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Abstract. Given Hilbert space operators A and B, the possible 
spectra of operators of the form A-BF are described, under 
suitable hypotheses. The Fredholm properties of )•I- (A-•-BF) 
are studied, as well as the situation when the operator A-•-BF 
can be made algebraic, for a suitable choice of F. 

To the memory of Domingo Herrero 

1. Introduction. Let H, G be (complex) Hilbert spaces, and denote by 
L(G, H) the set of all linear bounded operators defined on G with range in 
H. Given A • L(H) = (L(H,H)),B • L(G,H), the spectrum assignment 
problem is: what are the possible spectra of operators of the form A + BF, 
where F • L(H, G)? More generally, one asks for a description of spectral 
structure of operators of the form A + BF. 

In the finite dimensional case (dim H < •x•, dim G < •x•) this problem 
is one of the basic problems in the control theory of linear systems with 
finite dimensional state space. The solution of this problem is well-known 
as Rosenbrok's theorem [12] in case •-•-•=0 Im(AJB) = H. The general 
finite dimensional case is treated in [14, 15], where not only the possible 
eigenvalues of A + BF are described (with fixed A and B), but also the 
possible Jordan structures of A + BF. 

In the infinite dimensional case, a complete description of the spectra 
of operators A + BF is known when the pair (A, B) is exactly controllable, 
i.e. the operator 

e z(c,a) 
is right invertible for some positive integer p. 
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Theorem 1.1. 

ators A • L(H), 
(•) 
(ii) 

The following statements are equivalent for a pair of oper- 

(A, B) is exactly controllable; 
the operator - A,S] e ß C,H) is right invertible 
for every ,k 6 C. 
If, in addition, H and G are h•nite dimensional then (i) 
•d (ii) are equivMent to 

(iii) for every compact set A C C there e•sts F 
that a(A + B F) = A. 

Moreover, if (ii 0 holds, then F can be chosen to depend conthuous½ (in 
some appropriate sense) on A, B •d A. 

Various p•ts of Theorem 1.1 were proven in [6, 7, 13, 10]; see •so 
[11]. Additional conditions equivalent to (i), (ii) and (iii) can be found in 
[13], one of them is quoted in Section 5 (Theorem 5.1). 

In this paper we study the spectrum •signment problem for not ex- 
actly controllable pMrs (A, B), •su•ng throughout the paper that H is 
infinite dimensional (if dim H < •, the problem is in fact finite dimen- 
sionS). In the not exactly controllable c•e, not every compact set c• be 
assi•ed • spectrum of A+ BF for a suitable F, • it fo•ows from Theorem 
1.1. A necess•y condition for •si•ability is easily obtained: 

Proposition 1.2. For given A • L(H),B • L(G,H) let 

E(A,B) = {,k e CI[,kI- A,B] is not right invertible} 

Then for every F • L(H, G) 

cr(A + BF) D E(A, B). 

Proof: If A • 52(A,B), then operator [•,I- A,B] is not right invertible, 
that is, Im(XI- A, B) is a proper (not necessary closed) subspace of H. So 

Im(XI- (A + BF)) = Im((M- A)- BF) C_ 
C Im(2I- A) + ImBF C_ Im(2I- A) + ImB = Im(2I- A,B) • H. 

Itfollowsthatlm()•I-(A+BF)) • H, and therefore • e a(A+BF). ß 
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The question arises whether equality can be achieved in (1.1) for a suit- 
able F, and more generally whether every compact set containing E(A, B) 
can be achieved as the spectrum of A-b BF. Easy examples (see Section 
6) show that the answer is negative. By analogy with Theorem 1.1, one 
expects that some kind of "generalized exact controllability" is a natural 
sufficient condition for assignability of the spectrum of A + BF provided 
the necessary condition (1.1) is satisfied. This is indeed the case. 

To state one of the main results of this paper, introduce the following 
definition. For a pair of Hilbert space operators A ß L(H), B ß L(G,H) 
denote Cp(A,B) = Im[B, AB,...,AP-•B]. The pair of operators A,B is 
called admissible if for some positive integer p Cp(A, B) - Cp+• (A,B) and 
the linear set Cp(A, B) is closed. If p is the minimal positive integer with 
these properties, we say that the pair (A, B) is p-admissible. 

Theorem 1.3. Let (A, B) be a p-admissible pair of Hilbert space opera- 
tors, where p is a positive integer. If ImB is infinite dimensional, then for 
every compact set A •k • such that A _D E(A, B) there exists F ß L(H, G) 
satisœying 

(1.2) cr(A + BF) = A. 

The proof of this theorem will be given in the next section. 
The result of Theorem 1.3, as well as of the more general Theorem 

4.2, depends essentially on the hypothesis of p-admissibility. An example 
illustrating this point is given at the end of the paper. In Section 3 we 
give the necessary and sufficient conditions for a compact set A to coincide 
with the spectrum of A + BF, for a suitable F, where the pair (A, B) is 
p-admissible but ImB is finite dimensional. In Section 4 we prove more 
detailed version of Theorem 2.3, with the Fredholm properties of XI - (A + 
BF) taken into account. The situation when A+ BF can be made algebraic 
(i.e. p(A + BF) = 0 for a non-zero polynomial p(z)) by a suitable choice of 
F is studied in Section 5. 

We are grateful to Prof. D. A. Herrero for bringing to our attention 
the reference [9]. During the final stages of preparation of this paper, we 
were deeply saddened by the unexpected death of Prof. D. A. Herrero who 
was a close friend of one of us (L. R.). 
2. Proof of Theorem 1.3: Let (A, B) be a p-admissible pair. The sub- 
space H0 -- Cp(A, B) is obviously A-invariant. With respect to the ofthog- 



504 LEONID GURVITS, LEIBA RODMAN AND ILYA SPITKOVSKY 

onal decomposition H = H0 © H0 x we have 

0 A22 ' B = 0 ' 

Proposition 2.1. In the above notation, 

(2.2) E(A,B) = {)• ß CI)•I- A22 is not right invertible}. 

Proof.' By Theorem 1.1, the operator [),I - All, B1] is right invertible for 
all )• ß C. Therefore, 

[)•i_ A,B] = [&I- All -A12 B1] 0 )•I- A22 0 

is right invertible if and only if ),I - A22 is, and (2.2) follows. ß 
In particular, E(A, B) _ a(A22). 
The parts (i)-(iii) of the next lemma are essentially proved in [13] 

(although it was not explicitly stated there). Because of the later needs the 
lemma contains more information that is needed for the proof of Theorem 
1.3. 

Lemma 2.2. Let D ß ß be •., n-admissible exactly 
controllable pair of operators, where n > 1. Then there exist orthogonal 
decompositions H = M1 •)M2, G = G• •)G2 (M2 • {0}) with the following 
properties: 

(i) write 

[Dll D12] D = D21 D22 ' M1 ½ M2 -• M1 © M2 

(ii) 

with respect to this decomposition; then the pair (D22, D21) 
is (n - 1)-admissible and exactly controllable. 
the operator B: G• © G2 -• M• © M2, when partitioned 
with respect to these orthogonal decompositions has the 
form 

B=[B• B•2] 0 B22 
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(iii) 
with invertible operator B1 ß L(G•, M•). 
for every E ß L(M2M•) and every K ß L(M•) there ex/sts 

•: [•1 •]. •1 • • •1 • .c• • 0 0 

D2• D• D• D•2 + D• E 

are similar: 

0 I D• D•+D2•E 0 

(iv) if ImB is infinite dimensional, then M• (and there/ore a/so 
G•) are infinite dimensional. 

Proof: Let us mention first of all that (iii) follows directly from (ii). Indeed, 

[, 0 + 0 D21E ] [I0 •E] __ [K ED21 D• D• + D• D2• ' 

and 

So, F• and Fa are defined by formulas: 

F1 = B•-•(K + EDa• - D•),Fa = B•-•(ED2a - KE- Din). 

Therefore it is sufficient to verify properties (i), (ii), and (iv). 
Suppose at first that ImB is closed. Then take M• = ImB, G2 = 

Ker B. In this case the operator matrix B: G• © Ga-• M• © M,has the 

forroB = [B•] and (ii)is true with B•a= 0, B2a= 0. Due to this 0 ' 

special structure of B 

c•(D,•) = • eC•_,(D•,,O•). 

This equality proves (i). 
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Now assume ImB is not closed. As in [131, let B*B = f• tdE(t) be 
the spectral representation of B'B, and let 

(2.3) G2= E(e)G, Mi = BG1 

and 

(2.4) Bc=B(I-E(e)) 

where e > 0 will be chosen later. With respect to orthogonal decompositions 
G = G• •) G2, M = M• •) M2 operators B and B• have the form 

B= [• B12] and Be= [/• 00] B22 

correspondingly. In particular, (ii) is satisfied. As B• -, B uniformly 
when e -, 0, and [B, DB,...,Dn-IB] is right invertible, all operators 
IBm, DB•,..., D n-iBm] also are right invertible for sufficiently small e > 0. 
In other words, C•(D,B•) = H. We have C•+i(D,B•) _D C•(D,B•) = 
C•(D,B) = C•+i(D,B) _D Cn+i(D, Bc). Therefore the pair (D,B•) is also 
n-admissible and exactly controllable (for such e). Since ImB• = M1 is 
closed, for the pair (D, B•) we are now in the situation that already was 
considered. As G2 = Ker B•, condition (i) is satisfied. 

It remains to prove (iv). Indeed, if for any e > 0 the subspace ImB• 
is finite dimensional, then B is compact. Therefore, [B, DB,..., D•-•B] is 
also compact. Together with right invertibility of this operator this implies 
that C•(D, B) is finite dimensional, and so ImB is finite dimensional as 
well. ß 

Proof of Theorem 1.3: Let H0 = C,•(A, B). With respect to the orthog- 
onal decomposition H = H0 • H0 x we have 

0 A22 , B = 0 ' 

Without loss of generality we assume H0 • H (otherwise Theorem 
1.3 is reduced to Theorem 1.1). Assume first ImBx = Ho (i.e. p- 1). As 
H0 is infinite dimensional, we can write Ho = H01 (•)H01, where Hox is 
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an infinite dimensional Hilbert space. By Read's theorem [9], there exist 
K • L(Ho1),C • L(H•,Ho1)) such that 

A• ] = {)• • C )J - A22 is not right invertible } 

which coincides with E(A, B) by Proposition 2.1. So, given any compact 
set A containing E(A,B), let K(A) & L(H0x) be such that a(K(A)) = A; 
then 

(2.5) a K C = A. 
0 A22 

But since B1 is right invertible, the operator in (2.5) can be written in the 
form 

o o 0 K C = A+BF, 
0 0 A22 

where 

and where B• -1 is a right inverse of Bx. So Theorem 1.3 is proved in the 
case ImBx = H0. 

Assume now that p > 1. Apply Lemma 2.2 to the pair (A, B), with 
the subspace H replaced by Cp(A, B). We obtain 

Xll X12 X13 
X21 X22 X23 

0 0 Xaa 

B • 
B1 B12 
0 B22 
o o 

with respect to the decomposition H = Mx QM2Q(Cp(A,B)) ñ, G = Gx QG2 
where Mx ½M2 = ½p(A,B). Here the operator Bx is invertible, and the pair 
(X22, X21) is exactly controllable. Observe also that by Lemma 2.2 (iv) the 
subspace Mx is infinite dimensional. Let be given a non-empty compact set 
A containing E(A,B). By Theorem 1.1, there exists Y • L(M2,M•) such 
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that'a(X22 + X2•Y) = {Xo}, where Xo is a fixed point in A (if M2 happens 
to be finite dimensional, then the well-known pole assignment theorem for 
matrices ensures the existence of such Y). Let 

I -Y 0 I 

A•= 0 I 0 A 0 
0 0 I 0 

B•= B= 

0 

1 I 0 , 
0 I 

B•2 - YB22' 
B22 

0 

Clearly, we can consider the pair (A',B') instead of (A,B). We have 

A ! _.... zll Z12 Z13 1 X2• Z22 X2a , 
0 0 Xaa 

where Z22 = X22 q-X21Y. Using the invertibility of B1 and Read's theorem 

[9] let F = [Fo• F2 F3] E L(H, G)be such that ' 0 0 

K 0 A • + B•F = Z21 Z22 Z23 
0 0 Xaa 

where the operators K atld C are chosen to satisfy a [K C ] = A (the 0 X3s 

same argument was used in the first part of the proof). As a(Z22) - 
{•0} C_ A, it follows that o'(A' + B'F) = A. Indeed, A' + B'F is similar 

to a block triangular operator with the diagonal blocks [0 K c ] and Z22. Xaa 

So AI - (A • + B•F) is invertible for every A • A and is not invertible for 
every A E A\{Xo}. Finally, AoI- Z22 is not right invertible (otherwise, Z22 
could not have a singleton spectrum), and therefore XoI- (A' + B'F) is not 
invertible. This completes the proof of Theorem 1.3. ß 

3. Spectrum Assignment for Admissible Pairs: The Remaining 
Case. In this section we study the spectrum assignment for p-admissible 
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pairs (A, B) in the relatively easy case when B is a finite rank operator. 
We use the decomposition 

A22 ' 

with respect to H = Ho ß Ho x, where Ho = ½p(A,B). 

Theorem 3.1. Let (A, B) be a p-admissible pair, and assume that ImB 
is finite dimensional, and let be given a compact set A C C. Define q = 
dimCp(A,B)(< o•). T/•en there exists F e L(H, G) satisfying a(A+BF) - 

A if and only if A _D a(A22) and A•a(A22) consists of at most q points, where 
A22 is defined by the decomposition (3.1). 

Proof.' From the representation (3.1) and the finite dimensionality of H0, 
it follows easily that 

(3.2) 

for every F • L(H, G). As dim Ho = q, it is also clear that a(A + 
BF)•a(A22) consists of at most q points. 

Conversely, let A _D a(A22) be such that A•a(A22) consists of at most 
q points. Since dim Ho -- q < c•, by the well known pole assignment 
theorem in finite dimensional spaces there exists Fx • L(Ho, G) such that 
a(A• + B•F•) = A•a(A22) (or a(A• + B•F•) C_ a(A22) if A = a(A22)). 
Letting F = [F•, 0] • L(H, G) we obtain that 

A + BF = [ A• + B•F• A•2] 0 A22 

and therefore (in view of (3.2)) a(A + BF) = A. ß 

4. Assignability of semi-Fredholm properties. Theorem 1.3 admits 
a more precise formulation where not only the spectrum but also the semi- 
Fredholm properties of A + BF are prescribed. Let us introduce the con- 
cepts necessary for this formulation. As before, H is an infinite dimensional 
Hilbert space. An operator A • L(H) is called semi-Fredholm if ImA is 
closed and at least one of Ker A and H/ImA is finite dimensional. More pre- 
cisely, we say that A is (a,/•)-semi-Fredholm, where a = dim Ker A,/• = 
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dim (H/ImA). So a,• are nonnegative integers or infinity, but not both a 
aad/• can be infinity. Denote by f• the set of all such pairs: 

r• = (Z U {•}) x (Z U {•})•(•, •). 

The difference • - fi is c•ed the index of operator A and is denoted 
by ind A. It is well known (see, e.g., [1]) that the sets 

A•(A) = A• = {• E C: A- AI is se•-•edho• with index •} 

•e open for aH • • •. Let us denote 

•,•(•) = •,• = {• • C: •- •Z 
is se•-•edho•, dim Ker (A - AI) = a, codim Im (A- AI) = •}. 

It follows directly from this definition that 

= - = 

•d a(A) = C•A0,0. In particul•, 
(i) A00 contains a neighborhood of infinity. 

The structure of other sets A,,• is more refined. Namely, 
(ii) A•,• • Aw,•, = 0 if (a, fi) • (•', fi'). 
(iii) Am0 •d A0,• are open for •1 a, • • • U {•}. 
(iv) for a > 0, • > 0 sets A•,• are not necessarily open; their 

interiors M•,• = int A•,• •e separated, i.e. the closure 
of M•,• does not intersect Mw•, if (a, •) • (a', •'). 

(v) For every point X • A•,zXM•,• there e•sts unique (a', •') 
• • such that X • int (M•. 

Therefore, A•,•M•,• is at most countable discrete subset of A•,•. The 
above memioned pair (a•, •) h• properties: 

a-a'= •-•' > 0 if a,• < • 

a'= +•,fi' < fi if a = +• 
•' < •,fi'= +• if fi = +• 

For finite dimensional H (the case we •e not interested in) •1 A•,• with 
• • fi are void, A•,• are void except tiNtely m•y of them, for • • 0 A•,• 
consist of finitely many points; •d A0 = C. If H is infinite dimensional, 
then 

(vi) A0 • C. 
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The system of properties i)-vi) is full. More precisely, the following result 
holds. 

Proposition 4.1. Let H be an infinite dimensional Hilbert space, and let 
{A,•,/• ß (a,/3) e f•} be a given system of subsets in C satisfying (i)-(vi). 
Then there exists an operator Ao G L(H) such that 

A•.•(Ao) = A•.• for •/(../3) e • 

In particular, a(Ao) = C\A00. 

Proof'. Let us introduce some notation at first. For a bounded open domain 
D C C let L2(D) be the space of all square integrable complex valued 
functions, with respect to the planar measure in D. Let HD be the (closed) 
subspace of L2(D) spanned by rational functions with poles off D, and 
let •D be the operator of multiplication by z in HD ' (l•Df)(z) = zf(z). 
Cleaxly, the spectrum of •UD coincides with D, A0,• (•UD) = D, and all other 
Aa,•(•UD) are void. 

Let us now consider all pairs (a,/3) such that M•,/•(= int A•,/•) # 0. 
Denote the set of all such pairs by f•', and for (a,/3) E f•' put 

where O•,;• = int (A--•,•) O* = {•' X e O•,;•}, and where for a given 
Hilbert space operator X and a (a is either a positive integer or •) we 
denote by X © the block diagonal operator with a• diagonM blocks equM 
X (the number of such blocks is equM a). 

For X • A•,•Dw,•, let us denote by Nx the operator of multiplication 
by constant X in a •ne• space with the (finite) dimension nx, where nx = 
a-a' ifa < •,nx = 3-3'if3 < •. Fina•y, let Nbe • arbitrary 
operator with the spectrum C• U {A•,• ß (a,•) • •} = a(N) such that 
N - •I is not se•-Fredho• for all • • a(N). Let us mention that such • 
operator N e•sts because the set U{A•,• ß (a,3) • •} is open due to (v); 
we can construct N, for example, • direct sum of infinitely many copies 
of a normal operator with the point spectrum dense in a(N). It's easy to 
verify that the operator 
(4.1) 
& = • • (•{s•,• ß (•,•) e a•}) • (•{• ß • e 5•,•,•, (•,•) e 
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has the desired semi-l*redholm properties. ß 
A related result was obtained in [2] (see also Section XI.5 in [1]). 
We now state the main result of this section. 

Theorem 4.2. Let (A,B) be as in Theorem 1.3. Let a [amily 
e f•} ofsubsetsC with properties (i)-(vi) and such that E(A, B) C_ 
be given. Then there exists F ß L(H, G) such that A•,/•(A + BF) = A•,/•. 

We need some preliminary results for the proof of Theorem 4.2. 

Lemma 4.3. Let H•,H2 be Hilbert spaces and Y ß L(H•),Z ß L(H2) 
operators which are not semi-1Zredholm. Then for every W ß L(Hx, H•) 

the operator [¾ 0] is also not semi-1Zredholm. w z 

The proof follows from the observation that a Hilbert space operator 
X • L(H) is semi-•edholm if and only if there exists Y ß L(H) such that 
at least one of the operators XY or YX is a finite rank perturbation of the 
identity. 

The next lemma describes the semi-l•redholm properties of A + BF 
under the exact controllability hypothesis. 

Lemma 4.4. Let (A, B) be exactly controllable, and assume that dim 
H = cx:. Then for every fam/ly {A,,/•: (c•,/3) ß f•) of subsets in C satisfying 
(i)-(vi) there exists F ß L(H, G) such that A.,•(A + BF) 

Proof.' Let p be such that 

(4.2) ½p(A,B)= H. 

We proceed by induction on p. If p = 1, then B is right invertible, and 
every operator Ao ß L(H) can be written in the form Ao = A + BF. So we 
are done in this case in view of Proposition 4.1. 

Assume now that (4.2) holds, where p > 1, and that Lemma 4.4 is 
proved for (p- 1)-admissible exactly controllable pairs. Using Lemma 2.2, 
write 

H = M1 ½ M2, G = G1 ß G2, A -- [ A2:t A22 ' 0 B22 ' 
with the properties described in Lemma 2.2. By Theorem 1.1 find E • 
L(M2,M•) such that a(A22 + A2•E) = {A0}, where A0 is a point in Ck U 
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{A•,fi: (c•, fi) e •} (such E exists also when M2 is finite dimensional, by the 
pole assignment theorem). Choose K e L(M1) such that A•,fi(K) - A•,•. 
This choice of K is possible because dim M• = oc by Lemma 2.2 (vi), and 
therefore Proposition 4.1 is applicable. 

Let 

[K 0 ] (4.3) X = A2x A• + A•xE 

If A • A•,• then the right lower block of the operator 

X _ ,ki = [ K - ,kI 0 ] A•i A2• + A• E - M 

is invertible. Therefore, 

dim Ker(X - ,XI) = dim Ker(K - ,XI) = c•, codim Im(X- ,XI) = 
codim Im(K - M) = fi, 

and 

(4.4) A,•,•(X) _D A,•,•. 

If • ½ U{A•,fi: (cq•) e f•}, then the operator K-hi is not semi-Fredholm. 
According to Lemma 4.3, an operator X - M also is not semi-Fredholm. It 
means that an opposite inclusion in (4.4) is also true. Now an application 
of Lemma 2.2 (iii) completes the proof of the induction step. ß 
Proof of Theorem 4.2: The proof is modelled after the proof of Theorem 
1.3. Let H0 = Cp(A,B), and partition 

A22 ' B = 

with respect to H = Ho©Ho $-. We can assume H0 -• H (otherwise Theorem 
4.2 is reduced to Lemma 4.4). 

Assume first ImB1 = H0 (i.e. p = 1). Then we argue as in the proof 
of Theorem 1.3, choosing K(A) with the requisite semi-Fredholm properties 
(which is possible by Proposition 4.1). 
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Assume now p > 1. Again, we repeat the procedure used in the proof 

of Theorem 1.3, choosing •o • E(A,B). Then choose K = [K• o ] C - 0 K2 ' -- 

c2 so that A•,•(K•) = A•,• for all (a,•) • fl, and a o x• - 
U(A, B). Clearly, 

A•,• X3 3 = A•,•. 
As it was mentioned in the proof of Theorem 1.3, A' + B'F is similar to a 

block triangular operator with the diagonal blocks [K C ] and Z22. Now 0 Xaa 

we can repeat the arguments used in the proof of Theorem 1.3 to prove that 
the operator X given by (4.3) has the desired properties. ß 

5. Algebraic Operators. Let us remind that an operator X • L(H) is 
algebraic if there exists a nontrivial polynomial •o such that 

(5.1) •o(X) = 0. 

The set of all polynomials •o satisfying (5.1) is obviously an ideal in 
the ring of polynomials. Therefore there exists the unique polynomial •Oo of 
this kind having minimal degree Ko and leading coefficient 1. In this case 
the condition (5.1) is satisfied if and only if •o is divisible by •Oo, and X is 
called an algebraic operator of degree Ko. 

We say that a pair A e L(H),B e L(G,H) is algebraically controllable 
(with the index Ko), there exists an operator F e L(H,G) such that A+BF 
is algebraic (of degree Ko; and for any F • L(H, G) the operator A + BF 
is not algebraic of degree less than Ko). Of course, in the case of finite 
dimensional H every operator X ß H -• H is algebraic (of degree _< dim 
H). Therefore, every pair (A, B) in this case is algebraically controllable. 

The following result is proved in [13]. 

Theorem 5.1. A pair (A,B)is exactly controllable, that is, ½p(A,B) = H 
/or some p, if and only if/or any polynomial • of degree p there exists an 
operator F • L(G, H) su& that 

= 0. 

So an exactly controllable pair is algebraically controllable. 
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We shall show in this section that in the general case the algebraic 
controllability is connected very closely to the property 

Im•(A) C_ C•(A,B). 

This property is satisfied automatically for all polynomials • when 
(A, B) is exactly controllable and k = p. In the general situation all poly- 
nomials ß satisfying (5.3) with the fixed k form an ideal in the ring of 
polynomials. Therefore, as it was in the case of annihilating polynomials 
T, there exists a unique polynomial •0 having minimal degree and leading 
coefficient 1, satisfying (5.3). Moreover, (5.3) is satisfied if and only if ß is 
divisible by •0. 

Lemma 5.2. Iœ (5.3) is satisfied, then Ci(A,B) = Ci+i(A,B) œor i _> 
max{k, deg •}. 

Proof: If deg • = m < k, the condition (5.3) is also satisfied when poly- 
nomial ß is substituted by zle-m•(z). If m > k, then Cle(A,S) C_ Cm(A,B) 
and the inclusion Im•(A) C_ Cm(A,B) is true along with (5.3). Therefore 
it is sufficient to consider the case m = k. Then according to (5.3) for every 
x E H the vector Alex can be represented as 

Alex -. 
k-1 

Z cjAJx + Z:r 
j=0 

with suitable scalars cj and zx • Cle(A, B). In particular, for x = By: 

k--1 

AleBy : E cjAJBy + ZSy. 
j=0 

Therefore AleBy • tie(A, B). ß 
Lemma 5.3. If (5.2) is satisfied for a polynomial • of degree k, then (5.3) 
is true with • = qo. 

Proof: It's easy to verify that for any operator Z, •o(A + Z) can be repre- 
sented as 

k-1 

+ 
j=0 
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with some suitable operators Cj. In particular, for Z - BF, 

k-1 

o = + = 
j=0 

Therefore, 

k-1 

ImT(A) = Im• AJBFCj C Im[BFCo,ABFCl,...A•-IBFC•_•] 
j=0 

C- ß 

It follows from Lemmas 5.2 and 5.3 that if the pair (A, B) is alge- 
braically controllable, then (5.3) holds and the increasing sequence of lineals 

(5.4) Ci(A,B) C_ C2(A,B) C_ ...Ck(A,B) _C ... 

stabilizes; moreover, the stabilization index, i.e. the least positive integer 
k such that ½k(A,B) = ½k+•(A,B) does not exceed the minimal degree of 
a polynomial •o satisfying •o(A + BF) = 0 for some F e L(H, G). The 
converse statement is only partially valid. Namely, if (A, B) is a pair of 
Hilbert space operators for which the sequence (5.4) stabilizes with the 
stabilization index 1, and (5.3) holds for some k _> I and some nonconstant 
polynomial • of degree 1, then (A, B) is algebraically controllable. Indeed, 
in this case (5.3) takes the form Im•(A) _C ImB. By Douglas' lemma [4], 
there exists operator G1 such that 

(5.5) q•(A) = BG1. 

Write •(z) = c•z +/•, c• • 0; then (5.5) implies •(A + BF) = a(A + 
BF) +/•I = c•A +/•I + aBF = BG1 + c•BF = 0 if F = -c•-lG1. 

It is easy to come up with examples showing that condition (5.3) (for 
some nonzero polynomial ß and some k _> 1) and stabilization of (5.4) are 
not enough to ensure that the pair (A, B) is algebraically controllable. For 
example, consider any positive compact infinite dimensional operator A, 
and put B = Am. Then for any k Ck(A, B) = Im B = Im Am. Therefore, 
the condition (5.3) can be rewritten in the form Im•o(A) C_ ImA m, and is 
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satisfied if and only if T(z) is divisible by z m . Nevertheless, for any choice 
of F the operator T(A + AmF) is different from zero. Indeed, if ck(k •_ m) 
is the last nonzero coefficient of T, then T(A + AmF) = ck(I + Z)A • for 
some compact operator Z. Being •redholm, operator I + Z has a finite 
dimensional kernel. Therefore, if T(A + AmF) = 0, then Im A • (which is 
contained in Ker (I+ Z)) is also finite-dimensional, which is a contradiction. 

Let us mention that in this example the sequence of lineals (5.4) stabi- 
lizes from the very first element, but these lineals are not closed. Therefore, 
the pair (A, B) is not p-admissible for any p. The situation changes when 
we turn to p-admissible pairs. 

Theorem 5.4. A p-admissible pair (A, B) is algebraically controllable if 
and only if there exists a nonzero polynomial if2 such that 

(5.6) Imqz(A) C_ Cp(A,B). 

If this condition is satisfied, and •o is a polynomial of m/nima/ degree 
satisfying (5.6), then an operator F such that •(A + BF) = 0 exists if and 
only if • is divisible by No and deg • •_ p. 

Proof'. Necessity. According to Lemma 5.3, if •(A + BF) = 0 and deg 
• = k, then 

(5.7) Im•o(A) C_ C•(A,B). 

As for any integer • •_ 1Ce(A,B) C_ Cp(A,B), the condition (5.6) is satisfied 
for ß = T. As it was mentioned above, this means that T is divisible by 
•0. l•rom (5.7) and Lemma 5.2 it follows that C•(A,B) = Ck+x(A,B). 
According to the definition of a p-admissible pair, it means that k •_ p. 

Sufficiency. We have to prove that if deg T •- P and 

(5.s) Im •o(A) C_ Cp(A,B), 

then there exists an operator F e L(G,H) such that T(A + BF) = 0. We 
shall use the block representations of operators A and B, obtained in the 
proof of the Theorem 1.3. 

Forp-- 1, A- (A•'A'2) B-(ød)withinvertibleB•. tc- 0 A2• ' 

cording to (5.8), Im•o(A) C_ ImB. It means that •o(A2•.) = 0. Choose now 

[0 0 ] + = 0. F = [-B• -•A•, -B• -•A•2]. Then A + BF = o A• , 
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Suppose now that p > 1. As in the proof of the Theorem 1.3, instead 
of the original pair (A, B) we can consider 

m ! _- 
X• X•2 X•a 

2• X22 + X2• Y 0 Xaa 
, B!= Bx Bx2 - YB22 ] 0 B22 , 

0 0 

where (X22, X2x) is exactly controllable and (p- 1)-admissible pair, operator 
Bx is invertible, and Y is an arbitrary (linear bounded) operator from M2 
to Mx. For 

F = [ F• F• Fa ] 0 0 0 

we have 

A ! + B!F = Zi• Z•2 Z•a ] X2• X22 q- X2•Y X2a , 
0 0 Xa3 

where we have denoted Zxi = Xli + BxFi(i = 1,2,3). The choice of 
Fx, F2, Fa will be made later. Due to exact controllability of the pair 
(X22, X21) the operator Y can be chosen in such a way that operators 
Xaa and Z22 = X22 + X2xY have disjoint spectra. In this case there exists 
an operator U such that Z22U- UXaa = X2a (see [3]). For this U the 
operator A ! + B!F is similar to 

(,5.9) 
[i øø I u 

0 I 
X21 Z22 X23 I -U 

0 0 Xaa 0 I 

Z11 Z12 Z13 - Z12U 
X21 Z22 0 

0 0 Xaa 

Let's now put 

F3 = B•-l(z12u- X13) 

Then Zxa - Zx2U = 0, and the matrix (5.9) can be re-written in a block 

diagonal form [ z• zn l o xaa X21 Z22 ' 
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Now choose any polynomial (/91 such that deg (/91 = p- 1 and 99 is 
divisible by 99•. This is possible due to the equality deg 99 = p; moreover, 
the polynomial h = 99/99• is nonconstant, and so there exists •0 • C such 
that h(X0) = 0. 

A pair (Z22, X2•) is exactly controllable and (p- 1)-admissible simul- 
taneously with (X22,X2•). According to the Theorem 5.1 there exists an 
operator V such that 

(5.11) 991(Z22 - X21V) = 0. 

Put 

(5.12) F2 -- Bi-l(z11V q- VX21V- VZ22 - X12 ). 

Then 

and 

-Zll V - VX21V q- Z12 q- VZ22 -- 0, 

0 I X21 Z22 0 I = X21 0 ] Z22 -- X21V ' 

Finally, put 

F1 ---- B•-1(AoI- VX2x - Xll). 

[)•oI 0 ] Then the operator A' + B'F is similar to x2, z2•-x•, v © X33, and, 
correspondingly, 99(A' + B'F) is similar to 

(FXoZ 0 
The property (5.8) is equivalent to 99(%3) - 0. It's also easy to prove 

using the functional calculus that for any function 99 analytic on { •0 }Ua(W) 
(in particular, for any polynomial 99) 

99 x w = (w)x 99(w) ' 
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where qa(z) = (qo(z)- qo(),0))(z- /•0) --1. As (• is divisible by •91, it follows 
from (5.11) that •5(Z22 - X21V) = qo(Z22 - X21V) = 0. Therefore 

,X0I 0 ] = O. (/9 X21 Z22 -- X21 V 

We have obtained that if F1, F2 and Fa are chosen according to for- 
mulas (5.13), (5.12) and (5.10), then the operator •o(A' + B'F) is similar to 
0, and so it equals 0. ß 

A special case of Theorem 5.4 deserves to be stated separately. 

Corollary 5.5. Let (A, B) be a p-admissible pa/r, and qo be a polynomied 
of the degree at/east p such that Imqo(A) C_ Cp(A,B). Then there ex/sts an 
operator F such that •o(A + BF) = O. 

6. An Example. Let H2(E) be the Hardy space of functions with values 
in a Hilbert space E which are analytic in the open unit disc T) = {),: Izl < 
1}. Further, let A • L(H2(E)) be the operator of multiplication by z, and 
B is the natural imbedding of E into H2(E). Then ½•(A,B) is a subspace 
of E-valued polynomials of degree strictly less than k, so the pair (A, B) is 
not admissible. It's easy to see that 

Ker(A - hi) = 0 for all • C C, 

and 
i(z) 

Im(A- M) = {f e H2(E)'g(z) = z- 
Therefore, the operator A- )•I is invertible for IXl > 1, 

Im(A- ,•I)= {f • H2(E): f(,•)= 0} for I•l > 1, 

and Im(A- M) is a dense non-closed subspace of H2(E) such that 
Im(A- M)= {0} for IXl-- x. So, 

Im(A - )•I) + ImB = Im(A- hi) + E = H2(E) for Ixl • 1, 

and Im(A-,XI)+Im B is not closed in H2(E)for I1-- 1 (see, e.g., Theorem 
2.4 in [8]). In other words, E(A,B) = {,X: = 1}. 
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Consider now an operator A + BF- •I with F e L(H2(E),E) and 
IXl < 1. Suppose g • E 91 Im(A + BF - XI). Then there exists f E H2(E) 
such that 

(z- ,X)f(z) + F f = g, 

where Ff and g do not depend on z. Taking z = ,X in (6.1) we find that 
Ff = g, and, consequently, (z- ,k)f(z) = 0. In other words, f = 0, and 
g=0. So 

E 911m(A + BF - .,XI) = {0}, 

and the operator A+BF- • is not right invertible for all ,X E l). Therefore, 
for any choice of F • L(H2(E),E) we have a(A + BF) _D /), and so the 
equality a(A + BF)= Z(A, B) never occurs. 

The precise description of all possible a(A + BF) will be given in the 
case of E = C, that is, dim Im B = 1. 

In this case F • (H2(C), C) is actually a linear functional on He(C), 
and so it can be represented as 

lf02 (F f)(z) = • f(eiø)•(eiø)dO = (f, •) 

for a suitable choice of • • He(C). 
An operator A + BF - ,XI for [,k[ > 1 is Fredholm with the index 

0. Therefore, it is invertible if and only if Ker(A + BF- ),I) = {0}. 
But Ker (A+BF-XI) = {f : zf(z)-Xf(z)+(f,•) =_ 0}. So any 
f e Ker (A+BF-II) hasto be of a special form f(z) = c(•-z) -1 with c = 
(f, T). Substituting the expression for f(z) we find that c((X- z) -•, T) = c. 
That is, c = 0 or ((,X- z) -•, T) = 1. A computation (using the Cauchy's 
theorem) gives 

((X - z)-•,T) = X-•T(X -•) (I,X > 1). 

So the subspace Ker (A+BF-XI)is nontrivial if and only if •(•-•) = 
Thus, 

•(A+ BF)- {X'IX I <_ X} U{X' h(• -1) --0), 
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where h(•) -- 1-•T(•). According to the well-known description of the zero 
sets of functions in HV'(C) (see, e.g., [15]), the general form of a(A + BF) is 

o(A + BF) -- -< 1} LJ 

where {zk} is void, finite, or countable set; in the latter case k(Izl- 1) < 
OO. 

This situation is totally different from the behavior of a(A + BF) in 
the case of/>-admissible pairs (Theorems 1.3 and 4.2). 
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