AN L^p-INEQUALITY WITH APPLICATION TO ERGODIC THEORY¹ Alexandra Bellow

(A. Ionescu Tulcea)

In the last few years a large number of papers have appeared in the literature dealing with the weak convergence of iterates of contractions and strong convergence of their averages. The trend started with the Blum-Hanson Theorem [3]. The latest result in this direction is due to Akcoglu and Sucheston [1], [2]. The purpose of this paper is to give a simple, straightforward proof of the Adcoglu-Sucheston theorem; the present proof avoids approximation by finite-dimensional operators for which the contraction case is reduced to the invertible isometry case, and thus avoids altogether the application of Akcoglu's "Dilation Theorem".

Let (X,\underline{F},μ) be a measure space and for $1 , let <math>L^p = L^p(X,\underline{F},\mu)$ denote the usual Banach space. We write $L^p_+ = \{ f \in L^p | f \ge 0 \}$. The following inequality was suggested to us by [1] (where a particular case of this inequality appears):

The L^p-Inequality. Let $1 . Let <math>f \in L^p_+$, $g \in L^p_+$. Then for any $0 < \epsilon < 1$ we have, with $\alpha = (p-1) + \frac{1}{p-1}$:

(1) $\int f^{p-1} g d\mu \leq \epsilon \|f\|_p^p + \epsilon \|g\|_p^p + \frac{1}{\epsilon^{\alpha}} \int f^* g^{p-1} d\mu.$

PROOF: We may assume without loss of generality that g > 0. Let $0 < \eta < K$ and define

$$A = \{ f < \eta g \}, B = \{ f > Kg \}, C = \{ \eta g \le f \le Kg \}.$$

Then

$$\int f^{p-1}g \, d\mu \leq \int \eta^{p-1}g^{p-1}g \, d\mu \leq \eta^{p-1} \|g\|_p^p$$

$$A \qquad A$$

$$\int f^{p-1}g \, d\mu \leq \int f^{p-1} \frac{f}{K} \leq \frac{1}{K} \|f\|_p^p$$

$$B \qquad B$$

$$\int f^{p-1}g \, d\mu \leq \int (Kg)^{p-1}g \, d\mu = K^{p-1} \int g^{p-1}g \, d\mu$$

$$C \qquad C \qquad C \qquad C$$

$$\leq K^{p-1} \int g^{p-1} \frac{f}{\eta} d\mu \leq \frac{K^{p-1}}{\eta} \int g^{p-1}f \, d\mu^-$$

Research supported by the U. S. Army Research Office (Durham) under contract No. DAHCO4
 68 C005.

A. IONESCU TULCEA

whence $\int f^{p-1}g \, d\mu \leq \eta^{p-1} \|g\|_p^p + \frac{1}{K} \|f\|_p^p + \frac{K^{p-1}}{\eta} \int g^{p-1}f \, d\mu.$ Setting $\eta^{p-1} = \epsilon, \frac{1}{K} = \epsilon$ in the preceding inequality, we obtain inequality (1).

Application to Ergodic Theory. We first need some preliminary results. In Lemmas 1 and 2 below we assume that p is fixed, $1 , and that <math>\Phi: L^p \to L^q$ $(\frac{1}{p} + \frac{1}{q} = 1)$ is the "canonical duality map" given by $\Phi(u) = \text{sgn } u |u|^{p-1}$. We shall omit the subscripts p and q when writing the norm of an element in L^p or L^q . We recall that for every $u \in L^p$,

 $(u,\Phi(u)) = ||u|| ||\Phi(u)|| \text{ and } ||\Phi(u)|| = ||u||^{p-1}.$

When p = 2, Φ is simply the identity mapping, $\Phi(u) = u$ for all $u \in L^2$.

A linear mapping T: $L^p \rightarrow L^p$ is called *positive* if $T(L^p_+) \subset L^p_+$ and is called a *contraction* if $||T|| \leq 1$.

LEMMA 1. For each $\epsilon > 0$ there is $\delta = \delta(\epsilon, p) > 0$ (depending only on p and ϵ) such that:

(1) For any contraction S: $L^p \rightarrow L^p$, and

(2) For any $u \in L^p$ with ||u|| = 1 and $||u|| - ||Su|| \le \delta$ we have $||S^*(\Phi(Su)) - \Phi(u)|| \le \epsilon$.

PROOF: Let $\phi(t) = t^{p-1}$, the "gauge function" corresponding to Φ .

By the uniform convexity of L^q (see for instance [5], p. 473), there is $\eta = \eta(\epsilon, q)$ (depending only on q and $\epsilon > 0$) such that

(2)
$$\mathbf{x} \in \mathbf{L}^{\mathbf{q}}, \mathbf{y} \in \mathbf{L}^{\mathbf{q}}$$

 $\|\mathbf{x}\| \leq 1, \|\mathbf{y}\| \leq 1 \text{ and }$
 $\|\frac{1}{2}(\mathbf{x} + \mathbf{y})\| \ge 1 - \eta$ $\Rightarrow \|\mathbf{x} - \mathbf{y}\| \leq \epsilon.$

Since $t \to t\phi(t)$ is continuous, there is $\delta > 0$ such that

(3) $t \leq 1$ and $1 - t \leq \delta \Rightarrow t\phi(t) \geq \phi(1) - \eta = 1 - \eta$.

Let now S: $X \to X$ be a contraction and $u \in X$ with ||u|| = 1 and $||u|| - ||Su|| = 1 - ||Su|| \le \delta$. We have:

 $\|\Phi(\mathbf{u})\| = \phi(\|\mathbf{u}\|) = \phi(1) = 1,$

 $\| S^*(\Phi(Su)) \| \le \| \Phi(Su) \| = \phi(\|Su\|) \le \phi(1) = 1.$

On the other hand, by (3),

$$\|S^{*}(\Phi(Su)) + \Phi(u)\| \ge (u, S^{*}(\Phi(Su)) + \Phi(u))$$

= (u, S^{*}(\Phi(Su))) + (u, \Phi(u))
= (Su, \Phi(Su)) + (u, \Phi(u))

$$= \|Su\| \|\Phi(Su\| + \|u\| \|\Phi(u)\|$$
$$= \|Su\| \phi(\|Su\|) + 1 \cdot \phi(1)$$
$$\ge \phi(1) - \eta + \phi(1) > 2(\phi(1) - \eta) = 2(1 - \eta)$$

and hence by (2)

 $\|\mathbf{S}^*(\Phi(\mathbf{S}\mathbf{u})) - \Phi(\mathbf{u})\| \leq \epsilon.$

This completes the proof of Lemma 1.

REMARK. Let X be a Banch space, X' its dual and let $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ be a continuous strictly increasing mapping with $\psi(0) = 0$. We recall that $\Psi: X \to X'$ is called a "duality map with gauge function ψ " if for each $u \in X$ the following conditions hold (see for instance [4], p. 370):

 $(u, \Psi(u)) = ||u|| ||\Psi(u)|| \text{ and } ||\Psi(u)|| = \psi(||u||).$

It is clear that Lemma 1 remains valid if we replace L^p by X and Φ by Ψ ; the only property needed in the proof is the uniform convexity of X'.

We now return to the L^p-space; with the notation of Lemma 1 we have:

COROLLARY 1. For each $\epsilon > 0$ there is $\delta = \delta(\epsilon, p) > 0$ such that: For any contraction S: $L^p \to L^p$, any $g \in L^p$ with $\|g\| - \|Sg\| \le \delta \|g\|$, and any $h \in L^p$ we have: $|(Sh, \Phi(Sg)) - (h, \Phi(g))| \le \epsilon \|\Phi(g)\| \|h\|.$

PROOF: Straightforward consequence of Lemma 1.

LEMMA 2. Let $T: L^p \to L^p$ be a positive contraction (in the case p = 2, $T: L^2 \to L^2$ an arbitrary, not necessarily positive, contraction). Suppose that for some $f \in L^p_+$ (in the case p = 2, $f \in L^2$) the sequence $(T^n f)_n \ge 1$ converges to 0 weakly in L^p . Then

$$\lim_{|i-j|\to\infty} (T^i f, \Phi(T^j f)) = 0$$

PROOF: We may assume without loss of generality that $||f|| \leq 1$. Let now

C = { $g \in L^p_{p} | \|g\| \le 1$ } if $p \ne 2$,

respectively

C = {
$$g \in L^2 | \|g\| \le 1$$
 } when $p = 2$.

Then it is clear that T: C \rightarrow C. By the L^p-inequality it is also clear that for each $\epsilon > 0$ we may find a constant A(ϵ) > 0 such that:

(*) $u \in C, v \in C \Rightarrow |(u, \Phi(v))| \le \epsilon + A(\epsilon)|(v, \Phi(u))|.$

Since T is a contraction,

A. IONESCU TULCEA

$$\|\mathbf{f}\| \ge \|\mathbf{T}\mathbf{f}\| \ge \cdots \ge \|\mathbf{T}^{n}\mathbf{f}\| \ge \|\mathbf{T}^{n+1}\mathbf{f}\|.$$

If $\lim \|T^n f\| = 0$, the conclusion of the Lemma is trivial. Hence assume that

$$\lim_{n \to \infty} \|\mathbf{T}^n \mathbf{f}\| = \mathbf{a} > 0$$

By assumption,

$$\lim_{n} (T^{n}f, \Phi(f)) = 0.$$

By (*), since $f \in C$, $T^n f \in C$, we also have

$$\lim_{n} (f, \Phi(T^{n}f)) = 0.$$

Hence given $\epsilon > 0$, there is N' = N'(ϵ) such that

(4) $n \ge N' \Rightarrow |(f, \Phi(T^n f))| \le \frac{\epsilon}{2}$

On account of (*), it is enough to show that

$$\lim_{\substack{i \cdot j \to \infty \\ j \ge i}} (T^i f, \Phi(T^j f)) = 0$$

Hence we consider the case j > i, j = i+n; we must evaluate

$$(T^{i}f,\Phi(T^{j}f)) = (T^{i}f,\Phi(T^{i+n}f)).$$

We now apply Corollary 1. Note first that there is $N'' = N''(\epsilon)$ such that

(5)
$$\begin{array}{c} n \ge N'' \\ i \ge 1 \end{array} \right\} \Rightarrow \| T^n f\| - \| T^{n+i} f\| \le \delta\left(\frac{\epsilon}{2}\right) a \le \delta\left(\frac{\epsilon}{2}\right) \| T^n f\|.$$

For any $n \ge N''$ and any $i \ge 1$, apply Corollary 1 with the following identifications:

$$S = T^i$$
, $g = T^n f$, $h = f$.

We obtain

(6)
$$|(T^{i}f,\Phi(T^{n+i}f)) - (f,\Phi(T^{n}f))| \leq \frac{\epsilon}{2} ||\Phi(T^{n}f)|| ||f|| \leq \frac{\epsilon}{2}.$$

Combining (4) and (6) and letting $N_0 = max(N',N'')$ we obtain

$$\left. \begin{array}{c} n \geq N_0 \\ i \geq 1 \end{array} \right\} \Rightarrow |\left(T^i f, \Phi(T^{n+i} f) \right)| \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

This completes the proof of Lemma 2.

REMARK. Under the assumptions of Lemma 2, the weak convergence to 0 (in L^p) of the sequence $(T^n f)_{n \ge 1}$ implies the weak convergence to 0 (in L^q) of $(\Phi(T^n f))_{n \ge 1}$. If we remove the *positivity* assumption on f, *in the case* $p \ne 2$, this is no longer true, as the following simple example illustrates: Assume that (X, E, μ) is a

AN L^p-INEQUALITY

probability space and that $\tau: X \to X$ is a measure-preserving transformation which is strongly mixing (i.e. for every $A \in \underline{F}, B \in \underline{F}, \mu(\tau^{-n}(A) \cap B) \to \mu(A)\mu(B)$).

Let T: $L^p \to L^p$ be the operator induced by τ : Tf = f τ , for $f \in L^p$. Then it is well known that the sequence $(T^n)_{n \ge 1}$ converges in the weak operator topology to the projection operator P, where Pf = $\int f d\mu$, for $f \in L^p$. Consider now $g \in L^p$ such that $\int g d\mu = 0$ but $\int \Phi(g) d\mu = c \neq 0$. Then it is obvious that

 $T^n g \rightarrow 0$ weakly in L^p

but that

 $\Phi(T^n g) \rightarrow c \neq 0$ weakly in L^q .

Let now (a_{ni}) be a matrix of real numbers satisfying the following two conditions:

(a)
$$m_n = \sup_i |a_{ni}| \to 0 \text{ as } n \to \infty$$

(b) $M_n = \sum_i |a_{ni}| \le M \le \infty$ for all $n \ge 1$.

It is clear that any such matrix (a_{ni}) may be written in the form

$$a_{ni} = a'_{ni} - a''_{ni},$$

where $a'_{ni} \ge 0$, $a''_{ni} \ge 0$ for all (n,i) and where both (a'_{ni}) and (a''_{ni}) satisfy conditions (a) and (b) above.

We may now state the following:

THEOREM 1. Let $T: L^p \to L^p$ be a positive contraction (in the case p = 2, $T: L^2 \to L^2$ an arbitrary contraction). Then for an element $f \in L^p_+$ (in the case p = 2 for an element $f \in L^2$) the following assertions are equivalent:

- (i) The sequence $(T^n f)_{n \ge 1}$ converges to 0 weakly in L^p ;
- (ii) $\lim_{|i-j|\to\infty} T^i f_{,\Phi}(T^j f_{,}) = 0;$

(iii) For any matrix (a_{ni}) satisfying (a) and (b), the sequence $\sum_{i} a_{ni}T^{i}f$ converges to 0 strongly in L^{p} .

PROOF: As (i) \Rightarrow (ii) follows from Lemma 2 and (iii) \Rightarrow (i) is well known (and in any case easy to prove directly) it remains to prove (ii) \Rightarrow (iii).

(ii) \Rightarrow (iii). In proving (iii) we may assume without loss of generality that $a_{ni} \ge 0$ for all (n,i) and that the constant M in condition (b) above is ≤ 1 . We may also assume that $||f|| \le 1$.

Let now C be defined as in the beginning of the proof of Lemma 2. Then the set C satisfies condition (*) and it is obvious that T^i maps C into C for all $i \ge 1$ and that

157

 $A_n(T) = \sum_{j} a_{nj}T^j$ maps C into C for all $n \ge 1$.

Let now $\epsilon > 0$. We have to evaluate

$$\|\mathbf{A}_{\mathbf{n}}(\mathbf{T})\mathbf{f}\| = \|\sum_{j} \mathbf{a}_{\mathbf{n}j}\mathbf{T}^{j}\mathbf{f}\|,$$

or equivalently

 $|(A_n(T)f,\Phi(A_n(T)f))|.$

Using condition (*) we may write

$$\begin{split} &|(\sum_{i} a_{ni} T^{i} f, \Phi(\sum_{j} a_{nj} T^{j} f))| \leq \sum_{i} a_{ni} |(T^{i} f, \Phi(\sum_{j} a_{nj} T^{j} f))| \\ &\leq \sum_{i} a_{ni} \left\{ \epsilon + A(\epsilon) |(\sum_{j} a_{nj} T^{j} f, \Phi(T^{i} f))| \right\} \\ &\leq \sum_{i} a_{ni} \left\{ \epsilon + [\sum_{j} a_{nj} |(T^{j} f, \Phi(T^{i} f))|] A(\epsilon) \right\} \\ &\leq \epsilon + A(\epsilon) [\sum_{(i,j)} a_{ni} a_{nj} [(T^{j} f, \Phi(T^{i} f))|]. \end{split}$$

It remains to evaluate the sum

$$I(n) = \sum_{(i,j)} a_{ni} a_{nj} |(T^j f, \Phi(T^i f))|$$

and to show that $\lim_{n} I(n) = 0$. Let $\epsilon^* > 0$; by Lemma 2, there is $N_0 = N_0(\epsilon^*)$ such that

$$i, j \ge 1, |i - j| \ge N_0 \Rightarrow |(T^J f, \Phi(T^1 f))| \le \epsilon^*.$$

We deduce

$$I(n) = \sum_{\substack{|i-j| \le N_0}}^{\sum} + \sum_{\substack{|i-j| \ge N_0}}^{\sum} \\ \le (\sum_{i} a_{ni}) 2N_0 m_n + (\sum_{\substack{|i-j| \ge N_0}}^{\sum} a_{ni} a_{nj}) \epsilon^* \\ \le 2N_0 m_n + \epsilon^*.$$

Since $m_n \rightarrow 0$ as $n \rightarrow \infty$, the assertion about I(n) is proved and thus the proof of the Theorem is concluded.

We recall that a matrix (a_{ni}) of real numbers is called "*uniformly regular*" if it satisfies conditions (a) and (b) (preceding Theorem 1) and in addition condition (c) below:

(c) $\lim_{n \to i} \sum_{i=1}^{n} a_{ni} = 1$.

From Theorem 1 one easily obtains the following result recently proved by Akcoglu and Sucheston ([1], [2]):

THEOREM 2. (Akcoglu and Sucheston). Let $T: L^p \to L^p$ be a positive contraction (in the case p = 2, $T: L^2 \to L^2$ an arbitrary contraction). Then the following assertions are equivalent:

(1) $\lim_{n} T^{n}$ exists in the weak operator topology.

AN L^p-INEQUALITY

(2) If (a_{ni}) is a uniformly regular matrix, then $\lim_{n} \sum_{i} a_{ni}T^{i}$ exists in the strong operator topology.

REFERENCES

- M. A. Akcoglu and L. Sucheston, Weak convergence of positive contractions implies strong convergence of averages, Zeit. Wahrscheinlichkeitstheorie und verw. Gebiete, Vol. 32(1975), pp. 139-145.
- M. A. Akcoglu and L. Sucheston, On weak and strong convergence of positive contractions in L_p spaces, Bull. Amer. Math. Soc., Vol. 81, (1975) No. 1, Jan., pp. 105-106.
- 3. J. R. Blum and D. L. Hanson, On the mean ergodic theorem for subsequences, Bull. Amer. Math. Soc., Vol. 66(1960), pp. 308-311.
- 4. F. E. Browder, On a theorem of Beurling and Livingston, Canadian J. Math., Vol. 17 (1965), pp. 367-372.
- 5. N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience Publ., New York, 1966.
- 6. H. Fong and L. Sucheston, On a mixing property of operators in L_p-spaces, Zeit. Wahrscheinlichkeitstheorie und verw. Gebiete, Vol. 28(1974), pp. 165-171.

Northwestern University Evanston, Illinois 60201

Received April 3, 1975.