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Introduction. An operator T in the algebra B(7g) of all bounded linear 
transformations on a complex separable Hilbert space is called triangu- 
lar if 7g has an orthonormal basis {en} with the property that Ten • 
span {ex,... , en} for each n. This class of operators has a rich structure, 

and the reader is referred to the recent survey article of the first author 
[H3] for properties of triangular operators and an extensive reference list. 
An interesting subclass is the class of bitriangular operators studied in 
[DH]. An operator T is called bitriangular if both T and T* are triangu- 
lar, perhaps with respect to different orthonormal bases. In this article we 
introduce a natural generalization of triangularity which we call semitrian- 
gularity which was motivated by the construction of some counterexamples 
to problems in single operator theory and operator algebras by the third 
author in [W2]. 

Let A denote the class of all triangular operators, and let (BA) denote 
the class of bitriangular operators. If $ • B(7g), let us call a vector x • 7g 
an algebraic vector for $ if there is a nonzero polynomial p(t) for which 
p(S)x = 0. Then x is algebraic for S if and only if the cyclic subspace for 
S determined by x is finite dimensional. Let œs denote the .set of algebraic 
vectors for $. Then œs is a linear space: if xx,x2 • œs there are nonzero 
polynomials px(t),pe(t) such that pi(S)xi -- 0, and so setting p = p•P2 
we have p(S)(x• + x2) = 0, showing that x• + x2 • œ$. We note that 
in our terminology, a well-known theorem of Kaplansky [K] states that S 
is algebraic (i.e., satisfies a nontrivial polynomial identity) if and only if 
œ$ = 7g. If S • /X it is clear that œ$ is dense in •. Conversely, if œ$ is 
dense then 7g is the closed span of finite-dimensional invariant subspaces 
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for S so an elementary argument shows that'S is triangular. This gives a 
coordinate-free description of A. In [DH] a useful stronger coordinate-free 
description of A was exploited: S E A if and only if 

span {ker($- A)k: A E C,k- 1,2,...} 

is dense in 7/. 

We win define an operator T to be semitriangular (SIX) if [œT] has 
finite codimension in 7/. (Here [-] denotes closed linear span.) Equivalently, 
T is semitriangular if T is an extension of a triangular operator by a finite 
rank operator. We call the codimension of [œT] the index of semitrian- 
gularity of T and denote it is•x(T). It is equal to the minimum possible 
dimension of the Hilbert space on which T22 acts in a representation of T 

with T• triangular. 
We will see that semitriangular operators may display properties much 

different from those of triangular operators. With one exception the coun- 
terexamples constructed in [W2] are semitriangular. While some (but not 
all) of the questions that were settled in [W2] can be settled with triangu- 
lar counterexamples, (see [LW1]), others remain open for the class A. In 
this article, along with the development of structural properties of the class 
($A), we give some new results for the classes A and (B A). We also discuss 
some open questions. 

This paper is organized as follows. In Section I we give some elemen- 
tary results, examples, and exposition to illustrate some fundamental dif- 
ferences between properties of the classes of triangular and semi-triangular 
operators. Our main section is Section 2 where we consider several exten- 
sion properties. We describe the triangular operators which arise as the 
restriction of some T e (SA) to the invariant subspace [œT], we consider 
the structure of restrictions of T to invariant subspaces of finite codimen- 
sion, and we define the class of bi-semitriangular operators (BSA) and 
derive some of its elementary properties. In Section 3 we show that ev- 
ery bitriangular operator T has a cyclic cornmutant. It follows that 
the weakly closed algebra generated by T, has a separatiug vector. (A 
separating vector for a linear space of operators $ is a vector x for which 
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the map S --• Sx, S • ,S, is injective.) We give an example to show that 
the cornmutant of a triangular operator need not be cyclic. We conclude 
with a discussion of some open questions for the classes A, (BA), (SA) and 
(BS/X). 

1. Some Comparisons. We will comment on several results and ex- 
amples to illustrate that semi-triangular operators can behave differently 
from triangular operators (see also [LW2]). We begin with a simple (but 
apparently new) result. 

Proposition 1.1. If T • A, then 

Proof: First note that YV(A) - {A}'N Alg Lat A = {A}" N Alg LatA = 
{A}" if A is algebraic (cf. lB, p. 74]). Then fix ,k • C,n > 0, and let 
g/[ = ker (T- ,k) •. Then g/[ is hyperinvariant for T, and is algebraic. 
Thus if S • {T} t f3 Alg Lat T, then 

SI• E {TI•}'• Alg Lat (TIM) . 

Hence S • = p(Tl• ) = p(T)l• for some polynomial p. If R E {T}', then 
RI• and $ • commute. So since 7-/is the closed span of subspaces of the 
form ker(T- X) n the operators R and S commute. So $ e {T}". Thus 
{T}' fq Alg Lat T C {T}" • Alg Lat T. But the reverse inclusion always 
holds, since {T}" C {T}'. [] 

The above proposition fails for semitriangular operators of index >_ 2, 
as shown in [W2]. It remains an interesting open question whether it holds 
if the index is one. (See [LW2].) 

We now consider a density property that the predual A, of a dual 
algebra A can have. Let Cx (7-/) denote the ideal of trace class operators on 
7-/ and identify/3(7-/) with (C1(7-/))* via the pairing (A,f) := Tr(Af). A 
dual algebra is a unital w*-closed subalgebra of/3(7-/). It can be identified 
with the dual space of A, := Cx(7-I)/Añ in the standard fashion, where 
•42. denotes the preannihilator of •4 in C• (7/). The algebra (or more gen- 
erally, w*-closed subspace) A is called elementary [A] if each coset in A, 
has the form f + Añ with f of rank 1 or 0. We will say that A is ap- 
proximately elementary if the set of such "rank-one" elements of A, (those 



480 D. A. HERRERO, D. R. LARSON AND W. R. WOGEN 

of the form f + Añ with f of rank 1 or 0) is dense in A, in the quotient 
topology. For many operators T, •2(T) is elementary. In [HN] an operator 
was constructed for which W(T) is not elementary. It is not hard to see 
that it is approximately elementary. In [W2] the first example was given 
of an operator T such that •2(T) is not even approximately elementary. 
This answered negatively a question of the second author. The example in 
[W2] can be taken to be semi-triangular of index 2. If T is an operator for 
which W(T) is not approximately elementary, then T cannot be triangular, 
and •2(T) cannot have a separating vector. (In fact, it is an open question 
[LW2] whether T ß A implies that W(T) has a separating vector.) 

The following two observations have been known for some time. For 
perspective, and completeness, we include them here. 

Proposition 1.2. Let ,$ C_ 13(7/) be a w*-closed ]ineax subspace. IfS has 
a separating vector x, then ,$ is approximately elementary. 

Proof: Let 6 :- {x©y* +,$ñ 'y ß 7/). (Here x©y* denotes the operator 
w --, (w,y)x.) Then 6 is a set of "rank-l" elements of S, that is cleaxly 
a linear space. We claim that 6 is dense in S,. Indeed, if not then there 
is a nonzero element of ($,)* -- $ which annihilates 6. Call this S. Then 
Tr($(x © y*)) - 0 for all y ß H. That is, (Sx, y> - 0 for all y ß H. But 
this implies Sx - 0. So $ = 0, a contradiction, since x separates S. [] 

Proposition 1.3. /fT ß A then W(T) is approximately elementary. 

Proof.' Suppose that {e• is an orthonormal basis which triangularizes 
T. For e•ch n •_ 1, let P• be the projection of 7/onto JP[• := [e•,... e•]. 
Let g ß C• (7/). Since P•gP• -. g in trace class norm, it will suffice to show 
that P•gP• decomposes 

= + 

where rank F• _• I and H• ß (W(T))ñ. Let g• - P•g •. Since T[• is 
an operator on a finite dimensional Hilbert space, W(T[•) is elementary. 
Hence g• = f• + h• for some f• ß /•(.A,t•) of rank _• I and some h• ß 
FV(T[•)ñ. Let F• - f•0 and H• - h•0 in JPg•A,t•. Then 
P•gP• = F• + H• and rank F• _• 1. If A ß W(T) then since .•4• ß Lat T 
we have P•A[• ß W(T[•), so 

= 
= Tr(P.A •4. ß h,•) = 0 
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showing that Hn ß (]/V(T))ñ as required. [] 
We now briefly discuss a strong notion of cyclicity. Recall that an 

operator T ß /•(7-/) is called strictly cyclic, with strictly cyclic vector x, 
if ]4](T)x - 7-/. The main result of [H1] is that no triangular operator 
on an infinite dimensional Hilbert space can be strictly cyclic. (There are 
lower triangular strictly cyclic operators; namely, certain weighted shifts.) 
However, as also noted in [H1] there are strictly cyclic operators T which 
are finite dimensional extensions of triangular operators. So these are semi- 
triangular in our present terminology. In fact we can choose T so that 
is•x(T) = I and T][e•] is diagonal, hence bitriangular. 

Example 1.4. Let x -- (1, 1/2, 1/3,...) ß e 2 and let D be the diagonal 
operator on t2 with x as its diagonal sequence. Then 

in/•(œ2 G C) is strictly cyclic. In fact the vector eoo= 0 G 1 in œ2 • C is a 
strictly cyclic vector. To see this, first observe that 

T'•+•eoo - (D'•x) • 0 

for n •_ 0, and that span {D'•x ß n - 0, 1,... } is dense in 7-/. This shows 
that eoo is (topologically) cyclic for T. Then verify that 

p(T)[[ _• (1 q- 

for all polynomials p(t), using the special form of D and x. 
For this, write p(t) -- a q- q(t) with q(0) - 0, and compute 

p(r) = (p(? w) a 

where w - (q(1),q(1/2),...) • •2. Then p(T)eoo - w • a, so lip(T)[[ _• 
lip(D)[[-b [[p(T)eoo[[. Also, [[p(D)[[ _• a[ q- [[q(D)[[ _• [a[ q- [[w[[ _• 
x/r• ß v/[a 2 -b [[w[[ 2 - x/•' p(T)eoo . Thus [p(T)[[ _• (1 q- x/•)-[[p(T)eoo[[. 
This implies that the continuous map 0 ß A H Aeoo from the norm closure 
of the polynomials •P(T) in T into 7-/ is bounded below. So since it has 
dense range, it must be surjective. Thus x is strictly cyclic. 
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2. Extensions. In this section we consider finite and infinite dimensional 

extensions of triangular and semitriangular operators. If T is an algebraic 
operator then any finite dimensional extension of T is algebraic, hence in 
A. We establish a strong converse implication: if T is triangular and not 
algebraic then there is a one dimensional extension of T which is not tri- 
angular. (Hence it is semitriangular of index 1.) The methods we use 
in proving this generalize with no real dif[iculty to extensions of arbitrary 
dimension. Theorem 2.7 (and Corollary 2.8) show that semitriangular op- 
erators of arbitrary index are plentiful. Some finer extension and restriction 
results are then proven. Finally, the class of bi-semitriangular operators is 
considered and analogous results are proven. 

Lemma 2.1. Let A e B(T/),B e B(/C, 7/) and 

in B(7-I © IC). Let x • 7-I and y • IC. Then 
(i) x © O • œs ff and only ff x • œA. 
(ii) If y • O, then x © y • œs if and only if Ax + By • GA. 

Proof: Item (i) is clear. For (ii), suppose that p is a polynomial and write 
p(t) = a + tq(t), where q is a polynomial. Then 

p($) = (aI q- q(A)A q(A)B ) 0 aI ' 

If y • 0 and p(S)(x © y) = 0, then a = 0 and q(A)Ax + q(A)By = 0, so 
Ax + By • œ•. Conversely, if Ax + By • œ•, there is a polynomial q so 
that q(A)(Ax + By) = 0. Hence Sq($)(x © y) = 0 and x © y e œ$. [] 

Lemma 2.1 has the following immediate corollary. 

Corollary 2.2. With the notation oœ Lemma 2.1, œs C_ 7-I © 0 if and only 
if B is injectire and (ran B) Cl (œA + ran A) = {0}. 

Corollary 2.3. With the notation of Lemma 2.1, suppose also that A • 
A. Then S • A if and only if there is a dense subspace ICo of IC with 



SEMITRIANGULAR OPERATORS 483 

B/Co C_ œA + ran A. In particular, if 1C is finite dimensional, then $ • A if 
and only iœ ran B C_ œA + ran A. 

Proof: Since A e A, we have [œA] = 7/ and 7/© 0 C [Es]. Thus S e A if 
and only if the projection of Es onto 0 ©/C is dense in 0 ©/C. Now apply 
Lemma 1 (ii) to complete the proof. [] 

Lemma 2.4. Let T • B(7/). Then 
(i) œT -[- Fan T -- UkCW__l ker(T k) + ran T. 
(ii) Iœ œT + ran T has finite codimension in 7/, it is closed. If 

œT+ ran T does not have t•nite codimension, it is contained 
in an operator range oœ infinite algebraic codimension in 7/. 

Proof.' We will show that 

U Fker(T k) C œTCU•ker(T k)+ranT 

from which (i) follows. The inclusion U• ker(T k) C œT is clear. For the 
second inclusion, it is enough to show that if x • ker (T- A) k for some k •_ 1 
and some A • 0, then x 6 ran T. But if (T- A)•x - 0, then (e.g., using 
the Binomial Theorem) x - Tq(T)x for some polynomial q. So x • ran T. 

To prove (ii), let P• be the orthogonal projection onto ker (T•). Then 

ran T = UF( + ran T). 

By [FW], 
ran Pk + ran T - rany/TT * + Pt`. 

(More generally, Theorem 2.2 in [FW] states that if A,B • B(7/), then 
ran A + ran B = ranv/AA * + BB*.) If œT + ran T is proper, then for 

all k _• 1, ranv/TT * + P• is proper, so that 0 e cr(TT* + P•). 
There are two cases to consider. If 0 • c%(TT* + P•) for some k, then 

ran v/TT * -F Pt,. = ran T + ran P• 

has finite codimension in 7/. Hence there is a k0 so that 

ran T + ran Pk = ran T-F ran P•o for all k _• ko. 
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Thus œT + ran T = ran Pko + ran T is an operator range of finite codi- 
mension. It follows easily (see [FW]) that œT + ran T is closed. 

In the remaining case, 0 • ctc(TT* + Pk) for all k >_ 1. Let Bm -- 
•7•k%1 2-kPk for each m >_ 1 and let B = •o 2_•pk. Then 

ranT+ ranBm= ranT+ ranPm 

has infinite codimension, so that 0 E •c(TT* + B2•) for all m >_ 1. But 
{TT* + B2m} converges in norm to TT* + B 2, so by upper semicontinuity of 
ct,, 0 • ct,(TT* + B2). Let ;kl = ran T + ran B. Then jkl is an operator 
range of infinite codimension, and ran Pm C ran B for all m _> 1, so 
œTd- ran T C Y•A. [] 

For ,k • C and T • B(7-{) note that œT-• = œT- We next characterize 
points in Oct(T) for which œT + ran (T- ,k) = 

Lemma 2.5. Let T • B(?'•') and suppose ;k • Ocr(T). Then œT+ 
ran (• - •) = • it •na on•y it • is an isobted point or ct(•) for which 

(T-;k)P• is nilpotent, where P• is the Riesz idempotent /'or T corresponding 
•o {•}. 

Proof: Suppose that A satisfies the right hand side of the equivalence. (If 
in addition P• is of finite rank• then A is ca]led a normal eigenvalue. See 
[H4, p. 5].) Then P•T/ C œ• and (I-P•)T/ C ran(T-A), so • - 
œ• + ran (T- •). 

For the converse, assume A • (;qct(T) and that œT d- ran (T- 
It wi]l suffice to find • • LatT,• • 0, so that the matrix ofT- 
relative to the decomposition T/- • • • ñ has the form 

o ' (*) 

with N nilpotent and S invertible. First note that since ,• is in the boundary 
of ct(T), T- ,• is not surjective. From this, Lemma 2.4(i) implies that 
ker (T- ,•) :• 0. Again, by Lemma 2.4(i), 

• = uV (ke,:(•- ,X) '• + ,:• (•- ,X)). 

Each subspace 
ker (T- ,k) k d- ran (T- 
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is an operator range and hence an F. set. So an application of the Baire 
Category Theorem shows that 

• -- ker(T-/k) m q- ran (T-/k) 

for some m • 1. 

Let Y• = ker(T- •)'• and write T- • in the form (,). Then N is 
nilpotent as required, and we claim that S is invertible. It is easy to see 
that S is surjective. If S were singular, then (since er(T- 
we would have a(S) = er(T- •). But then 0 • Ocr(S), contradicting the 
surjectivity of $. [] 

It T is algebraic, then ST = 7ff so of course 7ff = ST + ran (T - ,k) for 
all ,k. We now prove a strong form of the converse. 

Corollary 2.6. IfT e B(TI)emdifT•= ST+ r• (T-A)fora11A e Oa•(T), 
then T is algebraic. 

Proof: First note that if A e Oa(T) but A • Oa•(T), then • = ST + 
ran (T - A) by Le•a 2.5. Thus our hypothesis implies that in fact 

ST+ r• (T- A) for aHA e Oa(T). ByLe•a 2.5, each A e Oa(T) is 
isolated in a(T), so a(T) is finite. Again by Le•a 2.5, each restriction 
(T - A)lP is nilpotent, so T is algebr•c. 

We consider the effistence of se•tri•gular extensions of triangular 
operators. 

Theorem 2.7. Let T • B(•) be tri•I•. The following statements are 
equivalent. 

(i) T is not algebr•c. 
(ii) For some • e Oa•(T), there is a Z e B(C, •) so that the 

operator 

o 

in B(• • C) satisfies is• (A) = 1. 
(iii) For some 

B(CP,•) so that the operator 
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(iv) 
in B(7-l • C p) satisfies is• (A) = p. 
For some X ß Ode(T), there is a Z ß 13(7-l) so that the 
operator 

in B(7-l • 7-l) is not semitriangular. 

Proof: It is clear that each of the conditions (ii), (iii), and (iv) imply that 
T is not algebraic. Conversely, suppose (i) holds. Then by Corollary 2.6, 
there is a), ß Oae(T) withœr+ ran (T-X)•- •. The set œr+ ran (T-X) 
is dense in 7-/, so it follows from Lemma 2.4(ii) that œr + ran (T-)•) has 
infinite algebraic codimension in 7-/. Thus for each p >_ 1 we may choose 
Zp ß B(CP, 7-/) so that Zp is injective and 

( z)n + (r- x))= {0}. 

Let 

T-), Zp) S := 0 0 

in B(7-/• CP). By Corollary 2.2, isa(S) = p, so isa(S +)•) = p, proving (ii) 
and (iii). To prove (iv), we apply Lemma 2.4(ii). There is a dense operator 
range 2M of infinite algebraic codimension with œr + ran (T - )•) C 
By [FW] there is a unitary operator U so that 2M r3 UiM = {0}. Choose 
Z ß B(7-/) so that Z is injective and ran Z = UiM. Corollary 2.2 shows 
that 

is not semitriangular. 

Finally, it is useful for perspective to express the results of Theorem 
2.7 in an alternate way. 

Corollary 2.8. Let T • B(7-I). The following statements are equivalent. 
(i) T is algebra/c. 
(ii) Every finite dimensional extension of T is triangular. 
(iii) Every finite dimensional extension of T is algebraic. 



SEMITRIANGULAR OPERATORS 487 

(iv) Every extension oft by a triangular operator is triangular. 
(That is, whenever 

o 

in B(7/ © 1C) and S is triangular, then A is triangular.) 

Proof.- The only part of the proof that is not immediate from Theorem 2.7 
is that (i) implies (iv). But if T is algebraic, then 7/©0 C GA. Thus clearly 
œA = 7/© œs, and so A is triangular. [] 

It is now a simple matter to extend Theorem 2.7 as follows. 

Corollary 2.9. If T E 13(7/) is semitriangular with iszx(T) = n, then T 
has a one-dimensional extension A with iszx (A) = n + 1. 

Proof: If 7/0 = [œT], then 7/5 • has dimension n. Relative to the decompo- 
sition 7/= 7-/0 © 7/5 k we have 

Also, œT = Ga. Choose/• e a(C) = ap(C) and choose e e 7/oX,e •: 0, so 
that Ce =/•e. If To = T[•o$[e], then To has the form 

0 ' 

and iszx(To) = 1. By Lemma 2.1, y • œ• + ran (A-/•). Since A is tri- 
angular œ• is dense. From these two facts Lemma 2.4(ii) implies that œ•+ 
ran (A -/z) is contained in an operator range d•4 of infinite algebraic codi- 

mension in 7/0. Thus œT + ran (T -/•) has infinite algebraic codimension 
in 7-/. So choose Z E B(C, 7/) with 

ran Z f• (œT + ran (T - •u)) = {0}. 

Let 

R • (o 
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in B(7-/© C). By Lemma 2.1, œn = ST = œA, so is/•(R) = n + 1. [] 
We now consider a converse to Theorem 2.7. If T is semitriangular, 

what ca• be said about the restrictions of T? Since every strict contraction 
is the restriction of a triangular operator (namely, the backward unilateral 
shift of infinite multiplicity) we must impose some conditions on the restric- 
tions of T. We need the following lemma. 

Lemma 2.10. If œ is a linear manifold in 7-I with the property that [œ] 
has finite codimension n in 7-l, and if.A4 is a closed subspace of 7-I of finite 
codimension m in 7-l, then 

n - m _• dim (M © [œ n M]) •_ n. 

Proof: The key to the proof is that .M n [œ] = [M n œ]. To show this, let 
P be the orthogonal projection of 7-/ onto A/I x. Then Pœ has dimension 
k <_ m. Thus there is a subspace U = [Ul, u2,... , uk] C œ so that PU = Pœ. 
For each x ß œ, we can find u ß • with Px = Pu. Thus x - u ß œ n M and 
œ = (œnM)+Lt. Hence [œ] = [œnM] +Lt. The intersection •nM = {0}, 
so 

[œ] n M = ([œ n M] + u) n M = [œ n M]. 

Since 

Now 

Me[œnM] = Me([œ]nM) 

= ([œ] n M) ñ 
= (œñ+M ñ)GM ñ. 

n=dim œñ_<dim(œñ+M ñ)_•m+n, 

we see that n - m <_ dim (.M • [.M FI œ]) <_ n. [] 

Corollary 2.11. Let T ß 13(7-l) be semitriangular with isa(T) = n, and 
suppose JM is an invariant subspace /'or T of finite codimension m in 7-l. 
Then T[• is semitriangular and 

max{O,n - m} _< isa(Tl.•) <_ n. 

Proof: First observe that œTI• = ST n M. Now apply Lemma 2.10, with 
œ = ST. [] 
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A speciM case of Corollary 2.11 states that the restriction of a trian- 
gular operator to an invariant subspace of finite codimension is triangular. 
Also, it is well-known (cf. [H3]) that the compression of a triangular opera- 
tor to the orthogonal complement of an arbitrary (no dimension restriction) 
invariamt subspace is triangular. The same is true for a semitriangular op- 
erator. The reason for this is the following. 

Lemma 2.12. Let T • B(7-l) be arbitrary, and let P • Lat T be arbitrary. 
Then 

P•œT C_ œp•_TiP•_S. 
Proof: Let x S œT and let q(t) be a nonzero polynomial with q(T)x = O. 
Then Pñq(T)x = 0. So since Pñq(T) = Pñq(PñTPñ)P ñ, it follows that 
Pñx • œPZTiPZH. [] 
Corollary 2.13. Let T 6 (SA) and let P 6 Lat T. Then PñTIPñH 6 
(SIX) and is•(PñT[PñH) _• is•(T). 

Proof: If the codimension of [œT] in 7/is n then the codimension of [Pñ œT] 
in Pñ7/is < n. [] 

Let us call an operator T bi-semitriangular (BSIX) if both T and T* 
are semitriangular. This is closely related to bitriangularity. First note that 
if T is semitriangular and TI[œ•. ] is bitriangular, then T* is triangular. To 
see this fact, simply write 

0 B 

in B([œT] © Af) with dimJV' < oo and A bitriangular. Then 

in B(Af • [œT]), where B* is finite-dimensional and A* is triangular. So by 
Corollary 2.8, T* is triangular. Next note that if T• and T2 are arbitrary 
operators then œT•$T• = œT• © œT•. Indeed, for each polynomial p(t) and 
for each vector x2 we have p(Zl Z Z = 
yielding "C", and conversely, if xi • œ2q choose nonzero polynomials qi(t) 
with qi(Ti)xi = 0 and note that if q = q•q2 then q(T1 © T2)(Xl © x2) = 0, 
yielding "_D". A consequence of this second observation is: 
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Lemma 2.14. If T• and T2 are semitriangular operators then 

Proof: Note that [œT•T•] - [œT•] © [œT•]. 
From Le•a 2.14 and the fact that adjoints of finite-dimensionM ex- 

tensions of bitriangular operators are tri•l•, it follows that bi-se•triangular 
operators will not in general be simply finite-dimensionM extensions of bi- 
triangular operators. For an exmple let Ax and A2 be nonalgebraic bitri- 
angul• operators, let nl and n2 be prescribed positive •tegers, let T1 and 
T2 be finite-dimensional extensions of A1 and A2 with isa(Ti) • ni, and 
let T = T• • T;. Then ism(T) = nl •d isA(T*) = n 2. 

The operator T = T• • T• •bove is • dilation of the bitri•ngul• op- 
erator A = A1 • A•. In general, operators in (BSA) •e finite-dimensionM 
dil•tions of operators in (BA). The fo•owing proposition c•ptures this. We 
note that item (ii) below yields the fo•owing m•trix form for T • (BSA)' 

(**) T = 0 T0 * 
0 0 B2 

where T0 is bitri•gul•r and B1, B2 •ct on Hilbert sp•ces of dimension 
ism (T*) •nd ism (T), respectively, giving the correct dil•tion form. 

Proposition 2.15. The lollowing statements are equivalent [or T 
(i) e (s5) itn = = 
(ii) • h• a decomposition • = • • •o ß •, with dim• = 

.,aim• = m, an• [•] = • •0, [•*] = 
this c•e the compression of T to •o is bitriangular. 

Proof: Only the implication (i) • (ii) needs proof. Let T e (BSA), isa (T) 
= re, ism(T*) = n, •ndlet • := [•T] x and• := [•T.] x. Then dim• = m 
•d dim • = n. Since • is • finite dimensionM inv•i•t subsp•ce for T we 
h•ve • • •T. Si•l•rly, • • •T*- Hence • • •. Let •0 := [•T] • • = 
[•.] • •. Then • = • • •0 ß • • required. Now let P0 := proj(•0) 
•nd let T0 := PoT[•0. Let T• be the restriction of T to [•T]. Then Tx is 
triangul•, •d T0 is the compression of T1 to [•] • •. So T0 is triang- 
le. Since T• = PoT* [•0 • si•l• •r•ment shows that T• • A. Hence 
•o e (r5). 

Finally, we note the analog of Theorem 2.7 for bi-se•tri•gul•ity. 
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Proposition 2.16. ff To ß B(7-lo) is bitriangular and not algebraic, then 
for every m >_ 0 and n >_ 0 there is a T ß (BSA) of form (**) with 
iszx(T) = m and iszx(T*) = n. 
Proof.' If either m = 0 or n = 0, this result is immediate from Theorem 2.7 
and the fact that adjoints of finite dimensional extensions of bitriangular 
operators are triangular. So suppose m and n are positive. By Theorem 
2.7, To has an extension 

T• = (T0 Z) 0 M 

in B(7-/0 ½ A4) with dimA4 = m and iszx(T•) = m. Then T• ß A and T• 
is not algebraic. Again by Theorem 2.7, 

Ti= 0 
on A4 ½ 7-/0 has an extension 

Z*) 

in B(./M ß 7-/0 ß A/'), where n = dimA/' and iszx(T*) = n. 
It remains to show that iszx(T) = m. For this, note that 

0 N* 

has a triangular adjoint since it is a finite-dimensional extension of a bitri- 
angular operator. Thus 

T • N X Y) 0 To Z 
0 0 M 

on A/' ½ 7-/o ½ A4 is an m dimensional extension of a triangular operator, 
and so iszx(T) < m. But by Corollary 2.11, m = iszx(T1) < iszx(T), so 
iszx (T) = m as required. [] 

We return to a reconsideration of Lemma 2.14 and a natural gener- 
alization of it giving the behavior of iszx under (perhaps infinite) direct 
sums. 
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Lemma 2.17. Let {Ti} be a uniformly bounded sequence of operators 
acting on Hilbert spaces {7/i}, and let T = diag {T•,T2,... } = •)iTi 
acting on 7/: •)i7/i. Then [•T] -- •)i[•Ti]- 

Proof: Let x = (Dixi • 7/ and suppose p(T)x = 0 for some polynomial 
p. Then p(T•)x• = 0 for all i. This shows "C". Now suppose z 
Then z is a norm hmit of vectors y = Q•yi which have at most finitely many 
of the summarids y• equal to 0, and with y• ½ œT• for all i. Such vectors y 
are in œT. (Use the same type of argument as in Lermna 2.14.) This shows 
that the closures of ET and (•igTi are the same, as required. [] 

Proposition 2.18. A direct sum of semitriangular (bi-semitriangular) op- 
erators is semitriangular (bi-semitriangular) if and only if all but a finite 
number of the summantis is triangular. In this case the index of semitrian- 
gularity of the direct sum is the sum of the indices of the summantis. 

Prook This follows immediately from Lemina 2.17. [] 

3. Some Related Results and Questions. First, we will show that ev- 
ery bitriangular operator T has a cychc cornmutant. Since T is quasisimilar 
to a certain Jordan model J [DH], we first consider cyclic vectors for J. 

Thus suppose that J ½ 8(7/) is the direct sum of Jordan blocks. That 
is, 7/ = (D•7/k, where each 7/k is finite dimensional and reduces J, and 
also Jl• = Ak + Jk, where Ak ½ C and Jk is a (cyclic) nilpotent Jordan 
block (a finite dimensional truncated shift of multiphcity one). For each k, 
let xk be a unit vector so that [x•] = 7/• © J7/•. Note that xk is a cyclic 
vector for Jk, and if yk ½ 7/k with (yk, xk) y• 0 then yk is also cychc for J•. 

Lemma 3.1. For J as above 

(i) If y ½ 7/and (y,x•) • 0 for aJl k > 1, then y is cyclic for 

(ii) IfY ½ 13(7/)is a quasiaffinity, then ran Y conta/ns a cydic 
vector for { J }'. 

Proof.' Suppose (y, xk) • 0, k > 1. Write y = •yk. Then yk is cyclic 
for Jk. If {pk} is any sequence of polynomials such that {11pk()•k + Jk)11} is 
bounded, then •k•__•pk()•k + Jk) • {J}'. Choosing pj -- 1 and Pk --= 0 for 
k • j, we see that yj • ({J}')y for all j k 1. This shows that y is cyclic for 
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Now suppose that Y is a quasiaffinity. Then Y* is injective, so Y*xk • 
0 for every k _> 1. Choose y ß 7-/such that y is not orthogonal to any of 
the vectors Y*xk for k - 1,2, .... Then (Yy, x•) = (y,Y*x•) •k 0 for every 
k _> 1, so Yy is cyclic for {J}' by the first part of the Lemma. [] 

Theorem 3.2. If T is bitriangular then {T} ' has a cyclic vector. 

Proof.' As noted earlier, there is a Jordan model J and quasiaffinities X 
and Y so that TX = XJ and YT = JY. Applying Lemma 3.1, we choose 
y ß 7/so that z = Yy is cyclic for {J}•. We will show that y is cyclic for 
{T} •. First note that if A ß {J}•, then XAY ß {T} •. That is, X{J}•Y C 
{T} '. Now {J}•z is dense in 7-/and X has dense range, so X{J}•z is dense 
in 7-/. But X{J}•z = X{J}•Yy C {T}'y, so y is a cyclic vector for {T} •. [] 

We note that it is an open question which has been in circulation for 
several years as to whether the cyclic multiplicity of the cornmutant of a 
single operator is invariant under quasisimilarity. 

Now recall that if an algebra A C B(7/) has a cyclic vector x, then x 
is a separating vector for jV. 

Corollary 3.3. If T is bitriangular, then W(T) has a separating vector. 

Note that by Theorem 3.2 and the above remark we have a slightly 
stronger result' {T}" has a separating vector. 

The question of whether W(T) has a separating vector for every trian- 
gular operator T is still open. The following example shows that we cannot 
always expect to produce a separating vector for W(T) from a cyclic vector 

Example 3.4. For each n, 1 _< n _< cw, there is a triangular operator 
T such that {T} ' has cyclic multiplicity n. 

Let ]C be a separable Hilbert space of infinite dimension and let 
7-/= ©Fig. Consider an operator weighted backward shift W with weight 
sequence {Wn}n•=0 on 7-/ defined by 

W(xo ß Xl •]•... ) = (W0x 1 • WlX2 •...). 

We have W ß B(7-/) provided {lIwnll}•__0 is bounded. In [H2], an invertible 
weight sequence is constructed so that W(W) - {W}'. (W is said to have 
a "tiny" cornmutant.) We can modify this example slightly so that Wo is a 
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noninvertible quasiaffinity, Wn is invertible for n _> 1, and ¾V(W) -- {W}' 
still holds. We omit the details. 

For a fixed n, i _< n _< c•, we also fix a Hilbert space A/' of dimension 
n. Choose a bounded injective operator X ß Af -+ ker W - K• • 0 • 0 •... 
such that ran X FI ran W0 -- {0}. Let 

0 0 

in B(7¾ • A/'). Note that WX -- 0 so that 

00) 0 

if k > 1. So clearly T is triangular. Suppose that 

D 

in/•(7•ZAf) and U • {T}'. Then C - 0, A • {W}', and WB+XD - AX. 
Since {W}'= W(W), the operator A has the form A-- •-•=0 A• Wk. (See 
[H2] or [Lam].) Also W•:X - 0 for k _> 1 so that AX - AoX. Hence 
WB - X(AoK - D). Since (ran X) n (ran W0) - {0} we have (ran X) 
(ran W) -- {0}. Thus WB -- 0 and D -- AoI. This gives the following 
description of 

0 ' ß rv(rv), C rV . 
k----0 

We assert that {T}' has cyclic multiplicity n. Recall (cf. [W1]) that 
W is a cyclic operator. Let x be a cyclic vector for W. If {ek}•_ 1 is a basis 
for iV', then one can check that {x • el} U {0 • •}•=2 is a cyclic set for (• n 

{T}'. On the other hand, if k < n and {xj • J}j=l are vectors in y • 

then the projection of Vj•i {T}'(xj • yj) onto the second summand space 
iV' is at most k dimensional. So {xj • YJ}•-i can not be a cyclic set for 

[] 
We note that ¾V(T) does have a separating vector in this example, 

although {T}', which is a somewhat larger algebra, fails to have a separating 
vector if n > 2. 

A large class of triangular operators which are cyclic has been noted in 
[H5, Lemma 5.2] and [Hi]. For completeness, we provide a proof in Lemma 
3.5 and Proposition 3.6. 
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Lemma 3.5. Suppose S, T, X • B(7-l) and SX = XT. Then if T is cyclic 
and if X has dense range then S is also cyclic. 

Proof.' Let u be a cyclic vector for T. Then P(T)u is dense in •, where 
P(T) denotes the set of all polynomials in T. So XP(T)u is also dense 
in • since X has dense range. Since SX = XT, p(S)X = Xp(T) for all 
polynomials p. Hence v := Xu is cyclic for S. [] 

Proposition 3.6. Let T be a triangular operator whose diagonal entries 
with respect to some orthonormal basis for • are distinct. Then T is cyclic. 
In particular, 142(T) has a separating vector. 

Proof.' By adding a scalar to T if necessary, we may assume that the 
diagonal entries are all nonzero. Let {e,•}• be the orthonormal basis in 
the hypothesis. For each n let x,• be an eigenvector for T in [el,...e,•] 
corresponding to the eigenvalue t,,•, where T -- (tij). Since the num- 
bers t,,•,l _< n < oe, are distinct it follows that x• ½ [1,...e,•_l]. So 
[Xl,...x,•] = [el,...e,•] for all n. Let 

be the formal matrix whose column vectors are Xl, x2, .... By multiplying 
the vectors xi by scalars decreasing to 0 sufficiently fast if necessary, we may 
assume that X determines a bounded operator in B(7•). Then TX = XD, 
where 

D = diag(tll, t22,... ) 

is the diagonal matrix with respect to {e,•}• with diagonal entries t•l, t22, .... 
Since the tii are distinct, D is cyclic. Since span{xi}• is dense, X has dense 
range. Thus T is cyclic by Lemma 3.5. [] 

Next we list a few questions which were settled in the negative for semi- 
triangular operators in [W2] but are still open for the class of triangular 
operators. We refer the reader to [LW2] for related questions. Let T • A. 

Question 1. Must 142(T) have a separating vector? The answer is 
yes (Corollary 3.3) if T is bitriangular. Also, the answer is yes if T has 
distinct diagonal entries (Proposition 3.6). 

Question 2. Is there some n > 1 so that T ©, the direct sum of n 
copies of T, is reflexive? That is, must 14/(T ©) = Alg Lat T © for some 
n _> 17 In particular, is T (2) reflexive? 
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Question 3. Must W(T) = •4(T)? That is, must W(T) coincide 
with the weak ß closure of the polynomials in T? Actually, this question is 
still open for semi-triangular operators, since the counter-example for this 
problem in [W2] is not semitriangular. 

Question 4. If T is reflexive and p is a polynomial, must p(T) be re- 
fiexive? (We note that the more general question of whether each $ ß W(T) 
is reflexive was settled in the negative in [LW1, Cot. 3.9].) In particular, 
must T 2 be reflexive? 

Next, we discuss two stability properties of the index of semitriangu- 
larity. 

Proposition 3.7. IfT ß (SA) and ifs is quasisimilar to T, then S ß (SA) 
and ism(s) = is(T). 

Proof.' Let n -- is5 (T). Suppose that X is a quasiaffinity and that SX - 
XT. Then p($)X -- Xp(T) for each polynomial p. Hence if x ß œT then 
Xx ß œs. So XœT C_ œs. Hence [XœT] C_ [œs]. Since [œT] has codimension 
n in 7-/ and X is a quasiaffinity, [XœT] has codimension n in 7-/. Thus 
$ ß ($A) a•d i$5($) _< n. Reversing the above argument shows that 
is5(S) - n. [] 

Lemma 3.8. Let T ß B(7-[), and let p(t) be any polynomial which is not 
a constant function. Then œT ---- œp(T). 
Proof.' The inclusion "_D" is clear. To prove "C_", let x be an algebraic 
vector for T and let q(t) be a nontrivial polynomial for which q(T)x = O. 
Write q(t) = [-[i(t- Ai) and let 

= H(t - 
i 

Then q divides top since (t-Ai) divides (p(t)-p(Ai)) for each i. It follows 
that r(p(T))x --0. Thus x ß œp(•) as required. [] 
Proposition 3.9. Let T ß B(•) and supposep(t) is a nonconstant polyno- 
mial. Then T ß (SA)if and only if p(T) ß (SA). In this case isa(p(T)) = 

Proof.' This is clear from Lemma 3.8. 

Let us say that a class (½) of operators has the polynomial property if 
it satisfies the stability property of Proposition 3.9. So (½) must be closed 
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under nonconstant polynomial functions of its operators, and must also have 
the property that whenever p(T) • (½) for some nonconstant polynomial 
p then also T • (½). The set of algebraic operators has this property, 
but neither the set of compacts nor the set of finite rank operators has 
it. By Proposition 3.9 A and (SA) have the polynomial property, and by 
considering adjoints so do (BA) and (BS/X). In fact, for each nonnegative 
integer n the set of semitriangular operators of index precisely n has this 
property, and for each pair (n, m) the set of bisernitriangular operators T 
with isa(T) = n and isa(T*) = m has this property. 

Next we relate the above considerations to certain nests and nest 

algebras. If {en}• is a basis for an infinite dimensional separable Hilbert 
space 7-/let JV'• denote the "triangular" nest {0, N1, N2,... } U {T/}, where 
N/• -- [el,... e/•]. For I •_ m < oo let JV'm denote the corresponding nest on 
m dimensional Hilbert space. It is clear that T is semitriangular if and only 
if T • Alg A/' for some nest A/' which is unitarily equivalent to the ordinal 
sum A/'• ©ora A/'m for some m < oo. If ½ is a set of operators let us write 

U(½) := {T e B(T/)' T is unitarily equivalent to an element of ½}. 

The above discussion shows that/2(Alg A/') has the polynomial property if 
A/' = A/'• or if A/' = A/'• ©ord A/'• for some m < o•. This suggests a new 
type of problem: 

Question 5. For which nests A/' does/2(AlgA/') have the polynomial 
property? 

If Af is the trivial nest {0, 1} then Alg Af = B(A/') and so Alg A/' has 
the property for trivial reasons. So it may be best to restrict attention to 
multiplicity free nests. Also, it is useful to note that if a set has the polyno- 
mial property and contains 0 then it must contain all algebraic operators. 
We note that if A/' is a continuous nest then Alg A/' fails to contain any 
nonzero finite rank projection. The reason is that any projection in Alg Af 
would commute with Af, and since Af generates a nonatomic von Neumann 
algebra its cornmutant contains no finite rank operators. Thus, if Af is 
continuous, /2(AlgAf) does not have the polynomial property. Another 
instance of failure is the nest A/' = Af• ©ord A/'•. Reason: There is a unicel- 
lular backward weighted shift T of multiplicity one for which N'• = Lat T, 
and for this operator we have Lat(T 2) _D A/'• • ord A/'•. A few additional 
instances of failure are known to us, but the general problem seems to l•e 
difficult. 
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Finally, we note that iszx is not stable under small compact pertur- 
bations. We thank Ken Davidson for suggesting including this. Indeed, if 
iszx(T) = n then given e > 0 there is an operator K of rank _• n with 
Kll < e such that T + K 6 A. To see this, first consider the case where 

n = 1. Then 

with A 6 A,x C 7-/,A C C. Choose x' C œA with [[x- x'[[ < e. Then 

x,) T' := A • A 

by Corollary 2.3, lit- T'II < and rank (T- T') - X obtaing the desired 
result. Now use • induction argument. 
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