: Assume that (X,F,#) is a 
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probability space and that r: X • X is a measure-preserving transformation which is 

strongly mixing (i.e. for every A OF, B C F, iu(r-n(A) C3 13) • iu(A)iu(B)). 

Let T: LP • LP be the operator induced by r: Tf -- før, for f G LP. Then it is well 

known that the sequence (Tn) n >• 1 converges in the weak operator topology to the 
projection operator P, where Pf--ff dlu, for f G LP. Consider now g G LP such that 

f g dtz = 0 but f cI)(g)dtz = c =P- 0. Then it is obvious that 

Tng • 0 weakly in LP 

but that 

cI)(Tng) • c =P- 0 weakly in Lq. 

Let now (ani) be a matrix of real numbers satisfying the following two 
conditions: 

(a) m n = stlp lani[ • 0 as n • oo 

(b) M n=Z i [anil•<M<ooforalln•>l. 
It is clear that any such matrix (ani) may be written in the form 

ani = ani - ani, 

where a•i >• 0, ani >• 0 for all (n,i) and where both (a•i) and (a•i) satisfy conditions 
(a) and (b) above. 

We may now state the following: 

THEOREM 1. Let T: LP-+LP be a positive contraction (in the case p = 2, 

T.' L 2 -> L 2 an arbitrary contraction). Then for an element f• L• (in the case p -- 2 
for an element f • L 2) the following assertions are equivalent: 

(i) The sequence (Tnf) n •> 1 converges to 0 weakly in LP ; 

(ii) [i(i•_>od•Tif,•(TJf)) -- O; 
(iii) For any matrix (ani) satisfying (a) and (b), the sequence Z. anilif converges 

to 0 strongly in LP. 

PROOF: As (i) =} (ii) follows from Lemma 2 and (iii) =• (i) is well known (and in 

any case easy to prove directly) it remains to prove (ii) =• (iii). 

(ii) • (iii). In proving (iii) we may assume without loss of generality that ani •> 0 
for all (n,i) and that the constant M in condition (b) above is •< 1. We may also assume 

that IIf[I •< 1. 

Let now C be defined as in the beginning of the proof of Lemma 2. Then the set 

C satisfies condition (*) and it is obvious that T i maps C into C for all i •> 1 and that 
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An(T) = • anjTJ maps C into C for all n •> 1. 
Let now e > 0. We have to evaluate 

IIAn(T)fll = II•. anjTJfll, J 

or equivalently 

I(An(T)f,•(An(T)f))l. 
Using condition (*) we may write 

1(• aniTif,•(jZ. anjTJf))l •< Z. anil(Tif,•(Z. anjTJf))l • J 

•< Z. ani {e + A(e)l( .Z anjTJf,•(Tif))l } • J 

•< Z. ani (e + [.23 anjl(TJf,•(Tif))l]A(e) } • J 
ß 

•< e + A(e)[ Z anianj[(TJf,•(T•f))l]. 03) 

It remains to evaluate the sum 

I(n) = (idZ.)anianj I(TJf,•(Tif))l 
and to show that lim I(n) = 0. Let e* > 0; by Lemma 2, there is N O -- NO(e*) such that 

n 

i,j •> 1, [i-jl •>N0=• [(TJf,•(Ti0)l •<e*. 
We deduce 

I(n) = • + 

li-j[<N 0 li-j•N 0 
•< (•i ani)2N0mn + (li- j•>N0 anianj)e* 
•< 2N0m n + e*. 

Since m n -• 0 as n -• o% the assertion about I(n) is proved and thus the proof of the 
Theorem is concluded. 

We recall that a matrix (ani) of real numbers is called "uniformly regular" if it 
satisfies conditions (a) and (b) (preceding Theorem 1) and in addition condition (c) 

below: 

(c) lim Z. ani = 1. 
n 1 

From Theorem 1 one easily obtains the following result recently proved by 

Akcoglu and Sucheston ([1], [2]): 

THEOREM 2. (Akcoglu and Sucheston). Let T.' LP--> LP be a positive 

contraction (in the case p--2, T: L 2 ->L 2 an arbitrary contraction). Then the 
following assertions are equivalent: 

(1) lira T n exists in the weak operator topology. 
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(2) If (ani) is a uniformly regular matrix, then linm • ani Ti exists in the strong 
opera tor topology. 
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