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Introduction. An operator T in the algebra B(H) of all bounded linear
transformations on a complex separable Hilbert space is called triangu-
lar if H has an orthonormal basis {e,} with the property that Te, €
span {ej,...,e,} for each n. This class of operators has a rich structure,
and the reader is referred to the recent survey article of the first author
[H3] for properties of triangular operators and an extensive reference list.
An interesting subclass is the class of bitriangular operators studied in
[DH]. An operator T is called bitriangular if both T and T* are triangu-
lar, perhaps with respect to different orthonormal bases. In this article we
introduce a natural generalization of triangularity which we call semitrian-
gularity which was motivated by the construction of some counterexamples
to problems in single operator theory and operator algebras by the third
author in [W2].

Let A denote the class of all triangular operators, and let (BA) denote
the class of bitriangular operators. If S € B(H), let us call a vector z € H
an algebraic vector for S if there is a nonzero polynomial p(t) for which
p(S)z = 0. Then z is algebraic for S if and only if the cyclic subspace for
S determined by z is finite dimensional. Let £5 denote the set of algebraic
vectors for S. Then &g is a linear space: if z;,z5 € Es there are nonzero
polynomials p;(t),p2(t) such that p;(S)z; = 0, and so setting p = p1ps
we have p(S)(z1 + z2) = 0, showing that z, + zo € £s. We note that
in our terminology, a well-known theorem of Kaplansky [K]| states that S
is algebraic (i.e., satisfies a nontrivial polynomial identity) if and only if
Es=H. If S € A it is clear that £ is dense in H. Conversely, if £g is
dense then H is the closed span of finite-dimensional invariant subspaces
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for S so an elementary argument shows that 'S is triangular. This gives a
coordinate-free description of A. In [DH] a useful stronger coordinate-free
description of A was exploited: S € A if and only if

span {ker (§ - \f: 1€ C,k=1,2,...}

is dense in H.

We will define an operator T' to be semitriangular (SA) if [€7] has
finite codimension in H. (Here [-] denotes closed linear span.) Equivalently,
T is semitriangular if T' is an extension of a triangular operator by a finite
rank operator. We call the codimension of [£r] the index of semitrian-
gularity of T and denote it iga(T). It is equal to the minimum possible
dimension of the Hilbert space on which 75, acts in a representation of T'

Tn Th
0 Ty
with T3, triangular.

We will see that semitriangular operators may display properties much
different from those of triangular operators. With one exception the coun-
terexamples constructed in [W2] are semitriangular. While some (but not
all) of the questions that were settled in [W2] can be settled with triangu-
lar counterexamples, (see [LW1]), others remain open for the class A. In
this article, along with the development of structural properties of the class
(SA), we give some new results for the classes A and (BA). We also discuss
some open questions.

This paper is organized as follows. In Section 1 we give some elemen-
tary results, examples, and exposition to illustrate some fundamental dif-
ferences between properties of the classes of triangular and semi-triangular
operators. Our main section is Section 2 where we consider several exten-
sion properties. We describe the triangular operators which arise as the
restriction of some 7' € (SA) to the invariant subspace [£7], we consider
the structure of restrictions of 7' to invariant subspaces of finite codimen-
sion, and we define the class of bi-semitriangular operators (BSA) and
derive some of its elementary properties. In Section 3 we show that ev-
ery bitriangular operator T has a cyclic commutant. It follows that W(T'),
the weakly closed algebra generated by T, has a separating vector. (A
separating vector for a linear space of operators S is a vector x for which
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the map S — Sz,S € &, is injective.) We give an example to show that
the commutant of a triangular operator need not be cyclic. We conclude

with a discussion of some open questions for the classes A, (BA), (SA) and
(BSA).

1. Some Comparisons. We will comment on several results and ex-
amples to illustrate that semi-triangular operators can behave differently
from triangular operators (see also [LW2]). We begin with a simple (but
apparently new) result.

Proposition 1.1. If T € A, then
{T}Yn AlgLat T = {T}'n Alg Lat T.

Proof: First note that W(A) = {A}Y N Alg Lat A= {A}'N Alg LatA =
{A}" if A is algebraic (cf. [B, p. 74]). Then fix A\ € C,n > 0, and let
M =ker (T — X\)". Then M is hyperinvariant for T, and T| ¢ is algebraic.
Thus if S € {T} N Alg Lat T, then

S\m € {T|m}Y N Alg Lat (T'| ).

Hence S|am = p(T|am) = p(T)|m for some polynomial p. If R € {T'}, then
R|am and S|am commute. So since H is the closed span of subspaces of the
form ker(T' — X)" the operators R and § commute. So S € {T'}"". Thus
{T}Y N AlgLat T C {T}' n Alg Lat T. But the reverse inclusion always
holds, since {T'}" C {TY}'. O

The above proposition fails for semitriangular operators of index > 2,
as shown in [W2]. It remains an interesting open question whether it holds
if the index is one. (See [LW2].)

We now consider a density property that the predual A, of a dual
algebra A can have. Let C;(H) denote the ideal of trace class operators on
H and identify B(H) with (C;(H))* via the pairing (A, f) := Tr(Af). A
dual algebra is a unital w*-closed subalgebra of B(H). It can be identified
with the dual space of A, := Ci(H)/ AL in the standard fashion, where
A denotes the preannihilator of A in C;(H). The algebra (or more gen-
erally, w*-closed subspace) A is called elementary [A] if each coset in A,
has the form f + A; with f of rank 1 or 0. We will say that A is ap-
prozimately elementary if the set of such “rank-one” elements of A, (those
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of the form f + A, with f of rank 1 or 0) is dense in A, in the quotient
topology. For many operators T, W(T') is elementary. In [HN] an operator
was constructed for which W(T') is not elementary. It is not hard to see
that it is approximately elementary. In [W2] the first example was given
of an operator T such that W(T') is not even approximately elementary.
This answered negatively a question of the second author. The example in
[W2] can be taken to be semi-triangular of index 2. If T' is an operator for
which W(T') is not approximately elementary, then T' cannot be triangular,
and W(T') cannot have a separating vector. (In fact, it is an open question
[LW?2] whether T' € A implies that W(T') has a separating vector.)

The following two observations have been known for some time. For
perspective, and completeness, we include them here.

Proposition 1.2. Let S C B(H) be a w*-closed linear subspace. If S has
a separating vector x, then S is approximately elementary.

Proof: Let G :={z®y*+S. : y € H}. (Here z ® y* denotes the operator
w — (w,y)z.) Then G is a set of “rank-1” elements of S, that is clearly
a linear space. We claim that G is dense in S,. Indeed, if not then there
is a nonzero element of (S.)* = § which annihilates G. Call this S. Then
Tr(S(zx ®y*)) =0 for all y € H. That is, (Sz,y) =0 for all y € H. But

this implies Sz = 0. So S = 0, a contradiction, since z separates S. O
Proposition 1.3. If T € A then W(T') is approximately elementary.

Proof: Suppose that {e,}$° is an orthonormal basis which triangularizes
T. For each n > 1, let P, be the projection of H onto M, := [ej,...ey,].
Let g € C1(H). Since P,gP, — g in trace class norm, it will suffice to show
that P,gP, decomposes

P.gP,=F,+ H,

where rank F,, <1 and H, € (W(T)).. Let g, = Pog|m,. Since T|p, is
an operator on a finite dimensional Hilbert space, W(T'| a4, ) is elementary.
Hence g, = fn + h, for some f, € B(M,) of rank < 1 and some h, €
W(T|m,)L. Let F, = f, ®0 and H, = h, ®0 in M, ® M. Then
P,gP, = F,+ H, and rank F,, < 1. If A € W(T) then since M, € Lat T
we have P, A|p, € W(T|m,), so

Tr(AH,) = Tr(AP,H,P,) = Tr(P,AP,H,P,)
= Tr(PaA|m, hn) = 0
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showing that H, € (W(T'))L as required. a

We now briefly discuss a strong notion of cyclicity. Recall that an
operator T € B(H) is called strictly cyclic, with strictly cyclic vector z,
if W(T)z = H. The main result of [H1] is that no triangular operator
on an infinite dimensional Hilbert space can be strictly cyclic. (There are
lower triangular strictly cyclic operators; namely, certain weighted shifts.)
However, as also noted in [H1] there are strictly cyclic operators T' which
are finite dimensional extensions of triangular operators. So these are semi-
triangular in our present terminology. In fact we can choose T so that
isa(T) =1 and T|j¢,) is diagonal, hence bitriangular.

Example 1.4. Let z = (1,1/2,1/3,...) € £ and let D be the diagonal
operator on ¢? with z as its diagonal sequence. Then

D =z
- (4 0)
in B(¢£%2 @ C) is strictly cyclic. In fact the vector e., = 0@ 1in 2@ Cisa
strictly cyclic vector. To see this, first observe that

T"te,, =(D"2)®0

for n > 0, and that span {D"z :n =0,1,...} is dense in H. This shows
that e is (topologically) cyclic for T'. Then verify that

lp@MI < 1+ V2)lIp(T)ew||

for all polynomials p(t), using the special form of D and z.
For this, write p(t) = a + ¢(t) with ¢(0) = 0, and compute

p(T)=(p(OD) w)

a

where w = (g(1),q(1/2),...) € £2. Then p(T)ew = w D a, so ||p(T)| <
[p(D)|| + lIp(T)ec|l. Also, [[p(D)]| < la] + [lg(D)|| < lJa| + [lw]| <
V2 V]aP +wl? = V2 [p(T)eco|l. Thus [[p(T)] < (1 +v2) - [P(T)eco]-
This implies that the continuous map © : A — Ae,, from the norm closure

of the polynomials P(T') in T into H is bounded below. So since it has
dense range, it must be surjective. Thus z is strictly cyclic.
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2. Extensions. In this section we consider finite and infinite dimensional
extensions of triangular and semitriangular operators. If T' is an algebraic
operator then any finite dimensional extension of T is algebraic, hence in
A. We establish a strong converse implication: if T is triangular and not
algebraic then there is a one dimensional extension of T' which is not tri-
angular. (Hence it is semitriangular of index 1.) The methods we use
in proving this generalize with no real difficulty to extensions of arbitrary
dimension. Theorem 2.7 (and Corollary 2.8) show that semitriangular op-
erators of arbitrary index are plentiful. Some finer extension and restriction
results are then proven. Finally, the class of bi-semitriangular operators is
considered and analogous results are proven.

Lemma 2.1. Let A € B(H),B € B(K,H) and let

A B
(2 7)
in BBH® K). Let € H and y € K. Then

(i) zd0€é&sifandonlyifz e y.
(i) Ify#0, thenz®y € Es if and only if Az + By € £4.

Proof: Item (i) is clear. For (ii), suppose that p is a polynomial and write
p(t) = a + tq(t), where g is a polynomial. Then

_(al+4a(A)A ¢(A)B
p(S) = ( 0 al .
If y # 0 and p(S)(z @ y) = 0, then a = 0 and ¢g(A)Az + q(A)By = 0, so
Ar + By € £4. Conversely, if Az + By € &4, there is a polynomial ¢ so
that g(A)(Az + By) = 0. Hence S¢(S)(z@y)=0and 2Dy € &s. O

Lemma 2.1 has the following immediate corollary.

Corollary 2.2. With the notation of Lemma 2.1, £s C 'H & 0 if and only
if B is injective and (ran B)N(£4 + ran A) = {0}.

Corollary 2.3. With the notation of Lemma 2.1, suppose also that A €
A. Then S € A if and only if there is a dense subspace Ky of K with
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BKy C €4+ ran A. In particular, if K is finite dimensional, then S € A if
and only if ran B C £4+ ran A.

Proof: Since A € A, we have [£4] =H and H® 0 C [€s]. Thus S € A if
and only if the projection of £s onto 0 ® K is dense in 0 ® K. Now apply
Lemma 1 (ii) to complete the proof. O
Lemma 2.4. Let T € B(H). Then

(i) &7+ ranT = UX, ker(T*) + ranT.

(i) If &+ ran T has finite codimension in H, it is closed. If
Er+ ran T does not have finite codimension, it is contained
in an operator range of infinite algebraic codimension in H.

Proof: We will show that
UPker (T%) C &r CUPker(T%) +ran T

from which (i) follows. The inclusion US® ker (T*) C £7 is clear. For the
second inclusion, it is enough to show that if z € ker (T — \)* for some k > 1
and some A # 0, then z € ran T. But if (T ~ A\)¥z = 0, then (e.g., using
the Binomial Theorem) ¢ = T'q(T)z for some polynomial q. So z € ran T

To prove (ii), let P, be the orthogonal projection onto ker (T'*). Then

Er+ ran T =UYP(ran P+ ran T).

By [FW],
ran Py + ran T = ran\/TT* + P,

(More generally, Theorem 2.2 in [FW] states that if A,B € B(H), then
ran A+ ran B = ranyvAA*+ BB*.) If &7 + ran T is proper, then for
all k > 1, rany/TT* + Py is proper, so that 0 € o(TT* + Py).

There are two cases to consider. If 0 & g.(TT* 4 P) for some k, then

ran \/ITT*+ P, = ran T + ran P
has finite codimension in H. Hence there is a kg so that

ran T+ ran P, = ran T + ran Py for all k£ > k.
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Thus é7 + ran T = ran Py, + ran T is an operator range of finite codi-
mension. It follows easily (see [FW]) that &7 + ran T is closed.

In the remaining case, 0 € 0(TT* 4+ Pi) for all k > 1. Let B, =
S h,27%P, for each m > 1 and let B =Y " 27%P;. Then

ranT+ ran B,, = ran T + ran P,,

has infinite codimension, so that 0 € o.(TT* + BZ) for all m > 1. But
{T'T* + B2} converges in norm to TT* + B2, so by upper semicontinuity of
Oe, 0 € 0(TT* + B%). Let M = ran T + ran B. Then M is an operator
range of infinite codimension, and ran P, C ran B for all m > 1, so
Er+ ran T C M. d

For A € C and T € B(H) note that Er_y = Er. We next characterize
points in o (T') for which & + ran (T — A) =H.

Lemma 2.5. Let T € B(?) and suppose A € Oo(T). Then Er+
ran (T — A) = H if and only if X is an isolated point of o(T') for which

(T — M) Py is nilpotent, where Py is the Riesz idempotent for T corresponding
to {\}.

Proof: Suppose that A satisfies the right hand side of the equivalence. (If
in addition Pj is of finite rank, then X is called a normal eigenvalue. See
[H4, p. 5].) Then PA\H C &1 and (I — PA\)H C ran (T — A), so H =
Er +ran (T - )).

For the converse, assume A € do(T) and that 7+ ran (T—-)A) = H.
It will suffice to find M € Lat T,M # 0, so that the matrix of T — A
relative to the decomposition H = M @ M has the form

(0 3) “

with IV nilpotent and S invertible. First note that since A is in the boundary
of o(T), T — X is not surjective. From this, Lemma 2.4(i) implies that
ker (T — X) # 0. Again, by Lemma 2.4(i),

H = U (ker (T — ) + ran (T - 1)) .

Each subspace
ker (T — A\)* + ran (T — )
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is an operator range and hence an F, set. So an application of the Baire
Category Theorem shows that

H =ker(T — A\)™ + ran (T — X)

for some m > 1.

Let M = ker (T — A)™ and write T — )\ in the form (x). Then N is
nilpotent as required, and we claim that S is invertible. It is easy to see
that .S is surjective. If S were singular, then (since o(T'— X) = o(N)U0o(S))

we would have 0(S) = (T — X). But then 0 € do(S), contradicting the
surjectivity of S. O

It T is algebraic, then £ = H so of course H = &7 + ran (T — A) for
all A\. We now prove a strong form of the converse.

Corollary 2.6. IfT € B(H) and if H = Ep+ ran (T—)) for all A € do.(T),
then T is algebraic.

Proof: First note that if A € 0o(T) but A € 90.(T), then H = Er +
ran (T — A) by Lemma 2.5. Thus our hypothesis implies that in fact H =
Er + ran (T — A) for all A € Jo(T). By Lemma 2.5, each A € 9o(T) is
isolated in o(T'), so o(T) is finite. Again by Lemma 2.5, each restriction
(T — X)|p,yn is nilpotent, so T is algebraic. O

We consider the existence of semitriangular extensions of triangular
operators.

Theorem 2.7. Let T € B(H) be triangular. The following statements are
equivalent.

(1) T is not algebraic.
(i) For some X\ € Oo.(T), there is a Z € B(C,H) so that the

operator
T Z
1= (5 %)

in B(H & C) satisfies iga(A4) = 1.
(iii) For some A € 00.(T) and for each p > 0, there is a Z, €
B(CP,H) so that the operator

— T ZP
(0 %)
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in B(H @ CP) satisfies iga(A) = p.
(iv) For some X\ € 0o(T), there is a Z € B(H) so that the

operator
T Z
1= (5 %)

in B(H @ H) is not semitriangular.

Proof: It is clear that each of the conditions (ii), (iii), and (iv) imply that
T is not algebraic. Conversely, suppose (i) holds. Then by Corollary 2.6,
thereis a A € 90(T) with 7+ ran (T'— ) # H. The set Er+ ran (T'— X)
is dense in H, so it follows from Lemma 2.4(ii) that £7 + ran (T — A) has
infinite algebraic codimension in H. Thus for each p > 1 we may choose
Z, € B(CP,’H) so that Z, is injective and

(ran Zp) N (Er + ran (T — X)) = {0}.

_(T-X Z,
(" %)
in B(H& CP). By Corollary 2.2, isa(S) = p, so iga(S+A) = p, proving (ii)
and (iii). To prove (iv), we apply Lemma 2.4(ii). There is a dense operator
range M of infinite algebraic codimension with 7 + ran (T'— )\) C M.

By [FW] there is a unitary operator U so that M N UM = {0}. Choose
Z € B(H) so that Z is injective and ran Z = UM. Corollary 2.2 shows

that
T-) Z
0 0

is not semitriangular. O

Let

Finally, it is useful for perspective to express the results of Theorem
2.7 in an alternate way.

Corollary 2.8. Let T € B(H). The following statements are equivalent.
(i) T is algebraic.
(ii) Every finite dimensional extension of T' is triangular.
(iii) Every finite dimensional extension of T is algebraic.
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(iv) Every extension of T by a triangular operator is triangular.
(That is, whenever

T 7
=5 5)
in B(H® K) and S is triangular, then A is triangular.)

Proof: The only part of the proof that is not immediate from Theorem 2.7
is that (i) implies (iv). But if T is algebraic, then H®0 C £4. Thus clearly
Ea=H & Eg, and so A is triangular. O

It is now a simple matter to extend Theorem 2.7 as follows.

Corollary 2.9. If T € B(H) is semitriangular with iga(T) = n, then T
has a one-dimensional extension A with iga(A) =n+ 1.

Proof: If Ho = [€7], then Hi has dimension n. Relative to the decompo-
sition H = Ho & Hy we have

(3 2)

Also, & = £4. Choose p € 0(C) = 0,(C) and choose e € Hy,e # 0, so
that Ce = pe. If Ty = T'|3, @[], then To has the form

(4 v
TO - ( 0 /J') )
and iga(To) = 1. By Lemma 2.1, y ¢ £4 + ran (A — p). Since A is tri-
angular £4 is dense. From these two facts Lemma 2.4(ii) implies that €4+
ran (A — p) is contained in an operator range M of infinite algebraic codi-

mension in Hg. Thus €7 + ran (T — u) has infinite algebraic codimension
in H. So choose Z € B(C, H) with

ran Z N (Er + ran (T — p)) = {0}.

(5 )

Let



488 D. A. HERRERO, D. R. LARSON AND W. R. WOGEN

in B(H® C). By Lemma 2.1, g = &7 = €4, so isa(R) =n+ 1. O

We now consider a converse to Theorem 2.7. If T is semitriangular,
what can be said about the restrictions of T? Since every strict contraction
is the restriction of a triangular operator (namely, the backward unilateral

shift of infinite multiplicity) we must impose some conditions on the restric-
tions of 7. We need the following lemma.

Lemma 2.10. If £ is a linear manifold in 'H with the property that [£]

has finite codimension n in H, and if M is a closed subspace of H of finite
codimension m in H, then

n—m<dim (Mg [ENM]) <n.

Proof: The key to the proof is that M N [£] = [M N E]. To show this, let
P be the orthogonal projection of H onto M*. Then PE has dimension
k < m. Thus there is a subspace U = [uy,us,... ,uk] C £ so that PU = PE.
For each = € £, we can find v € U with Pz = Pu. Thusz—u € £ENM and

&= (ENM)+U. Hence [£] = [ENM] +U. The intersection 4 NM = {0},
S0

ElNM = (EnM]+U)NM = [EnM].

MoelEnM] = Mo ([E]NM)
= ([E]ln M)t oMt
= (et + MYHomt
Since
n=dim £! < dim (€t + M) <m+n,
we see that n — m < dim (M 6 [MNE]) < n. O

Corollary 2.11. Let T € B(H) be semitriangular with iga(T) = n, and
suppose M is an Invariant subspace for T of finite codimension m in H.
Then T|m is semitriangular and

max{0,n —m} < iga(T|m) < n.

Proof: First observe that £7|,, = &7 N M. Now apply Lemma 2.10, with
E=¢r. O
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A special case of Corollary 2.11 states that the restriction of a trian-
gular operator to an invariant subspace of finite codimension is triangular.
Also, it is well-known (cf. [H3]) that the compression of a triangular opera-
tor to the orthogonal complement of an arbitrary (no dimension restriction)
invariant subspace is triangular. The same is true for a semitriangular op-
erator. The reason for this is the following.

Lemma 2.12. LetT € B(H) be arbitrary, and let P € Lat T be arbitrary.
Then

PYer CEpipiprp.

Proof: Let 2 € £r and let ¢(t) be a nonzero polynomial with ¢(T)z = 0.
Then P1¢(T)z = 0. So since P1g(T) = PLq(P+TP+)PL, it follows that
P'L.’L‘EgPJ.T“JLH. O

Corollary 2.13. Let T € (SA) and let P € Lat T. Then PLT|P+H €
(SA) and isa(PLT|PLH) < isa(T).

Proof: If the codimension of [£7] in H is n then the codimension of [P £7]
in PtH is < n. O

Let us call an operator T bi-semitriangular (BSA) if both T' and T*
are semitriangular. This is closely related to bitriangularity. First note that
if T' is semitriangular and T|(¢,} is bitriangular, then T* is triangular. To

see this fact, simply write
A Z
r-(5 %)

in B([é7] ® N) with dimN < oo and A bitriangular. Then
«_(B* Z*
m= (% %)
in B(N @ [£7]), where B* is finite-dimensional and A* is triangular. So by
Corollary 2.8, T* is triangular. Next note that if 7} and T, are arbitrary
operators then 1,7, = 1, ® £7,. Indeed, for each polynomial p(t) and
for each vector x; @ zo we have p(T) @ To)(z1 @ z2) = p(Th)z1 ® p(T2)z2,
yielding “C”, and conversely, if z; € £, choose nonzero polynomials g;(¢)

with ¢;(T;)z; = 0 and note that if ¢ = g;¢2 then ¢(Th ® T>)(z; © z2) = 0,
yielding “2”. A consequence of this second observation is:
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Lemma 2.14. If Ty and T, are semitriangular operators then
isa(Ti ®1z) = isa(Th) +isa(T2).
Proof: Note that [En,g1,] = [€1,] ® [E1,]- a

From Lemma 2.14 and the fact that adjoints of finite-dimensional ex-
tensions of bitriangular operators are triangular, it follows that bi-semitriangular
operators will not in general be simply finite-dimensional extensions of bi-
triangular operators. For an example let A; and A, be nonalgebraic bitri-
angular operators, let n; and ny be prescribed positive integers, let T} and
T5 be finite-dimensional extensions of A; and Ay with iga(T3) = n;, and
let T =T, ®T5. Then isa(T) = nq and iga(T*) = na.

The operator T' = T; @ T5 above is a dilation of the bitriangular op-
erator A = A; @ A;. In general, operators in (BSA) are finite-dimensional
dilations of operators in (BA). The following proposition captures this. We
note that item (ii) below yields the following matrix form for T' € (BSA):

B, «x *
(%) T=1 0 Ty =x
0 0 By

where Tp is bitriangular and B;, B act on Hilbert spaces of dimension
isa(T*) and isa(T), respectively, giving the correct dilation form.

Proposition 2.15. The following statements are equivalent for T € B(H):
(l) Te (BSA) with ZSA(T) = m,iSA(T*) =n.
(ii) 'H has a decomposition H = N ® Ho ® M, with dimN =
n,dimM =m, and [7] = N ® Ho, [Er+] = Ho® M. In
this case the compression of T to H, is bitriangular.

Proof: Only the implication (i) — (ii) needs proof. Let T € (BSA),isa(T)
=m,isa(T*) = n, and let M := [E7]* and NV := [€r+]t. Thendim M = m
and dim NV = n. Since N is a finite dimensional invariant subspace for T' we
have N C &7. Similarly, M C £7-. Hence N' L M. Let Hy = [E7] ON =
[Er:]© M. Then H = N & Ho & M as required. Now let Py := proj(Ho)
and let Ty := PyT|Ho. Let Ty be the restriction of T to [€r]. Then T is
triangular, and Tp is the compression of T; to [£7] © V. So Tp is triangu-
lar. Since T§ = PyT*|Ho a similar argument shows that Ty € A. Hence
To € (BA) ]

Finally, we note the analog of Theorem 2.7 for bi-semitriangularity.
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Proposition 2.16. If Ty € B(Hy) is bitriangular and not algebraic, then
for every m > 0 and n > O there is a T € (BSA) of form (%) with
isa(T) = m and isa(T*) = n.

Proof: If either m = 0 or n = 0, this result is immediate from Theorem 2.7
and the fact that adjoints of finite dimensional extensions of bitriangular
operators are triangular. So suppose m and n are positive. By Theorem

2.7, Tp has an extension
(T Z
n-(% )

in B(Ho & M) with dimM = m and iga(Ti) = m. Then TY € A and T}
is not algebraic. Again by Theorem 2.7,

«_ (M Z*
- (% %)
on M @ Hy has an extension
M+ Z* Y
T = 0 Iy X*
0 0 N*

in BIM & Ho ® N), where n = dim N and isa(T*) = n.
It remains to show that ¢sa(T") = m. For this, note that

Iy X*
0 N*

has a triangular adjoint since it is a finite-dimensional extension of a bitri-

angular operator. Thus
N X Y
T=|0 T, Z
0 0 M

on N ® Ho ® M is an m dimensional extension of a triangular operator,
and so isa(T) < m. But by Corollary 2.11, m = iga(T1) < isa(T), so
isa(T) = m as required. O

We return to a reconsideration of Lemma 2.14 and a natural gener-

alization of it giving the behavior of iga under (perhaps infinite) direct
sums.
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Lemma 2.17. Let {T;} be a uniformly bounded sequence of operators
acting on Hilbert spaces {H;}, and let T = diag {T1,T»,...} = &:T;
acting on H = &;H;. Then [£7] = ®;[€7,)-

Proof: Let z = ®;z; € 'H and suppose p(T')z = 0 for some polynomial
p. Then p(T;)z; = 0 for all ¢. This shows “C”. Now suppose z € ®;[ET;].
Then 2 is a norm limit of vectors y = @;y; which have at most finitely many
of the summands y; equal to 0, and with y; € &7, for all . Such vectors y
are in £7. (Use the same type of argument as in Lemma 2.14.) This shows
that the closures of &7 and @;&r, are the same, as required. O

Proposition 2.18. A direct sum of semitriangular (bi-semitriangular) op-
erators is semitriangular (bi-semitriangular) if and only if all but a finite
number of the summands is triangular. In this case the index of semitrian-
gularity of the direct sum is the sum of the indices of the summands.

Proof: This follows immediately from Lemma 2.17. (|

3. Some Related Results and Questions. First, we will show that ev-
ery bitriangular operator T has a cyclic commutant. Since T is quasisimilar
to a certain Jordan model J [DH], we first consider cyclic vectors for J.
Thus suppose that J € B(H) is the direct sum of Jordan blocks. That
is, H = ®7°Hy, where each Hj is finite dimensional and reduces J, and
also J|3, = Ax + Jk, where A\, € C and Ji is a (cyclic) nilpotent Jordan
block (a finite dimensional truncated shift of multiplicity one). For each &,
let zx be a unit vector so that [zx] = Hr © JH. Note that zj is a cyclic
vector for Jy, and if yi, € Hy with (yk, zx) # 0 then yj is also cyclic for J.

Lemma 3.1. For J as above

(i) Ify € H and (y,zx) # 0 for all k > 1, then y is cyclic for
r /
/Y.

(i) IfY € B(H) is a quasiaffinity, then ran Y contains a cyclic
vector for {J}'.

Proof: Suppose (y,zx) # 0,k > 1. Write y = ®°yx. Then yi is cyclic
for Ji. If {pi} is any sequence of polynomials such that {||pe(Me + Ji)||} is
bounded, then @2, pk(Ax + Ji) € {J}'. Choosing p; = 1 and p; = 0 for
k # j, we see that y; € ({J}')y for all j > 1. This shows that y is cyclic for

{7}
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Now suppose that Y is a quasiaffinity. Then Y* is injective, so Y*zj #
0 for every k > 1. Choose y € H such that y is not orthogonal to any of
the vectors Y*zy, for k = 1,2,.... Then (Yy,zr) = (y,Y*zi) # O for every
k > 1, so Yy is cyclic for {J}' by the first part of the Lemma. O

Theorem 3.2. If T is bitriangular then {T'} has a cyclic vector.

Proof: As noted earlier, there is a Jordan model J and quasiaffinities X
and Y so that 7X = XJ and YT = JY. Applying Lemma 3.1, we choose
y € H so that z = Yy is cyclic for {J}'. We will show that y is cyclic for
{T}. First note that if A € {J}', then XAY € {T}. That is, X{J}Y C
{T}. Now {J}'z is dense in H and X has dense range, so X{J} z is dense
in H. But X{J}'z=X{J}Yy C {T}y, soy is a cyclic vector for {T}. O

We note that it is an open question which has been in circulation for
several years as to whether the cyclic multiplicity of the commutant of a
single operator is invariant under quasisimilarity.

Now recall that if an algebra A C B(H) has a cyclic vector z, then z
is a separating vector for A’.

Corollary 3.3. IfT is bitriangular, then W(T') has a separating vector.

Note that by Theorem 3.2 and the above remark we have a slightly
stronger result: {T'}" has a separating vector.

The question of whether W(T') has a separating vector for every trian-
gular operator T is still open. The following example shows that we cannot
always expect to produce a separating vector for W(T') from a cyclic vector
for {T'}.

Example 3.4. For each n,1 < n < oo, there is a triangular operator
T such that {T'}’ has cyclic multiplicity n.

Let K be a separable Hilbert space of infinite dimension and let
H = ®°K. Consider an operator weighted backward shift W with weight
sequence {W,}32, on H defined by

W(IE()@J,‘]EB...)Z(Wofl/‘l@Wl.’L‘z@...).

We have W € B(H) provided {||Wp||}5%, is bounded. In [H2], an invertible
weight sequence is constructed so that W(W) = {W}'. (W is said to have
a “tiny” commutant.) We can modify this example slightly so that Wy is a
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noninvertible quasiaffinity, W, is invertible for n > 1, and W(W) = {W}’
still holds. We omit the details.

For a fixed n, 1 < n < oo, we also fix a Hilbert space A of dimension
n. Choose a bounded injective operator X : N ket W =K 90 0 @...
such that ran X Nran Wy = {0}. Let

(2 )

in B(H & N). Note that WX = 0 so that

k
k _(WF 0
=" o)
if k > 1. So clearly T is triangular. Suppose that
A B
v=(¢ 1)

in BCH®N) and U € {T}. Then C =0, A € {W}', and WB+XD = AX.
Since {W} = W(W), the operator A has the form A = Y a0 MWE. (See
[H2] or [Lam].) Also W*X = 0 for k > 1 so that AX = \X. Hence
WB = X(MK — D). Since (ran X) N (ran Wy) = {0} we have (ran X) N
(ran W) = {0}. Thus WB = 0 and D = X\oI. This gives the following
description of {T'}':

o0 k >
{TY = {(E’moo)‘kw /\fl) : Z MW € WW), ran B C kerW} .
k=0

We assert that {T'}' has cyclic multiplicity n. Recall (cf. [W1]) that
W is a cyclic operator. Let 2 be a cyclic vector for W. If {ex}7_; is a basis
for NV, then one can check that {z @ e;} U {0 @ ex}7_, is a cyclic set for
{T}. On the other hand, if k < n and {z; ® yj};?=1 are vectors in H ® N,
then the projection of V§=1{T}l (z; ® y;) onto the second summand space
N is at most k dimensional. So {z;® yj};-;l can not be a cyclic set for
{TY. O

We note that W(T') does have a separating vector in this example,
although {T'}', which is a somewhat larger algebra, fails to have a separating
vector if n > 2.

A large class of triangular operators which are cyclic has been noted in
[H5, Lemma 5.2] and [H1]. For completeness, we provide a proof in Lemma
3.5 and Proposition 3.6.
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Lemma 3.5. Suppose S,T,X € B(H) and SX = XT. Then if T is cyclic
and if X has dense range then S is also cyclic.

Proof: Let u be a cyclic vector for T. Then P(T)u is dense in ‘H, where
P(T) denotes the set of all polynomials in T. So XP(T)u is also dense
in ‘H since X has dense range. Since SX = XT,p(S)X = Xp(T) for all
polynomials p. Hence v := Xu is cyclic for S. ‘ O

Proposition 3.6. Let T be a triangular operator whose diagonal entries
with respect to some orthonormal basis for H are distinct. Then T is cyclic.
In particular, W(T') has a separating vector.

Proof: By adding a scalar to T if necessary, we may assume that the
diagonal entries are all nonzero. Let {e,}$° be the orthonormal basis in
the hypothesis. For each n let z, be an eigenvector for T in [es,...ep,]
corresponding to the eigenvalue t,,, where T = (t;;). Since the num-
bers t,,,1 < n < 00, are distinct it follows that =, € [1,...eq—1]. So
[Z1,...2,] = [e1,...en] for all n. Let

X = [z1,7,...]

be the formal matrix whose column vectors are z,zs,.... By multiplying
the vectors z; by scalars decreasing to 0 sufficiently fast if necessary, we may
assume that X determines a bounded operator in B(H). Then TX = XD,
where

D= diag(tll,t22, . )

is the diagonal matrix with respect to {e, }$° with diagonal entries t11, 22, .. ..
Since the t;; are distinct, D is cyclic. Since span{z;}{° is dense, X has dense
range. Thus T is cyclic by Lemma 3.5. O

Next we list a few questions which were settled in the negative for semi-
triangular operators in [W2] but are still open for the class of triangular
operators. We refer the reader to [LW2] for related questions. Let T' € A.

Question 1. Must W(T') have a separating vector? The answer is
yes (Corollary 3.3) if T is bitriangular. Also, the answer is yes if T has
distinct diagonal entries (Proposition 3.6).

Question 2. Is there some n > 1 so that 7™, the direct sum of n
copies of T, is reflexive? That is, must W(T(")) = Alg Lat T(") for some
n > 17 In particular, is T? reflexive?
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Question 3. Must W(T) = A(T)? That is, must W(T') coincide
with the weak * closure of the polynomials in 77 Actually, this question is
still open for semi-triangular operators, since the counter-example for this
problem in [W2] is not semitriangular.

Question 4. If T is reflexive and p is a polynomial, must p(T") be re-
flexive? (We note that the more general question of whether each S € W(T)
is reflexive was settled in the negative in [LW1, Cor. 3.9].) In particular,
must T2 be reflexive?

Next, we discuss two stability properties of the index of semitriangu-
larity.

Proposition 3.7. IfT € (SA) and if S is quasisimilar to T, then S € (SA)
and iSA(S) = iSA(T).

Proof: Let n =iga (7). Suppose that X is a quasiaffinity and that SX =
XT. Then p(S)X = Xp(T) for each polynomial p. Hence if z € £ then
Xz € Es. So XEr C Es. Hence [XE7] C [Es]. Since [E7] has codimension
n in ‘H and X is a quasiaffinity, [X&r] has codimension n in H. Thus
S € (SA) and isa(S) < n. Reversing the above argument shows that
iSA(S) =n. O
Lemma 3.8. Let T € B(H), and let p(t) be any polynomial which is not
a constant function. Then &1 = Ey(Ty.

Proof: The inclusion “2” is clear. To prove “C”, let z be an algebraic
vector for T and let ¢(t) be a nontrivial polynomial for which ¢(T)z = 0.
Write ¢(t) = [].(t — A\;) and let

r(t) = [J(t - 009,
Then ¢ divides r op since (¢t — A;) divides (p(t) — p();)) for each 7. It follows
that r(p(T))z = 0. Thus = € £y as required. a

Proposition 3.9. Let T € B(H) and suppose p(t) is a nonconstant polyno-
mial. Then T € (SA) if and only if p(T') € (SA). In this case isa(p(T)) =
isa(T).

Proof: This is clear from Lemma 3.8.

Let us say that a class (C) of operators has the polynomial property if
it satisfies the stability property of Proposition 3.9. So (C) must be closed
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under nonconstant polynomial functions of its operators, and must also have
the property that whenever p(T') € (C) for some nonconstant polynomial
p then also T € (C). The set of algebraic operators has this property,
but neither the set of compacts nor the set of finite rank operators has
it. By Proposition 3.9 A and (SA) have the polynomial property, and by
considering adjoints so do (BA) and (BSA). In fact, for each nonnegative
integer n the set of semitriangular operators of index precisely n has this
property, and for each pair (n,m) the set of bisemitriangular operators T
with iga(T) = n and iga(T*) = m has this property.

Next we relate the above considerations to certain nests and nest
algebras. If {e,}{° is a basis for an infinite dimensional separable Hilbert
space H let N, denote the “triangular” nest {0, N1, Np,...}U{H}, where
Ni. = [e1,...ek]. For 1 <m < oo let N, denote the corresponding nest on
m dimensional Hilbert space. It is clear that T is semitriangular if and only
if T € Alg N for some nest A which is unitarily equivalent to the ordinal
sum Noo Bord Nym for some m < oo. If C is a set of operators let us write

U(C) :={T € B(H) : T is unitarily equivalent to an element of C}.

The above discussion shows that I/(Alg A) has the polynomial property if
N = Ny or if N = Ny Dora Nin for some m < oo. This suggests a new
type of problem:

Question 5. For which nests N does U( Alg\) have the polynomial
property?

If NV is the trivial nest {0,1} then Alg A" = B(N) and so Alg A has
the property for trivial reasons. So it may be best to restrict attention to
multiplicity free nests. Also, it is useful to note that if a set has the polyno-
mial property and contains 0 then it must contain all algebraic operators.
We note that if V' is a continuous nest then Alg A fails to contain any
nonzero finite rank projection. The reason is that any projection in Alg N
would commute with A/, and since N generates a nonatomic von Neumann
algebra its commutant contains no finite rank operators. Thus, if N is
continuous, U( AlgN') does not have the polynomial property. Another
instance of failure is the nest N = Ny @®ord Noo- Reason: There is a unicel-
lular backward weighted shift T of multiplicity one for which N, = Lat T,
and for this operator we have Lat(T?) D Ny @ ord Noo- A few additional

instances of failure are known to us, but the general problem seems to be
difficult. :
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Finally, we note that isa is not stable under small compact pertur-
bations. We thank Ken Davidson for suggesting including this. Indeed, if
isa(T) = n then given € > 0 there is an operator K of rank < n with
|K|| < € such that T'+ K € A. To see this, first consider the case where

n = 1. Then
A =z
r=(3 3)

with A € A,z € H,A € C. Choose z' € £4 with ||z — 2’| < e. Then

(A &
pe (4 ) en
by Corollary 2.3, |T'—T"|| < € and rank (T'—T") = 1 obtaining the desired

result. Now use an induction argument.
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