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SINGULAR PROJECTION NESTS IN UHF 

C*-ALGEBRAS 

S. C. POWER 

Abstract. A projection nest in a C*-algebra is said to be singular 
if the normaliser of its generated C*-algebra is trivial. Uncount- 
ably many pairwise nonconjugate singular homogeneous nests are 
identified (in a given UHF C*-algebra) all of which have the same 
binary relation invariant. The constructions are based upon (ho- 
mogeneous) direct systems of upper triangular matrix algebras 
with rapidly increasing multiplicities and irregular erabeddings. 

Introduction. The non-self-adjoint operator algebras that are most amen- 
able to analysis are those for which there is an implicit coordinatisation. 
This is available if the algebra contains a maximal abelJan subalgebra 
(masa) which is regular in the sense that its normaliser in the generated 
star algebra is generating for the star algebra. Consider [MSS], [MS], [P1] 
and [P5] for example. There is a wide class of norm-closed limit algebras 
which automatically contain such masas and which, as a consequence, have 
been studied successfully in recent years. These can be described as the in- 
ductive limits of finite-dimensional incidence algebras (CSL algebras) with 
respect to isometric embeddings that are so nice that they map matrix 
units to sums of matrix units. See, for example, [B], [D], [HP], [Pal, [P4], 
[PPW], [PW], [Po], [RP], [Th], [Th], [V], .... 

On the other hand there are not many (any?) studies that are con- 
cerned with nonregular non-self-adjoint subalgebras of C*-algebras and their 
classification. In the present paper we move in this direction and consider 
the most natural kinds of triangular subalgebras, namely nest subalgebras, 
with the most unnatural kinds of masas, namely singular masas - masas 
for which the normaliser is trivial. The algebras are all inductive limits of 
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upper triangular matrix algebras with respect to unital star extendible (and 
therefore isometric) nest embeddings. For the algebras in section 3 the kth 
embedding 

q•k: T,•k '• T,•k+• 

is induced by a single rk+• x rk+• unitary matrix Uk, where rk+• is the 
multiplicity of q•k, which has the form 

Uk= a• 0 
-& •& 0 

where ce&, •k belong to [0,1] and where I is an identity matrix. The limit 
algebra, denoted A(r&, ce&), is therefore determined by the two sequences 
(r&) and (ce&). By choosing (rk) to be very rapidly increasing (in fact rk is 
at least 2 2k) we create a context in which the local size of a matrix unit can 
be determined in terms of partial products of the scalars c•& and •&. 

The limit algebra A(r&, (•) is in fact a nest subalgebra of a UHF C*- 
algebra, namely the subalgebra of •_•m(M,•,q•k), determined by the nest 
A/'(r&, ce&) which is the union of the images of the invariant projection nests 
of T,•, T,•2, .... We obtain necessary conditions and sutficient conditions for 
the associated nest subalgebras to be isometrically isomorphic, a•ud show, 
in particular, that A(r•, ce) and A(r•,•) are not isomorphic if a • •. These 
algebras all have the same essential support, Gelland support and binary 
relation invariant, as defined at the end of section 3. An interesting new 
feature of the singular context is the need to consider approximately com- 
muting diagrams (approximate interwinings in the terminology of Elliott 

In all our examples the nest algebras A are homogeneous in the sense 
that pap and qAq are isomorphic whenever p and q are interval projec- 
tions with the same trace. This term was introduced in [HP] and our con- 
struction is reminiscent of the construction there of regular homogeneous 
nests. It seems to be an interesting open problem, in both the regular and 
singulax cases, to determine which homogeneous nest subalgebras of UHF 
C*-algebras arise as direct limits of systems where all the erabeddings are 
homogeneous. (See Section 2 below.) 

The following terminology is used. A nest or projection nest, is a 
totally ordered family of projections. A nest is regular (resp. singular), in 
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an approximately finite C*-algebra, if it generates an abe]Jan C*-algebra 
which is regular (resp. singular). In fact we only consider maximal nests in 
UHF C*-algebras. We write Tn for the algebra of upper triangular n x n 
complex matrices. When considering the limit algebra A = ]Jm Tn k we often 

) 

denote the image of a matrix unit ei•j E • in the limit algebra by the same 
notation, e i•j . 

We should emphasize that the singular masas constructed below are 
of the form C = UkCk where C1 C C2 C ... is a chain of finite-dimensional 
abelian algebras with Ck a maximal abe]Jan algebra in B•, where B1 C 
B2 C ... is a chain of finite-dimensional C*-algebras with dense union in 
the C*-algebra containing C. That such masas may fail to be regular is 
related to the fact that No•(B•), the normalises of C• in B•, need not be 
contained in Nc•+• (Bk+x). Such inclusions do prevail however in all the 
limit algebra contexts mentioned in the first paragraph above. We remark 
that this assumption is misleadingly omitted from the definition of the term 
canonical masa in [P2]. 

2. Homogeneous nest subalgebras. To construct limit algebras A 
which are triangular nest subalgebras of UHF C*-algebras, it is natural 
to consider direct limits h__+m(T•, ;b•) where the erabeddings ;b• are unital 
nest erabeddings with C*-algebra extensions • ß M• -• M•k+,. By a nest 
embedding qS'Tn -• T• we mean one for which 

(b( LatT• ) C_ LatTer, 

where LatA denotes the invariant projection lattice. Under these circum- 
stances we have a commuting diagram 

M• • Mn, • ... B 
t t T 

where nk nk+l for all k, A/'k = LatT,•, and where Af is the countable 

projection nest in B which is the union of the images of the finite projection 
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nests Afl,Af2, .... Thus the Banach algebra limit algebra A = li_•m(T,•k, q•k) 
is (completely) isometrically isomorphic to a subalgebra of the UHF C*- 
algebra B = li__+m(M,•k,½k), and we may identify Af and A as subsets of 
B. 

It is easy to see that A is the nest subalgebra 

Alg A/' = {a • B '(1 - p)ap = 0 for all p • A/'}. 

Indeed, let E•(b) = • qbq where the sum extends over the atomic intervals 
of A/'•. Then the limit limE•(b) for b in B, defines a linear contractive 
projection E from B onto the C*-algebra C = C*(A/'). Also, let//• be the 
upper triangular projection from B to Alg A/'k given by 

Ltk(b) = Z qbq' + Ek(b) 
q•q• 
q .• q• 

where the first sum, corresponding to the strictly upper triangular projec- 
tion,//k + (b) say, extends over atomic intervals q -• q• in the finite nest A/'k 
where -• is the usual order. Suppose now that b E Alg A/'. Let bk 
be a Cauchy sequence with limit b. Since//e(bk) -• b as k -• oo, for each 
g, we can choose a Cauchy sequence dk with limit b where dk E//k(B) for 
all k. But b/k+(dk) e A for all k and dk - •k+(dk) converges to E(b), which 
belongs to A, and so it follows that b belongs to A. 

It is a simple exercise to show that the diagonal algebra C really is 
masa in A. 

Note that a unital C*-extendible nest embedding •b ß Tn -• T• neces- 
sarily has the form 

•((aij)) : (aijSij) 

where (aijUij) is a block matrix and the Uij, for 1 _< i _< j _< n, are unitary 
matrices in M• satisfying the cocycle condition UijU5• = Ui•. We say that 
the embedding qb is homogeneous if Ui,i+• = Uj,j+i = U say, for all i and 
j. It is routine to check that if A is the nest subalgebra determined by 
a direct system of C*-extendable homogeneous nest embeddings, then A 
is homogeneous in the sense specified in the introduction. In [HP] it was 
shown that there are uncountably many regular nest subalgebras of this 
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type. In fact if we limit attention to embeddings ½ ß T• -, T• which are 
based on the backward shift, 

0 1 

0 1 

0 

1 

1 

0 

then it was shown that A = limT• and A t = limTm• are isometrically 
isomorphic if and only if the direct systems for A and A t are eventually 
identical (apart, of course, from a shift). Notice that the embeddings here 
map standard matrix units to sums of standard matrix units. It follows 
from this that the image, in the limit algebra, of each standard matrix unit 
belongs to the partial isometry normaliser of C, i.e. to 

Nc(A) = {v • A ' vCv* C_ C, v*Cv C_ C, v a partial isometry } 

So in this case A is a regular nest subalgebra. 

3. Singular nests. Let rk >_ 2 be positive integers and let nl = rl, nk+l -' 
r•+ln•, for k = 1,2, .... Let A - A(r•,cr•) = lim•(T•,½k) be the homo- 
geneous nest subalgebra determined by the star extendible homogeneous 
unital embeddings •b• ß T• -• T•+• which are based on the unitaries U• 
of section 1. Write Af(r•, cry), or Af, for the associated projection nest. 

The nest Af need not be singular. This might be due (loosely speaking) 
to either of the following possibilities. Firstly, the product c•k/• - c•(1 - 
c•}) « may converge to zero so rapidly that asympotically the U• behave like 
permutation matrices. In this case the resulting nest is regular. Secondly 
there may be algebraic reasons for the presence of a regular subsystem, as 
in the following example. 

Let cr• = •k = 1/x/• and let r• = 4 for all k. Then n• = 4 •, for all 
k. Note that U} 6 = I. Let $• C T• be the subalgebra spanned by the 
matrix units eij for which j - i = 0 (rood 16). The restriction of qbk to S• is 
simply the refinement embedding, that is, the simplest homogeneous nest 
embedding associated with the unitary U - I. It follows that the image 
in the limit algebra of the matrix units of each $• normalise the masa 
c* 



579, S.C. POWER 

Lemma 3.1. Let (rk) satisœy the growth condition rk+l •_ 2rxr2... rk œor 
aH k. Then the projection nest A/'(r•, a•) is singular œor all sequences 
for which c•fik does not converge to zero as k -• 

Proof'. Suppose that the nest is not singular and v belongs to Nc(A) but 
not toe. Let0 < e < l•ndexpressvasw+rwhere I[r[[ < eand 
w • A•, where A• is the image of the kth triangular matrix algebra 
in the limit algebra A. If p, q are minimal projections in C• = A• N (Ak)* 
then pvq • Nc(A). Thus we can find a nonzero partial isometry v in 
the normaliser with the form v - Ae•j + r where rll < e, as before, 

• is a non-diagonal matrix unit in A• Clearly is a complex scalar, and eij . 
l+e • [A[ • 1-e. In A•+x the matrix •(ei•j) has the form ofablock 
operator matrix where U• -i appears in the i,j block and where all other 
entries are zero. Also, because of the hypothesis on (rk) it follows that 
any given row of •(ei• ) contains either a single nonzero entry (unity), or 
two nonzero entries (fi• and -t-a•). Let p be a minimal projection in C•+1 
corresponding to the latter case. Then 

v*pv ]), 2 k * • = 4(ej) p4(ej) + 

where Irll < 2e(l+e)+e 2. But k ß k •bk(e4j) p•k(e4j) is a block diagonal matrix 
with a single nonzero 2 x 2 entry whose off-diagonal entry is either d-O•kfik 
or --O•kfi k. Since v*pv e C it follows that O•kfi k _• rlll' Looking at further 

k in Ak+l, Ak+2, .. we can similarly obtain non-trivial elements images of eij . 
of the normaliser of the form Ae•j d- r with I111 < E, for e - + 1, d- 2,..., 
from which it follows that c•efie < 2e(1 + e) + e 2 for all • _> k. 

Lemma 3.2. Let A = li_•m(T,•k, •k), A' = lim•(Tm•, •bk), where •k, •bk axe 
unital star extendible nest embedclings, and let • : A -• A • be an isometric 
algebra isomorphism. Then i) induces a bijection Af -* Af' between the 
associated projection nests. Furthermore this is the unique bijection which 
p•e•w• t• •o•m•d t• o• C*(•), C*(•'). 

Proof: 0 maps projections to projections and therefore O(C) = C' where 
C = A 91A*, C t = At FI (At) *. Furthermore, A/' = LatA and Aft = LatAt, so 
that 0(Af) = Af t. (The inclusion Af CLatA is immediate from the definition 
of A, whilst if p is a projection in A which is invariant for A then p • Ak, 
and is invariant for Ak, for some k, and so p E Afk). 
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Let v 6 A be the image in A of a standard matrix unit of Tn•, for 
some k, so that the projections p = vv*, q = v*v are interval projections 
with the same trace. We have [[vqa[[ - [[qa [, lapvii - [ap[[ for all a e A. 
Thus [[O(v)q'a'[[ = [q'a'[[ and la'p'O(v)[[ = [a'p'l for all a' e A', where 
q' = O(q),p' = O(p) are interval projections in A/". Choose k large so that 
p', q' ß Ck, the diagonal subalgebra of T•, and so that there is an element 

1 

b ß with b- O(v)l [ < 
Then 

for all b' in T,,. It is elementary to check that this can only occur if p•, q' 
have the same rank in T,,, and so if, q• have the same normalised trace. It 
now follows that p and O(p) have the same normalised trace for all p in A/'. 

For a nest subalgebra A = qk) of a UHF C*-algebra B, deter- 
mined by star extendible unital injections, we define the essential supports 
es(a), a ß A, and es(A) as follows. Let tr denote the normalised trace on 
B. The set es(a)consists of the points (s,t)in (0,1)x (0,1)for which there 
exists 5 > 0 such that 

(P•-P2)a(pa-P4)l _> 5 whenever tr(p2) < s < tr(p•),tr(p4) < t < tr(pa), 

where pl,p2,ps,p4 are nest projections, together with the points (s,t) on 
the boundary of the unit square satifying the analogous one-sided condi- 
tions. The set es(A) is the union of the sets es(a) for all a ß A. By the 
last lemma es(A) is an isometric isomorphism invariant and so it can be 
used to distinguish algebras in certain families of regular nest subalgebras. 
(However, we remark that it is far from being a complete isomorphism in- 
variant even in the case of regular nest subalgebras.) One can check that 
es(A(r•,c%)) is the union of the sets es(ei•j) over all the matrix units and 
so the essential support can be calculated (in principle). It is also easy to 
see that es(A(r•,(%)) = es(A(rk, er•)) if, for some 5 > O, 5 _• c•, c• _• 1-5 
for all k. 

In an exactly analogous way one can define a finer invariant, the 
Gelland support gs(a), for a ß A, to be the set of points (x,y) ß M(C) x 



574 S.C. POWER 

Air(C) (where C = A•A*)such that there exists (5'> 0 such that [[paq[[ _• • 
whenever p, q • Proj (C), and •(p) - y(q) - 1. It is elementary to show 
that if 0: A -• A • is an isometric isomorphism then for each matrix unit 
½/• in A, the set gs(O(%•j)) is contained in gs(A•) for some j. (A similar 
assertion holds for the essential supports.) This connection can be used to 
obtain the classification results of sections 3,4 of [HP]. In a similar way it 
can be shown that if A(rk, ak) and A(r•,a•) are isometrically isomorphic 
then there exists an integer œ such that nk+t = n• for all large k, where 
nk : wit2 ..rk, n• -- t t ß rlr2...r•. For this reason in the next section we 
limit attention to the classes of algebras A(r•, a•) with r• a fixed rapidly 
increasing sequence. 

In the case of regular embeddings the fundamental relation, or semi- 
groupoid, R(A), as given in [P2], can be recovered from consideration of 
the Gelland support. As a set R(A) = gs(A). Let gs(A) have the topology 
generated by the sets E(a, 5), for a • A, 5 • 0 where 

E(a,5) = {(x,y) . llpa q >_ 5 ¾p,q • Proj (C) with x(p)= y(q)= 1}. 

Then it can be shown that R(A) is isomorphic to gs(A) as a topological 
binary relation. 

In general, for singular and nonregular nests, the topological binary 
relation gs(A) is still an isomorphism invariant, which, although incomplete, 
may nevertheless serve as a basis for more discriminating invariants. 

4. Approximately commuting diagrams and the Algebras A(rk, ak). 
Let rk be rapidly increasing, as in Lemma 3.1, and let 

A = A(r•, •) = li•rn(A•, q•), 
A' = A(rk, a•) = li•m(A•, q•), 

where A• = A[ = T• k and where •b•, qb[ are the homogeneous embeddings 
associated, as in the last section, with the unitary scalar matrices 

, 
-- k fl k ' -- OZ k k 

respectively. 
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Lemma 4.1. For integers s > t > O, let X•,t (fi• o. . . o(fit and let = , 
be the corresponding matrix in Tn.+, for the maps off' If [[Xs,, - X•,, -• 0 k' 

as s, t • • then A and A • are isometric•y isomorphic algebras. 

Proof: Consider the noncommuting diagram 

A• -• A• -• ... 

A t -• A• -• ... 

where each Ok is the identity map. Let pk,n ' Ak --• A' be the map arising 
from the composition 

' A' Ak --• Ak+n --• Ak+ n --• ß 

e k Then, by the hypothesis, Pk,n(x,2) is a Cauchy sequence in n, with limit 
equal to the image of e k under the map A t -• A. Since the maps qSk, qS•, 1,2 

are homogeneous for all k, it follows that pk,•(a) is a Cauchy sequence in 
n for all a in Ak. It follows that the pointwise limits/zk = hm•/•k,•, for 
k = 1, 2,..., gives maps Ak --• A', which extend each other, and so define 
an isometric homomorphism A -• A'. Similarly we obtain a map A' -• A 
which is the inverse to this map, and the proposition follows. 

Proof: Recall that the map qSk ß Ak --• Ak+x has the form Ok((aij)) -- 
(aijU•-i), and so Ok(a) = O•pk(a)Ok where Pk ' Ak --• Ak+l is the map 
(aij) -• (aijlk), where Ik has multiphcity rk+x, and where 

Ik 0 0 
o u• o 

o o 
ß 

unk -1 k 
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Write p(a) as a © lk. Then 

•bk+• o •b•(a) -* -* I•)•f• I•+l)•fk+l =vf½+l((V•(a© 

= [(• • •+•)•+•]*(a • • • •+•)[(V• • •+•)•+•] 

Iterating this we see that 

II0•o.-.o0,(q,)-0•o...o0,(q,) = Iw*(•l,o (g') 

where 

•nd where U' is the corresponding unit•y for U•,..., U•. Write these prod- 
= ... U• U•+•... 0•. Because of the r•pid increde 

of r• we see that for e•ch j = 1,..., nt - 1 the unitary U• h•s entries which 
are either 1,•,-•, or fi•. It follows that 0• - 0Lll = II0• - 0•ll 5 

By repeated use of the inequity 

x*Yx - (x')*•x' • =ll/- x' + IY - • I, 

for contractions X, Y, Z, we obtain 

IIU*(el, • I)U - (u')*(•l, • I)U' I 5 2 • O• - 0•l I 
8 

and so the le• follows. 

Oorollary 4.3. g•(l• -•g + I"•- "• ) is tni*e *hen A(r•,•) and 
A(rt, •g) •e isome•rica•y isomowhic algebra. 

•emma 4.4. •et 0 be an isometric isomorphism between A and A'. Then 
•or each e > 0 *here e•s*s • in*eger g such *hat •or all t > g *here e•s,s 
ama•rixuni• • in T•, such •ha• ffa anda' are its imagesin A and 
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A' respectively (under the natural maps At--• A,A• --• A')then 
Ilpaq -11O(p)a'O(p)11 < +e for all projections p,q in A. 

Proof: Choose œ large so that 

where Ilbll < •, the •i,j are scalars, and where {fie, j . I •_ i •_ j •_ ne} is 
the matrix unit system for Ae. Because of the rapid increase of rk there 
axe minimal projections pl, q• in T,t such that ple•2ql e for some u, v. --' eu• v 
(To see this repeatedly apply the fact that the image of any matrix unit 
k under •b• is a sum of matrix units, and some coefficients in this sum are eij 

unity.) By Lemma 3.2, 0 restricts to a trace preserving bijection Af -• Af • 
between the projection nests of A and A •. It follows that 

O(ee•,v) = O(pxe]2qi ) = Af•,v + bt 

where A = A•,v, and bx = O(px)bO(ql) has norm less than e. Since 0 is an 
isometry we have I - e < IA < 1 + e. Thus if p, q are arbitraxy projections 
of A, then 

O(pe,,,•q) = AO(p)f•e,•O(q) + b2 
• a • • where []b2]] • e, and so, with a = e•,•, = f•,• it follows that 

-2e •_ Ilpaql - IO(p)a'O(q)ll _• 2e. 

The axgument can be repeated for any t > t, and so the lemma follows. 

• = c• • for Theorem 4.5. Let a,a• belong to [0,1] and let a• = a,a• 
k. Tne= •(•,•) • •(•,•) •e •o•et•Uy •o•o•pn•c • • o• 
, = •'. •rt•er•o•e n(•,•) • • ••r =e•t •ebr• for •U • •= (0,•). 

Proof: If • is a matrix unit in T•, A• C A, then for each k • t e• v 

there exist •nim• projections p, q in Tn•+• such that I p(%,•)q[[ = a•. It 
follows from the l•t le•a that if A(r•, a•) and A(r•, a•) axe isometrically 
isomorphic, then a• - a• • 0 • k • •. The theorem now follows from 
this together with Le•a 3.1. 
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Problems 1. For fixed rapidly increasing rk classify the conjugacy 
classes of the nests Af(rk, c•). We conjecture that the sufficient condition 
of Lemma 4.1 is also necessary. (Is this matrix condition on the c•, •t[ 
equivalent to the summation condition of Corollary 4.3?) 

2. Classify the singular masas C*(Af(r•, c•)) up to conjugacy by star 
automorphisms. 
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