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and his children Pablo Julian and Laura In•s 

Domingo Herrero died April 13, 1991 after losing a battle against 
cancer. Domingo was a passionate man who was very close to his family 
and friends. I am honoured to have been one of those friends. He was 

also one of the best operator theorists of our time. He had an intense love 
for mathematics, and was relentless in his pursuit of new results. This 
paper is intended to be a modest survey of some of his work, and of some 
of the problems he posed. Domingo wrote well over one hundred papers, 
averaging seven papers per year for 20 years. So, I will not attempt to be 
anywhere near to comprehensive. Domingo had three dozen co-authors, so 
please forgive me if I don't mention the work he did with all of you. It 
was an ambition of Domingo's to have a co-author for each letter of the 
alphabet - he covered 17 at the last count. The bibliography contains the 
most up-to-date list I could obtain, but he is still writing papers with some 
of his co-authors even now. 

Herrero was a native of Argentina. He and his wife Marta studied 
mathematics at the University of Buenos Aires, where they both received 
master's degrees and started working on their Ph.D.'s. However, the mil- 
itary fired many university professors in 1966, effectively shutting down 
most doctoral programs. Two years later, they came to the University of 
Chicago to complete their studies. Herrero received his Ph.D. in 1970 under 
the supervision of Richard Beals. After spending two years in Albany, the 
Herreros returned to South America. They taught in Brazil, Argentina, and 
finally Venezuela. But the unfavourable environment kept them moving on. 
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It is incredible that in spite of this upheaval and the relative mathematica] 
isolation, Herrero developed into a prolific mathematician. In 1980, Herrero 
returned to the United States. After a year in Georgia, he moved to Arizona 
State University. In this more stable situation, Herrero's work flourished 
and here he did his deepest work. 

Herrero was profoundly influenced by Ha]mos's famous paper Ten 
Problems in Hilbert Space [•6]. Many of these problems raised serious ques- 
tions about the structure and approximation properties of various classes 
of operators on Hilbert space. Herrero spent his career on such problems 
during a time of great progress in this direction. The deepest work in the 
seventies in this area was done by the Romanian school, notably Apostol, 
Foia•, and Voiculescu. In the eighties, it was Herrero who set the standard. 
He also wrote the book - indeed two volumes he typed himself - system- 
atizing these developments. In this short paper, I will try to give some idea 
of the work Herrero did, and the problems he left behind. 

1. Notation. In this paper, 7-/ will always denote a separable Hilbert 
space. The space of all bounded operators is denoted/•(7-/), and the idea] 
of compact operators is ]C(7-/). The quotient map onto the Calkin a]gebra 
will be denoted by •. We will need various parts of the spectrum er(T) such 
as the essentia] spectrum ere(T), the point spectrum (eigenvalues) erp(T), 
the 'normal' spectrum er0(T) (isolated eigenva]ues of finite multiplicity), 
and 

ere•e(T) = • •r(T- •r) is neither left nor right invertible) 
-- {• T - hi is not semi-Fredholm ) 

An operator T is semi-Fredholm if it has closed range, and at least 
one of nul (T) - dim rank (T) and nul (T*) - dim rank (T*) is finite. 
The semi-Fredholm index is ind (T) = nul (T) - nul (T*). An operator is 
Fredholm (semi-Fredholm of finite index) if and only if •(T) is invertible, 
and semi-Fredholm if •(T) is either left or right invertible. The domain 
of semi-Fredholmuess is denoted ps-F(T) -- C\ere,(T), consisting of those 
scalars • such that T - •I is semi-Fredholm. 

The set ps_F(T) is open, and index is constant on its components. De- 
fine min.ind (T) = rain {nul (T), nul (T*)). The function min.ind (T-•I) 
is lower semi-continuous on p•_ F(T), and is constant on each component ex- 
cept for possibly a countable set accumulating at the boundary. This count- 
able set is denoted • , p•_F(T) and its members are called singular points. The 
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remaining part of p,_F(T) is denoted p•_F(T), and such points axe called 
regular. 

We assume familarity with the Riesz functional calculus and its basic 
properties. The Riesz spectral projection corresponding to a clopen set 53 
of a(T) is denoted by Er(53). 

2. Similarity. One of Halmos's 'ten problems' was: Is every quasiniIpotent 
operator the norm limit of nilpotent operators? 

Halmos pointed out that an example of Kakutani showed that the 
limit of nilpotents need not be quasinilpotent, so the 'real' question is the 
much less focussed: Describe the closure of the set of nilpotent operators. 
The set of nilpotent operators is invariant under similarity, and hence so is 
its closure. The solution of this and related problems lead to the conclusion 
that closed, similarity invariant classes should be determined by natural 
conditions on the spectrum, index and rank of the operator. 

The spectrum of an operator is not continuous, but it is upper semi- 
continuous; meaning that if • is an open neighbourhood of a(T), then 
there is a neighbourhood O of T so that every operator S E O also has 
a(S) C •, and each component of • which intersects a(T) also intersects 
a(S). In particular, if T is the limit of nilpotents, a(T) must be connected 
and contain 0. The same argument applies to de(T) by working in the 
Calkin algebra. The set of semi-Fredholm operators is open and index 
is locally constant. Thus, if T - ,XI is semi-Fredholm of index n, then 
ind (S - ,XI) = n for all S sufficiently close to T. If S is nilpotent, it is clear 
that ind (S - ,XI) = 0 for all ,X •= 0. Thus if T is the limit of nilpotents, one 
must have ind (T - ,XI) = 0 for all ,X E p,_•.(T). 

Herrero [22] proved an important special case: 

Theorem. If N is a norma/operator with 0 e de(N) = a(N), and a(N) 
is connected, then N is the limit of nilpotents. 

This now has very simple proofs based on 'Berg's technique'. The 
basic idea is that a finite rank weighted shift with weights slowly growing 
from 0 up to 1 and down to 0 again is close to a normal matrix with 
eigenvalues 'thick' in the unit disc. Together with elementary conformal 
mapping techniques, one can build nilpotents close to any normal satisfying 
the spectral conditions. See Herrero's book [57] for a nice treatment. 

Shortly thereafter, Apostol, Foia•, and Voiculescu [#3] give the com- 
plete answer. This was based on Herrero's special case, and some other 
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approximation arguments. 

Theorem [AFV]. An operator T ß /;(7/) is the norm limit ot' nilpotent 
operators if and only if both or(T) and ere(T) are connected and contain O, 
and ind (T - hi) - 0 for all • ß p•-F(T). 

A natural outgrowth of this work, and the approximation methods 
used to solve it, is the description of the closure of the similarity orbit 
of a single operator T. For example, it is not too hard to show from the 
proof of the theorem above that if Q is quasinilpotent and Qn is not compact 
for any n ) 0, then $(Q) equals the closure of the nilpotents. Herrere [28] 
and Apestel [•:1] proved this independently. 

In a similar way, Herrere [30] described the closure of the similar- 
ity orbit of a normal operator with perfect spectrum. And in [46], 
and Herrere describe the closure of the similarity orbit in finite dimensions. 
These two results exhibit different phenomena. The normal case is much 
like the nilpotent case we just examined. If A is similar to a normal op- 
erator N, it has index 0 whenever it is semi-Fredholm. Thus the same 
holds for any limit T. The spectrum and essential spectrum of T must 
contain or(N) = ere(N), and each component must intersect or(N). These 
are sufficient conditions. 

In the finite dimensional case, the notion of rank becomes important. 
This same condition applies to normal eigenvalues (isolated eigenvalues of 
finite multiplicity) in the Hilbert space case. The point is that the set 
of operators of rank at most k is closed. So if p is a polynomial and if 
T = lim An where An are similar to A, then 

rank (p(T)) _• lim rank (p(An)) - rank p(A). 

This turns out to be sufficient as well. There is a similar condition based 

on the fact that the set of operators with nullity at least k is closed. This 
yields the condition: 

nul (p(T)) _• lim nul (p(An)) - nul (p(A)). 

In finite dimensions, this condition is equivalent to the rank condition be- 
cause rank (T) -t- nul (T) -- dim (7-/). However, in infinite dimensions they 
are different. Consider T to be a rank I projection and A to be a rank 
2 projection. It is easy to compute rank p(T) to be 0, I or c• while the 
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corresponding ranks for A are 0, 2 and oo. However, nul (T - I) = 1 < 2 = 
nul (A- I) and thus T cannot be in $(A). Likewise, nul (q(A)) is always 

0, 2 or oo which dominates the corresponding nullities 0, 1 and oo for T, 
but A is not in $(T) either. Together, these two conditions characterize 
$(A) for a finite rank operator A. 

The philosophy which emerges is that closed, similarity invariant sets 
are determined by three types of conditions: (S) spectral conditions (such as 
'connected containing 0'), (F) Fredholm index conditions, and (A) algebraic 
conditions (such as rank (p(T)) _< rs.nk p(A)). This proves to be the case 
for 'nice' sets. 

Probably the deepest result in approximation of operators in the eight- 
ies is the theorem of Apostol, Herrero and Voiculescu [58, 73] describing 
$(A) for an arbitrary operator A. Actually, they don't quite get the whole 
picture when there are isolated points in ae (A) of essentially nilpotent type. 
When these bad points are missing, the closure $(A) is described solely in 
terms of the spectral picture of A. In other words, it can be described by 
knowing the different parts of the spectrum, the Fredholm index on the 
components of p•-F(A), and rank conditions arising from normal eigenval- 
ues and other singular points in ps-F(A). I will state a special case. When 
T is smooth, meaning that min.ind (T - XI) = 0 for all A ß ps_F(T) (so in 
particular do(T) is empty), then the conditions (FA) and (A1) can also be 
dropped. 

Similarity Orbit Theorem. Suppose that T has no isolated points in 
de(T) of finite order. Then A ß $(T) if and only if 

(s2) 

(F^) 

o(A) C 
Each component of ae•e(A) meets ere(T). 
ind (A- •I) -- ind (T- •I) for all • ß p,-F(A). 
min.ind (A- •I) k >_ min.ind (T- •I) • for an A ß p,_F(A). 

= X ß 

This theorem is a real tour de force. The main ideas extend the 

notions introduced by the Romanian school in the solution of the nilpotent 
problem, and the related work on quasitriangularity. Although I can't go 
into any details, let me mention two main tools. One is the use of canonical 
models based on the direct sum of normal operators, finite rank operators 
and Bergman operators associated with nice domains. The other is the use 
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of one-sided resolvents - i.e. an analytic function satisfying the resolvent 
equation that provides a left inverse over some domain. This latter notion 
is developed into a powerful tool. It's usefulness will pop up again in the 
next section. 

Herrero [117] proved what he calls a 'metatheorem' about closed, sim- 
ilarity invariant sets. A similarity invariant class is said to have sufficient 
structure provided that it contains a dense set of operators with no isolated 
points of finite order in the essential spectrum. 

Metatheorem. Suppose that $ is a closed, similarity invariant subset oœ 
B(T[) with sufficient structure. Then $ is determined just by the set oœ 
possible fine spectral pictures. Furthermore, if $ is invariant under com- 
pact perturbations, $ is deterre/ned just by the set of possible spectral 
pictures. (Basically, the fine detail about normal eigenvalues and singular 
points vanishes.) 

Moreover, there is a distance formula to these sets which is of practiced 
use. This is a very powerful theorem. Indeed, the characterizations of 
the closures of the nilpotents, triangular operators, n-multicyclic operators, 
operators with spectra contained in prescribed sets, etc., etc. all follow as 
corollaries from this theorem. Of course that is circular reasoning, but it 
indicates the scope of the result. 

3. Multiplicity. An operator T is n-multicyclic if n is the least integer 
for which there are vectors Xl,..., xn so that 

span {Tkxilk 

We say that T has multiplicity •(T) = n. The first observation to make is 
that if ind (T - AI) = -n • 0, then T has multiplicity at least n. To see 
this, let J•4 = ker(T - AI)*, and decompose 7-/= J•4 ñ •)J•4. Since J•,4 ñ is 
T-invariant, we obtain the matrix form 

For any vectors xl, ß ß ß, Xn, 

P• span(T•xilk •_ O, 1 _• i •_ n)= span (P•xi]l •_ i _• n). 
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Thus, 
•(T) >_ dim (AA) >_ -ind(T- 

It follows that if •(T) = n, then ind (T- hi) _> -n for all X e p•_•(T). 
Moreover, if ind (T- ,X•r) = n, then nul (T- ,X•r)* = n and nul (T- ,X•r) = 0. 
Herrero [40] proves: 

Theorem. If T is n-multicyclic, then 

(i) ind (2•- •) _> -n for • • e p•_•(2•). 
(ii) Every component of p•_F(T) of index -n is simply con- 

nected. 

The second condition is neither obvious nor easy to prove. This is a 
deep and useful result. Curiously, Herrero provided a second easier proof 
in [86] in his (successful) quest for a general Banach space proof. Let F be 
a smooth curve in a component • of index -n, and let ß = • if] •. The key 
idea is the construction of a left resolvent function R(;b) defined on ß such 
that 

R(%b)(T- %hi) = I for all %b • • 

and 

R(½)- R(qS)-" (q5- %O)R(%O)R(qS) for all %0, 95 (E •. 

In order to do this, fix a point 7 • F. Since x•,...,x• is a cyclic set 
for T (and also T- 7I), they must span a complement to Ran (T - 7I). 
Hence there is a unique left inverse R• of T - 71 satisfying R•xi = 0 for 
1 _< i < n. It can be shown that I + (• - 7)•L: %(• - T) is invertible on 
ß . (This operator clearly has index 0, so it suffices to show that the adjoint 
is injective.) Then a routine computation shows that 

R(½) = (Z + (½ - 

is the desired left resolvent. 

It is clear that this is an analytic function. Now the Cauchy integral 

formula allows the construction of a left resolvent on the whole (•simply con- 
nected) region bounded by F. From this, we can conclude that F belongs to 
Ps-F(T). Hence f• contains • for all curves F, and thus is simply connected. 

Now consider the closure of the set of n-multicyclic operators. We 
have obtained two important conditions, (i) is of Fredholm type, and (ii) is 
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a spectral condition. Fine structure conditions such as nul (T - AI) •_ -n 
are not necessary because any operator has a small compact perturbation 
such that min.ind (T + K- A[) = 0 for all A ß p•_F(T)\ao(T). Isolated 
eigenvalues of finite multiplicity cannot be removed, but they can be mod- 
ified by another small compact so that all the normal eigenvalues are of 
multiplicity one. Herrero [40,72] proves: 

Theorem. The closure of the n-multicyclic operators is precisely the set 
of operators satisfying (i) and (ii). Furthermore, if T satisfies (i) and (ii) 
and e y 0, then there is a compact operator K with ]]KII < e such that 
T - K is n-multicyclic. 

The fact that the two conditions (i) and (ii) are sufficient is another ex- 
ample of the similarity paradigm at work. This theorem illustrates another 
familiar theme in this subject, the fact that small compact perturbations 
often suffice. This is frequently the case when there is no obstruction (of 
type (S), (F) or (A)) to preclude it. 

There is an obvious analogue of n-multicyclicity called rational n- 
multicyclicity which uses rational functions of T rather than polynomials. 
The theory runs in parallel, except that the condition of simple connect- 
edness for holes of index -n is no longer present. The closure conditions 
are again as expected. However, this time compact perturbations do not 
suffice! Herrero goes on to find a third notion of n-multicyclicity with clo- 
sure agreeing with the rational case, but for which compact perturbations 
do suffice [86]. 

The nature of the multiplicity function is rather mysterious. Herrero 
and Wogen [110] studied the sequence fl(T ©) where T(•) denotes the di- 
rect sum of n copies of T. They construct examples such that •(T ©) = 
•(T *(•)) = 1 for all n >_ 1, answering a question of Apostol. Likewise they 
obtain the constant sequence 2. Taking T to be a power of a shift, a linear 
sequence {nk n >_ 1} can be achieved. The complete list known includes 
only a few more: {nk + 1In >_ 1}, {nk + 2 n >_ 1} and {k + 1,2k,3k,... }. 
Here are a few test cases. 

Problem. Is every constant sequence the multiplicity sequence of T © for 
some T? If •(T) = •(T ©) = •(T(a)), is the sequence constant? If this 
sequence is not constant, must it satisfy F(T(")) > n? 
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4. Quasisimilarity. 

4.1. Spectrum. Two operators A and B are quasisimilar if there ex- 
ist one-to-one dense range operators X and Y so that AX = XB and 
YA = BY. The range of X must be a dense operator range which is in- 
variant for A. Furthermore, the restriction of A to this linear manifold is 
algebraically equivalent to B. Similarly, A is algebraically equivalent to the 
restriction of B to a dense invariant operator range. This notion was intro- 
duced by Sz. Nagy and Foia• in their study of contractions. Quasisimilarity 
preserves the ezistence of non-trivial hyperinvariant subspaces. But it is a 
weak equivaJence relation that doesn't preserve much that we operator the- 
orists hold dear, such as the spectrum. On the other hand, the equivalence 
classes are large enough that it becomes possible to classify large classes of 
operators with a tractible set of invariants. 

Sz. Nagy and Foia• [•8] gave the first examples of quasisimilar op- 
erators with different spectra. A very easy example is given by using the 
n x n Jordan nilpotent blocks Jn. If $n is the invertible n x n diagonal 
matrix with diagonal entries n •-i, it is easy to see that $•-xJ,•$n = n -• J,•. 
Let 

n>l n>l 

and let 

Then it is an easy calculation to verify that AX = XB and YA = BY. 
Clearly B is quasinilpotent, but a(A) is the whole unit disc. 

Hoover [•7] showed that their spectra must intersect. To see this, 
consider the Rosenblum operator on B(7-t) given by •-(X) = AX - XB. 
The Rosenblum lemma states that 

cr('r) C or(A) - or(B). 

In paxticular, if a(A) and a(B) are disjoint, then r is invertible. But if 
A •,,q, B so that AX = XB, then there is a non-zero X in ker r, and thus 
the spectra overlap. Moreover, as Herrero pointed out, each component of 
a(B) meets a(A). For otherwise, there is an open set f• intersecting a(B) in 
a non-empty clopen set E, but is disjoint from a(A). Let E = Es(E) be the 
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Riesz spectra• projection onto the spectral subspace for B corresponding 
to E. We obtain A(XE) - (XE)(BI•;•). The Rosenblum lemma again 
implies that XE = 0, which is absurd since X is injective and E is non- 
zero. 

One cannot do the same trick in the Calkin algebra because the in- 
tertwining operator X m•y be compact. Nevertheless, Herrero [99] showed 
recently that: 

Theorem. If A t',Oqs B, then every component of rye(A) meets rye(B) and 
vice versa. 

The key to this theorem is the result on n-multicyclic operators. In 
order to indicate the connection, let's review a few simple properties of 
quasisimilarity. 

If AX - XB, then it follows easily that r(A)X - Xr(B) for every 
rational function r with poles off a(A)U a(B). In particular, X maps 
ker (B - •/I) into ker (A- •/I), whence nul (B- •/I) _< nul (A- •/I). 
Reversing the role of A and B yields equality. By taking adjoints, we see 
that A* B*, so that nul (B - •/I)* - nul (A- •/I)* Thus, if both 
A - •I and B - •I are semi-•edholm, then they have the same index. 

Various other properties are preserved by quasisimilarity, such as be- 
ing triangularizable or being n-multicyclic. To see the latter, note that 
if 

• = span {B•x•l 1 _< i < n, k _> 0}, 
then {yi -- Xxil 1 < i < n} is an n-cyclic set for A; and vice versa. 

Now let us return to the problem of intersecting essential spectra. As 
before, if a,(B) has a component disjoint from a,(A), there is a clopen 
subset E of a,(B) separated by an open set f• from a,(A). One can arrange 
that the boundary I' = 0f• is a finite set of nice smooth curves disjoint from 
a,(A)Oa,(B). So both A-?I and B-?I are k-'redholm on I' of equal index 
and nullity (which can be taken to be locally constant). Now ind (A- AI) 
is constant on f•, and nul (A- AI) is constant except on a countable set 
disjoint from I'; so in fact they are both constant on all of I'. 

The important special case to consider is: 

-ind(A- AI) = nul (A- AI)* = -ind (B- AI)* = nul (B- AI) = n > 0. 

Pick p on the boundary of • (the polynomial convex hull of f•). Choose n 
vectors fi = Xei in the (dense) range of X which span a complement to 
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Ran (A- AI). Set 
2M = span {B•ei I _< i <_ n,k •_ 0), 

and 

iV'-- spa• {Ak fil l _< i _< n,k >_0}. 
Let A0 = AIAf and B0 = BIJM. Then A0 and B0 are quasisimilar, are both 
multicyclic of order at most n, and ind A0 -/•I = -n. Hence they both 
have multiplicity exactly n, and the component of rre(Ao) containing F is 
simply connected! In particular, ind (A0 - ?I) = -n for all ? • F. 

Now let A1 be the compression of A to Af ñ. It follows that A• is 
invertible on F and is quasisimilar to the compression B1 of B to JM 
Retracing all the hypotheses, we find that the Riesz spectral projection 
EA• (•) is finite rank, whence the same must follow for EB• (•). This in 
turn implies that B has no essential spectrum in •, contrary to fact. 

4.2. Jordan forms. Let us look at a case for quasisimilarity as a useful 
way of classifying certain operators. In [•2], Apostol, Douglas and Foiaq 
show that nilpotent operators can be classified up to quasisimilarity by 
their 'Jordan forms'. Herrero and I [106] extended this result to the largest 
possible class. The Jordan operators we consider are all operators which 
direct sums of the basic building blocks XIn + Jn where Jn is the n x n Jordan 
nilpotent matrix. We allow up to countably many eigenvalues provided they 
remain bounded; and for each eigenvalue, it is permissable to have blocks 
of all sizes, repeated as often as desired. 

Recall that in finite dimensions, the Jordan structure of a matrix T is 
determined by the dimensions nul (T - XI) k. Indeed, 

nul(T - AI;k):- dim (ker(T - AI)U/ker(T - )•Z) k--l) 
equals the number of Jordan blocks of T for the eigenvalue A of size at least 
k. The number of size exactly k is 

nul (T-•I;k)- nul (T-AI;k+i). 
In infinite dimensions, we can use these numbers to define the Jordan form 
J(T) of T whenever T has a sufficient set of eigenvalues. The only problem 
lies in defining oo - oo, which we define to be oo. 

The first thing to notice is that Jordan operators are triangularizable, 
as are their adjoints. That is, they are bitriangular. Since triangularity is 
preserved by quasisimilarity, any quasisimilar operator is also bitriangular. 
Our theorem states: 
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Theorem. Every bitriangular operator T is quasisimilar to its canonical 
Jordan form J(T). Two bitriangular operators S and T are quasisimilar if 
ana only i• •ul (s- hi; k) = •ul (T- hi; •) for o11 • e C ana • > •. 

The beauty of this theorem lies in the very simple invariants that de- 
termine the quasisimilarity class. Bitriangular operators turn out to be the 
appropriate analogue in infinite dimensions of finite rank operators from 
many points of view. For example, the diagonal entries of any upper tri- 
angular form for T will be the point spectrum of T including multiplicity; 
and the point spectrum of T* is the conjugate of the point spectrum of T, 
again including multiplicity. To see this, put T in upper triangular form 
with diagonal elements d(T). It is an easy vector calculation to show that 

But as T* is also triangular (with respect to a different basis), we conclude 
that 

•(•*)* = a(•) = a(•*)* = •(•). 

One can keep track of multiphcity, and one can with little more effort show 
that 

•l ((•- x•)*; •) = •l(• - xz); •). 

The key to the Jordan form theorem lies in another aspect of the very 
special form of bitriangular operators. They are all similar (via [-]- small 
trace-class) to 'staircase' operators; i.e. operators of the form 

ml B1 

D• A2 B2 
C• 
D• A3 B3 

C• 

where all blocks in sight are finite dimensional, and missing entries are O. 
Indeed, this form makes it very clear that the operator is both upper and 
lower triangular with respect to two intertwined sequences of subspaces. 
One really nice aspect of this representation is that large segments of the 
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matrix can be compressed into a single block without changing the staircase 
appearance. This makes manipulation of these operators rather tractable. 
It also makes a huge number of invariant subspaces stand out in a very 
useful way. 

4.3. The Unilateral Shift. A description of the set of operators qua- 
sisimilar to the unilateral shift S has proven to be an elusive problem. 
Since S is cyclic (•(S) = 1), any operator T --qs S is also cyclic. Hence ind 
(T- ,XI) >_ -1, and components of index -1 are simply connected. Now 
S - ,XI is always injective, and (S- ,XI)* is injective for IXl > •. Thus the 
same holds for T. So any point in a(T)kD must belong to atre(T). On 
the other hand, D must belong to a(T). Hence de(T) contains T. Eyom 
above, every component of a•(T) must intersect T, and therefore a•(T) is 
connected. (Now the simple connectedness of the components of D\a•(T) 
is assured.) The EYedholm index of T- ,XI must be-1 for ,X C D\a•(T). 

The Similarity Orbit Theorem shows that we have just described $(S). 
That is, the closure of the similarity orbit of the shift consists of all operators 
T such that (i) a•re(T) is connected and contains T, (ii) a(T) = a•(T)UD, 
and (iii) ind (T- ,XI) = -1 for all ,X C a(T)ka•(T). A simpler question 
than a ' description' of the operators quasisimilar to S is whether all of these 
spectral pictures occurs for some operator quasisimilar to the shift. 

This is indeed the case. Agler, Franks and Herrero [124] prove: 

Theorem. Let T be a biquasitriangular operator such that a(T) = a•(T) 
and a(T) tO T is connected. Then given e > 0, there is a compact operator 
K with IIKII < such that 

S©T+ K ,,•qs S. 

This leaves a natural open problem: 

Problem. Suppose that T 6 $(S) and e > 0. Is there a compact operator 
K with IIKII < e such that r- K ,,,q• S ? 

5. Quasidiagonality. Not everything Herrero worked on was invariant 
under similarity. Many interesting classes of operators are unitarily invari- 
ant but not similarity invariant. One very important class is the set of 
quasidiagonal operators, which, according to Herrero [51], 'abhors similar- 
ities'. Recall that T is quasidiagonal if it there is a sequence Pn of finite 
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rank projections increasing to I such that 

lira [P,•T- TP,•[ = O. 

This is precisely the closure of the block diagonal operators, and every qua- 
sidiagonal operator is the sum of a block diagonal operator and a small 
compact operator. 

The main problem that stimulated a lot of work on approximation of 
quasidiagonal operators was posed by L. Williams [•12]: If T is quasidiag- 
onal and is also a limit of nilpotent operators, is T the limit of quasidiagonal 
nilpotents ? 

Williaxns speculated that the answer was no. However, Herrero wrote 
several papers [51,53,68] proving special cases in an attempt to prove it 
true. It turned out to be false, and Herrero's counterexample [80] is very 
interesting because it uses the trace to obtain a norm estimate for operators 
on infinite dimensional space. Let 

[' '] T= 0 H , 

where H is a diagonal operator with a(H) = [0, 1]. If we write H -- 
diag(( hn }), then it is easy to see that 

T• • 0 hn 
n•l 

and hence is block diagonal. Since or(T) = [0, 1], T satisfies the hypotheses 
of Theorem [AFV] and hence is the limit of nilpotents. 

Now suppose that N is a quasidiagonal nilpotent within e of T, and 
let Pk be a sequence of finite rank projections assymptotically commuting 
with N. For large k, [[[T, Pk]][ < e. Writing P• as a 2 x 2 matrix 

one obtains 

II[%,T]11 = X*(Z-H) X*+[Y,H] < 
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It follows that X is small, and W -Y is small. So Pk is close to a projection 
of the form 

0] Qk = R& ' 
/?tom the upper-semicontinuity of the spectrum, spr (PkNPk) tends to O. 
Thus 

lira < lira spr(PkNP•) = O. 

On the other hand, 

Itr(QkNQk)l > Itl'(RklRk)l 1 
tr(Qk) - 2tr(Rk) 2 

These various estimates are incompatible. 
All is not lost. Two problems pop up like the heads of a hydra to 

replace the old one. 

Problem. Is every quasinilpotent quasidiagonal operator the limit of qua- 
sidiagon al nilp ot en top erat ors ? 

Herrero [53] shows that any quasidiagonal quasinilpotent operator of 
the form Q © N (•), where N is a nilpotent matrix, is indeed the limit 
of quasidiagonal nilpotent operators. The extra 'room' provided by the 
nilpotent suminands seems to help a lot. Such has proven to be the case 
in similarity invariant problems. In that context, Voiculescu's Weyl-von 
Neumann Theorem [•10] is a powerful tool. In the operator theory context, 
this theorem says that if p is a representation of C*(•r(T)), then 

2 2 ß (øø). 
In the quasidiagonal context, this is likely to be useful only if p(•r(T)) is 
quasidiagonal and p is faithful. Herrero posed the question: is this always 
possible? He pointed out that if it is true, then there is an affirmative 
answer to this problem. Unfortunately, that is not the case. Wasserman 
[•11] has constructed a counterexample. 

There is another way to settle this problem atfirmatively. It requires 
estimating the distance to the nilpotent matrices of order k (or even k/4) in 
terms of the quantity IlTkl[ x/k This is a problem about matrices, but the 
estimates must not depend on the dimension of the space. Such an estimate 
was shown to be valid in infinite dimensions by Apostol and Salinas [•4]. 

The other way of modifying the problem is: 



468 KENNETH R. DAVIDSON 

Problem. Is every quasidiagonal operator the limit of quasidiagonal Mge- 
braic operators? 

This second question is based on another theorem of Voiculescu 
[•:9]: The closure of the algebraic operators consists of all operators such 
that ind (T - ,kI) = 0 for all ,k • ps-F(T). This class clearly contains all 
quasidiagonal operators. Herrero, Salinas and I [103] obtained the following 
partial result: 

Theorem. Suppose that T is quasidiagonal, and there is a unitM, qua- 
sidiagonal representation p of C*(•(T)) such that a(p(•r(T))) = ae(T) has 
connected complement. Then T is the limit of quasidiagonal algebraic op- 
erators. 

In spite of Wasserman's counterexample, the hypothesis concerning p 
is frequently satisfied. It holds whenever C* (T) is contained in a nuclear 
C*-algebra. It also holds when T has a normal summand M with ae(M) = 
a• (T). So in particular, T • M satisfies the hypotheses. The proof of this 
theorem relies heavily on a finite dimensional approximation result that we 
were able to prove only by applying some very big infinite dimensional guns 
- namely, isometric dilations (very infinite) and the quantitative version of 
the Brown-Douglas-Fillmore Theorem that Berg and I proved [•5]. It is our 
feeling that a better proof of this lemma (meaning a truly finite dimensional 
proof) would allow one to drop the condition that the spectrum be simply 
connected. 

6. Final Remarks. I have had to leave out a lot more than I put in. 
Herrero did a lot of work on quasitriangularity and related notions, and 
was fascinated by triangular operators. Together with Fialkow, he worked 
on derivations. He spent a lot of energy studying the class of.finite operators 
introduced by J. Williams. Like most operator theorists, he sought invariant 
subspaces and found some. Recently, he did some very pretty work on 
hypercyclic operators, which shows that many bounded linear operators 
exhibit peculiar chaotic behaviour. 

There are perhaps two glaring omissions. Herrero (and independently 
Voiculescu) developed an analogue of Rota's model for operators with mul- 
tiply connected spectrum. This really belongs in the section on similarity, 
and indeed it is lurking in the background. The other is Herrero's emphasis 
on compact perturbations. This is a very important aspect of much of this 
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approximation theory. Whenever one can obtain some nice form after a 
small perturbation, ask yourself if it could also be a compact perturbation. 
If there is no obvious obstruction, it is worth the effort to try to get the 
stronger result. This plays a recurring theme throughout Herrero's work. 
Plus there are various results outside the tight area I have concentrated 
on here. For example, a favourite of mine is his characterization of those 
operators which are unitarily equivalent to a (small) compact perturbation 
of some operator in a fixed nest algebra. 

I offer the excuse of limited space for glossing over so much. Never- 
theless, I hope that I have convinced you that Herrero has played a central 
role in several important developments in operator theory of the past two 
decades. I will miss that package containing three or four more Herrero 
papers that used to arrive in my mail box every six months like clockwork. 
I will miss his incomprehensible multi-lingual jokes that he always had to 
translate for me. I will miss the humour and passion of a man that I was 
proud to call my friend. But I will not forget him, and I know that his work 
will outlast us all. 
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