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0. Introduction. A collection $ of bounded linear operators is (simul- 
taneously) triangularizable if there is a maximal chain of subspaces all of 
which are invariant under the operators in $. (Note that the chain is re- 
quired to be maximal as a subspace chain, not merely maximal as a chain 
of invariant subspaces of $.) 

There has been a lot of work on triangularizability: see the references 
below. In the present paper we discuss several results on triangularizability 
of algebras and semigroups of operators. Most arguments that are used 
to prove triangularizability depend on results that insure the existence of 
invariant subspaces; the key idea is obvious, but worth stating. 

If M and N are subspaces and N C M, and • is the algebra of all 
operators leaving both M and N invariant, then there is a natural homo- 
morphism (I): • -• B(M/N) defined by •(A)(x + N) = Ax + N. In the 
Hilbert space case, we can identify M/N with K = M C• NX; under this 
identification the map (I) is given by (I)(A) = PAIK where P is the orthog- 
onal projection onto K. If $ C 6, then there is a natural correspondence 
between the invariant subspaces of $ that lie between M and N and the 
invariant subspaces of the collection (I)($) of operators on K. This explains 
how theorems on the existence of invariant subspaces yield theorems on 
triaxtgularizability. 

Section 1 concerns the existence of invariant subspaces for algebras 
that contain a bilateral shift and an injective backward bilateral weighted 
shift. We show how the problem of existence of invariant subspaces for such 
algebras is related to the periodicity of the weights of the weighted shift. We 
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also show how the problem is related to haxmonie analysis and weak*-closed 
translation-invariant unital subalgebras of too(•). Such algebras must be 
annihilators of closed ideals in the Banach algebra t• (•). 

Section 2 deals with a stronger notion of triangularizability. A collec- 
tion $ of operators is hypertriangularizable if there is a maximal subspace 
chain of invariant subspaces for $ whose projections generate a masa (max- 
imal abelian self-adjoint algebra). Unlike triangularizability, hypertriangu- 
laxizability is not preserved under similarity [13, 14]. Theorem 2.4 states 
that a direct integral of weakly closed algebras is hypertriangularizable if 
and only if almost every one of the algebras is hypertriangularizable. The 
analogous result for triangulaxizability is false (Lemma 2.3), since every 
direct integral of algebras with respect to a nonatomic measure is triangu- 
laxizable. 

Section 3 deals with the question of the triangularizability of a Banach 
algebra 6 of operators for which 6/Rad6 is commutative, where Rad6 is 
the Jacobson radical of 6. If such an algebra is wealdy closed and contains 
a masa, then it is triangularizable (Theorem 3.1); also if such an algebra is 
contained in a direct integral of algebras acting on finite-dimensional spaces, 
then it is hypertriangulaxizable (Theorem 3.4). 

In section 4 we consider collections of nilpotent operators. We show 
that an algebra of nilpotents is triangularizable if the index of nilpotence 
is bounded (Theorem 4.1), which is implied by the algebra being uniformly 
closed (Corollary 4.2). We also generalize the example in [9] of an algebra 
of nilpotents whose norm closure is semisimple and transitive. 

1. Algebras generated by bilateral shifts. Recall that an algebra of 
operators on a Hilbert space H is transitive if the only subspaces that are 
invariant under the algebra axe the trivial ones {0• and H. The transitive 
algebra problem asks if every transitive algebra must be dense in the weak 
(or, equivalently, strong) operator topology. The answer is known to be 
aa•rmative if the algebra includes a masa or the unilateral shift operator 
[1]; many other special cases are also known (see [20]). It is somewhat 
surprising that it is not known if the presence of the bilateral shift in a 
transitive algebra implies the density of the algebra. We consider the case 
in which the algebra contains the bilateral shift and a weighted backwards 
bilateral shift. 

Let {en: -c• • n • c•) be an orthonormal basis for H, and define 
S and A by Sen - en+• and Aen - When-1, where {Wn) is a bounded 
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sequence of non-zero complex numbers. Then S is the bilateral shift and A 
is a backwards bilateral weighted shift. Let •(S, A) be the weakly closed 
unital algebra generated by S and A. 

Let D be the diagonal operator defined by DeN = w•+•e•. Then 
A = DS*. Since S*S = 1, it is clear that D = ASea(S, A). 

If H = L 2 (ra), where ra is normalized Lebesgue measure on the unit 
circle in the complex plane, then we may take en(e iø) = e inO for -oo < n < 
oo, and S becomes multiplication by z = e iO. The invariant subspaces of 
S are known to have the form XEL 2 (ra) or qH 2, where E is a measurable 
subset of the circle, XE is the characteristic function of E, q is a function of 
unit modulus a. e., and H 2 is the closed linear span of {e,•: n _> 0}. In the 
cases in which S*e•(S,A), the only possible invariant subspaces of •(S,A) 
are those of the form xEL2(ra). It seems unlikely that many diagonal 
operators leave such subspaces invariant. 

The following theorem shows that few diagonal operators are reduced 
by such subspaces. We first require a technical lemma. 

Lemma 1.1. Suppose that A•S • and S•A •, which are diagonal for all n, 
always agree at t•xed i and i+p/'or somep >_ 1; i.e., fib is any one of the 
above operators, then (Bei,ei) = (Bei+p,ei+p). Then {wk} is periodic oœ 
period p. 

Proof: Calculation shows 

= . . . 

and 

A$ek = 

For n = 1, the hypothesis implies wi = wi+p. By induction, with n = k + 1, 
we obtain wi-• = Wi-k+p •d wi+• = Wi+k+p. • 

Theorem 1.2. Suppose that D is a self-adjoint collection of diagonal op- 
erators •d E is a me•urable subset of the Orcle with 0 < re(E) < 1. The 
following •e equivalent. 

(1) D/eaues x•L2(m) invariant 
(2) There is a positive integer p such that 

(a) the sequence of eigenv•ues ofea& operator in D is periodic 
of period p, •d 

(b) E = e2•i/pE a. e. 
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Proof: (1) =y (2). Statement (1) implies that the weakly closed algebra 
B generated by {1, S, S*} tJ 7) has a non-trivial invaria•nt subspace, namely, 
XEL•(m). Cle•ly, the statement (2) (a) is implied by the periodicity of the 
sequence of eigen•lues of each Her•tian diagonM operator in B. Suppose 
that T • B and, T = T*, and T is diagonM. Since we can replace T by 
A + T for some scalar A, we can •sume that none of the eigen•lues of 
T is 0. It follows from the preceding le•a, replacing A with TS*, that 
if the sequence of eigenvalues of T is not periodic, then, for each pair i,j 
of distinct integers, there is a Her•ti• diagonal operator B in B such 
that (Bei, ei) • (Bej, ej). Since B is weakly closed it contains the spectrM 
projections of a• of its Her•ti• elements. Hence, for each pair i,j of 
distinct integers, there is a diagonM projection P in B such that Pel = 0 
and Pej = ej. It fo•ows that every diagonal projection is a strong li•t 
of projections in B, which imp•es that B contains M1 diagonal operators. 
This contradicts the fact that B leaves XEL2(m) in•riant; whence (2) (a) 
is proved. 

To prove (2) (b), we can assume that p is the smallest period of the 
sequences of eigenvMues of all the diagonM operators in B. The preceding 
argument imp•es that B contains all diagon• operators whose sequence of 
eigenv•ues has period p. In particular, B contains the projection P onto 
the subspace spanned by {enp : n • •). • • • e 2•i/p is a printlye pin root 
of unity, then, for e•h f in L•(m), we have 

p-1 
1 

(Pf)(z) = • • f(w•z). 
k=0 

(This is e•ily checked on the b•is vectors {en: n 6 •}.) Since P and 1- P 
are both in B and leave xzL•(m) invari•t, it follows that P co•utes with 
multiplication by X•. Applying this co•utativiW relation to the constant 
I f•ction, we obtain PXz = Xz. It fohows from the above formula for P 
that E = wE = e2•i/PE. • 

Corollary 1.3. Suppose that • is a seff-adjoint collection of diagonal op- 
erators and • is the yon Neumann algebra generated by • and S. Then 
B = B(H) if and only if t•ere is no positive integer p such that the sequence 
of eigenvMues of every element of • is periodic with period p. 

An operator T is reductive if each in•riant subspace of T reduces T. 
Note that every Her•tian operator is reductive and every diagonM unitary 
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operator is reductive [22]. In the case in which the diagonal operator D 
is reductive, the algebra •($, A) is the von Neumann algebra generated by 
$, $*, D, and D*. 

Corollary 1.4. If D is reductive, then 6(S, A) is the yon Neumann edgebra 
generated by (D, $). Furthermore 6($, A) -- B (H) iœ and only iœ the weigh t 
sequence (wn) is not periodic. 

Proof: Since D e 6($,A), we know that 6($,A) contains the weakly 
closed algebra generated by D and 1. However, since every normal operator 
is reflexive [23], this latter algebra equals AlgLatD. Since D is reductive, 
D* • AlgLatD. Hence D* • 6(S, A). The proof will be complete if we can 
show that S* • {7(S, A). For each positive integer n, define qon: C -• C by 

qo•(z) = { 1/z if Izl > •/• n if Izl < 

Since none of the eigenvalues of D is 0, 99n(D)D --• 1 in the strong op- 
erator topology. Thus 99n(D)A = 99n(D)DS* -• $* strongly. Hence 
s* e 6(s,A). [] 

Part of the preceding proof can be carried out, in spirit, under more 
general conditions than the reductivity of D. A compact subset K of the 
complex plane separates 0 from oo if there is no piecewise continuously 
differentiable path joining 0 to oo that doesn't intersect K, except possibly 
at 0. We let D(a, r) denote the open disk in C with center a and radius r. 

Lemma 1.5. If K is a compact subset of the plane that does not separate 
0 from oo, then there is a sequence {p,z)} of complex polynomialsthat 
axe uniœormly bounded on K such that pn(O) -- 0 for each nand pn(Z) --• 1 

K \ {0}. 

Proof.' It is clear that the condition pn(O) -- 0 for each n can be replaced 
by pn(O) --• O. (Simply replace each Pn by Pn -- pn(O).) It fOllOWS from the 
hypothesis that there is a bounded simply connected region G containing 
K \ {0} and whose boundary is a simple rectifiable Jordan curve containing 
0. There is a continuous function T ß G- • D(-1,1)- with T(0) = 0 
whose restriction to (7 is the Riemann map. Mergelyan's theorem says that 
T is a uniform limit of polynomials. This reduces the problem to the case 
K = D(-1, 1)-. However, •n(Z) = •n_---•r• • is 0 at 0, and converges pointwise 
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to 1 on C \ {0}. Also on K, •,(z)l = I1 + < 1 + 1 = 2. Since each 
•,• is a uniform hmit of polynomials on K, the lemma is proved. [] 

The following lemma provides examples in which S* E 6(S, A), but 
in which •(S, A) is possibly not self-adjoint. 
Lemma 1.6. If the spectrum of D does not separate 0 from oo, then 
{• ($, A) is the weak/y closed algebra generated by { 1, D, S, S* }. 
Proof: Using the preceding lemma, we can choose a sequence {p,•(z)} of 
polynomials that is uniformly bounded on a(D) such that p,•(0) = 0 for 
each n and p,•(z) --+ 1 on a(T) \ {0}. Write p•(z) = q,•(z)z. Since none of 
the eigenvalues of D is zero, it follows that q,•(D)D = p,•(D) -• 1 in the 
strong operator topology. Thus q,•(D)A = q,•(D)DS* --+ $* in the strong 
operator topology. Thus $* • O(S, A). [] 
Corollary 1.7. If the spectrum of D does not separate 0 from oo, then 
any transitive algebra containing S and A is weakly dense in B(H). 

Proof: It follows from the preceding lemma that any unital weakly closed 
algebra containing S and D must contain S*. Since the weakly closed 
algebra generated by S and S* is a masa, it follows from Arveson's theorem 
[1] that such a transitive algebra must be B(H). [] 

The problem of the transitivity of {7(S, A) is related to the following 
problem from harmonic analysis: does there exist a closed ideal of œ1(y) 
whose annihilator is a proper aperiodic unital subalgebra of œoo(y)? A 
weak*-closed linear subspace $ of œoo(j,) is translation invariant (in both 
directions) if and only if its preannihilator in œ1(y) is an ideal. Thus the 
question about ideals of œ• (Y) is equivalent to the question of the existence 
of weak*-closed unital subalgebras of œoo (y) that are translation-invariant. 
For each positive integer p, the p-periodic sequences in œoo(y) form a proper 
weak*-closed unital translation invariant subalgebra of œoo (y). The question 
of whether there are any others is related to our transitivity problem. 

Proposition 1.8. The following are equivalent. 
(1) There is a proper unital weak*-closed translation invariant subal- 

gebra of œoo (y) that is not periodic. 
(2) There is an aperiodic sequence {w•} of complex numbers such 

that a(D) does not separate 0 from o• and 6(S, A) is not transitive. 

Proof: (1) =• (2). It follows from (1) that wecan choose {w•} so that{w•} 
is aperiodic and such that the weak*-closed translation invariant unital 
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algebra generated by {w=} is not e•(Z). By adding an appropriate constant 
sequence to {w=}, if necessary, we can assume that or(D) does not separate 0 
from o•. It follows from Lemma 1.6 that G(S, A) is the weakly closed algebra 
generated by {1, D, S, S*}. It is easily seen that the diagonal sequence 
{ (Be=, e=) } of any polynomial B in 1, D, S, S* is in the translation invariant 
unital algebra generated by {w=}. Thus the set of diagonal operators in 
G(S,A) is not the set of all diagonal operators. Thus G(S,A) • B(H). It 
follows from Corollary 1.7 that G(S, A) is not transitive. 
(2) • (1). Suppose that {w=} is aperiodic, or(D) does not separate 0 from 
o•, and G(S, A) is not transitive. Let T) be the sequences of eigenvalues of 
the operators in G(S,A) that are diagonal with respect to the basis {e=}. 
Since S and S* are both in G(S, A), it is clear that T) is translation invariant 
(consider S*TS and STS* for a diagonal operator T in G(S,A)). Further- 
more, T) is a weak*-closed unital subalgebra that is not periodic (since 
{w•} e T)). If T) = e•(Z), then •(S,A) contains all diagonal operators. 
This would imply that the only invariant subspaces for •(S, A) would be 
the ranges of diagonal projections. Clearly, none of these is both nontrivial 
and invariant under S and S*. Thus T) • e•(Z), and (1) is proved. [] 

2. Direct integrals and hypertriangularizability. In this section we 
consider hypertriangularizability. Although hypertriangularizability is de- 
fined in terms of masa-generating chains of invariant projections, the fol- 
lowing lemma states that on a separable Hilbert space the condition that 
the projections form a chain is unnecessary (see [20, Lemma 7.11 and its 
proof]). 

Lemma 2.1. An Mgebra • of operators on a separable Hilbert space is 
hypertriangularizable ff Lat• contains a subset that generates a masa. 

Our main results concern a weakly closed algebra 6 that is a di- 
rect integral of a measurable family {6,o: w Eft} of unital algebras, i.e., 
• - f• 6•dl•(W) where H = f• H•dl•(W ) and/• is a a-finite measure on 
f•. The questions that interest us deal with the relationship between the 
triangularizability or hypertriangularizability of 6 and the corresponding 
property for almost all of the 6• is. We first consider the case in which the 
measure/• is discrete. In this case direct integrals become direct sums. The 
proof of the following lemma is elementary and is left to the reader. 
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Lemma 2.2. A direct sum of algebras is triangularizable (hypertriangu- 
larizable) if and only if each summand is triangularizable (hypertriangular- 
izable). 

If the measure/• is a-finite, then every direct integral is a direct sum 
of direct integrals in which the measures are either nonatomic or consist of 
a single atom. The preceding 1emma reduces both of our questions to the 
case in which the measure is nonatomic. Moreover, the preceding 1emma 
and [4] imply that we can assume that there is a fixed Hilbert space M 
such that H• = M for every co in ft. The question of triangularizability in 
this case is independent of the 6• rs. 

Lemma 2.3. If p is nonatomic, then f9 • •dp(co) is triangularizable. 
Proof.' There is a natural embedding •r : Lø•(/•) • B(H) defined by 

= for a = 
The map •r is a unital *-homomorphism and is continuous with respect to 
the weak*-topology on Lø•(/•) and the weak operator topology on B(H). 
Moreover, ran (•r) is the cornmutant of f9 $ B(M)d!•(co). Choose a maximal 
chain C of projections in Lø•(/•). Then •r(C) = {•r(P): P E C} is a maximal 
chain of projections in B(H) that are not only invariant for, but reduce 

The question of hypertriangularizability of a direct integral is more 
difficult than that of triangularizability, but the answer is the exact analogue 
of the situation for direct sums. 

Theorem 2.4. A direct integral G = f9 • G•dp(co) on the separable Hilbert 
space H = f• H•dp(co) is hypertriangularizable if and only if almost every 
• is hypertriangularizable. 

The proof of the preceding theorem requires a lemma involving a topo- 
logical property of the spaces of sequences of projections that generate a 
masa. Suppose that M is a separable space, and P(M) is the set of pro- 
jections in B(M) with the strong operator topology. Since P(M) is a com- 
plete separable metric space, so is a countable cartesian product of copies 
of 7)(M). Since the set 7 ) of sequences of projections in 13(M) that are 
pairwise commuting is closed in the cartesian product of countably many 
copies of P (M), it follows that P is also a complete separable metric space. 
We are interested in the set Q of sequences in P that generate a masa. 
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Clearly, Q is not generally closed (except when dim M < o<>). However, we 
shall prove that Q is always a G, in 7 2. 

Lemma 2.5. There is an equivalent metric on Q that makes Q a complete 
separable metric space. 

Proof: It follows from [2, Thm. 3.1.2] that the lemma is equivalent to 
the statement that Q is a G, subset of 7 2. First note that there is a se- 
quence {pn} of finite polynomials in infinitely many variables Xl, x2, x3,..., 
such that, for each P = (P1,P2,...) in 7 2 , the set {Pn(P) ' n > 1} is 
strongly dense in the unit ball of the yon Neumann algebra generated by 
{P•, P2,.-. }. To see this let F be the field of complex numbers with ra- 
tional real and imaginary parts, and, for each positive integer N, let .•'•v 
be the linear combinations over F with coefficients of modulus less than or 

equal to I of the 2 •v products !/•//2 ... !/•v where each !/k is 
It is clear that, for each P in 7 2, {f(P) ß f E •'•v} is dense in the unit 
ball of the yon Neumann algebra generated by {P•,P2,...,PN}. Thus 
{P•, P2,... } = Un.•'• has the required properties. 

Note that, for each n, the map P •, p,.,(P) is continuous with respect 
to the strong operator topology on B(M). Let d be a metric on the unit ball 
of B(M) that yields the weak operator topology. For each positive integer 
k, let Ek be the set of those P in 7 2 for which there is a contraction T 
commuting with {P•,P2,... } such that d(T,p•(P)) >_ 1/k for n = 1,2, .... 
Clearly, each Ek is closed in P. (This follows from the fact that every 
sequence {T•} of contractions has a subsequence that converges in the weak 
operator topology to a contraction.) It follows from the Kaplansky density 
theorem that Q is the complement in P of the union of the E•s. Thus Q 
is a G•, and the proof is complete. [] 

Proof of Theorem 2.4: We can assume that H = f• Mdla(W) for some 
separable Hilbert space M. Let D be the corresponding algebra of diagonal 
operators, i.e., D = fff C. ld/•(c0). Since each 6,0 is unital, we have 
Thus a projection P in Lat6 must commute with D, and must therefore be 
a direct integral, P = f• 

First suppose that 6 is hypertriangularizable, and let {Px, P2, ß ß ß } be a 
chain in Lat6 that generates a masa .M. For each co, let .M,0 be the von Neu- 
mann algebra generated by {Px(co),P2(co), ... }. Then ./M C f• 
and since g4 is a masa, we conclude that JM = f• JM•odlz(co). Since 
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JM' -- f• JMtdp(w ) is commutative, it follows that A4 t is commutative 
for almost every co. The commutativity of A4• implies that almost every 
g/t• is a masa generated by a chain {P•(co),P2(w),... • in Lat{7•. Hence 
almost every {7• is hypertriangularizable. 

Conversely, suppose that almost every {7,• is hypertriangularizable. 
Let B be a product of countably many copies of the unit ball of B(M) 
with the product topology induced by the strong operator topology in each 
coordinate. Then Q x B is a complete separable metric space. Let œ be the 
set of (P, T) in Q x B such that (1 - Pi)TjPi = 0 for all i, j. Clearly œ is a 
closed subset of Q x B and is therefore a complete separable metric space. 
It follows from [2, Thm 3.4.3] that the projection map •r2: œ -• B has an 
absolutely measurable cross-section p. 

Suppose that {A• } is a strongly dense sequence in the unit ball of {7. 
Then, for almost every co, the sequence {An(co)} is in the range of •r2. It 
follows that {Pn(w)} = :n-l(p({An(co))) defines a commuting sequence {P•} 
in Lat {7 such that, for almost every co, {P•(co)} generates a masa in B(M). 
The yon Neumann algebra 142 generated by{P•, P2,... } and the projections 
in Z) equals the direct integral of the von Neumann algebras generated by 
{Pl(co),P2(co),... }. Since a direct integral of masas is a masa, it follows 
from Lemma 2.1 that {7 is hypertriangularizable. [] 

3. Commutativity modulo the radical and triangularizability. In 
[17] it is shown that a Banach algebra {7 of compact operators is simultane- 
ously triangularizable if and only if for all A, B, and C in {7, (AB - BA)C is 
quasinilpotent. G. Murphy [16] pointed out that this condition is equivalent 
to {7/Rad{7 is commutative, where Rad{7 is the Jacobson radical of {7. To un- 
derstand Murphy's observation, recall that Rad{7 is the ideal {Ae{7: 1 +AX 
is invertible for every Xin {7 }. Thus, if {7 is a Banach algebra, then Rad{7 = 
{AeG: AX is quasinilpotent for every X in {7}. 

In [19] it was shown that the aforementioned result imphes that a trace 
condition is equivalent to triangularizabihty for a multiphcative semigroup 
of trace-class operators. Namely, a semigroup $ of trace-class operators is 
triangularizable if and only if 

trABC - trBAC for every A, B, C in $. 

In [8] it was shown that if {7 is a Banach algebra of polynomially 
compact operators and {7/Rad• is commutative, then {7 is triangularizable. 
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It was shown in [18] that, in this case, the commutativity of 6/Rad6 is 
not necessary for the triangularizability of G. A condition that is related 
to the commutativity of G/RadG is RadG = (TeG: T is quasinilpotent). 
This latter condition holds whenever G is commutative. In fact, if G/RadG 
is commutative, then Rad(G/RadG) = (0) implies G/RadG contains no 
nonzero quasinilpotents; whence, RadG contains all of the quasinilpotents in 
G. A detailed list of conditions equivalent to the commutativity of G/RadG 
is given in [3]. 

Theorem 3.1. Suppose that G is a weakly closed a/gebra oœ operators 
that contains a max/ma/ abelian selœ-adjoint a/gebra. 1œ RadG = {TeG : 
T is quasinilpotent), then G is triangularizable. 

Proof: Let G be a weakly closed algebra of operators containing a masa 
G0; assume that RadG contains all quasinilpotents in G. Suppose that G 
is not simultaneously triangularizable. Then there is a pair of G-invariant 
subspaces M and N such that N C M and such that dim(N ffl M •-) • 1 
and there are no G-invariant subspaces strictly between M and N. Let 
K - N •q M •-, and let P be the projection onto K. Since G0 is a masa, 
the projections onto M and N are in G0. Hence PeGo, and PGP is weakly 
closed. Define (•: G -• B(K) by (•(A) -- PAIK. Since K is semi-invariant 
for G (i.e., K = N (q M •- with M, NeLatG), q• is a homomorphism. Also 
the range B of (• is weakly closed since PGP is weakly closed. 

We have that B is a weakly closed transitive algebra that contains the 
masa (•(G0); thus B = B(K) by Arveson's theorem [1]. Thus RadB - 0. 
Since dimK • 1, there is a nonzero nilpotent B in B. If AeG and B - 
ß (A), then PAP is nilpotent and q•(PAP) - B. However, (•(RadG) C 
Rad(•(G) implies that RadB •- 0. This contradiction implies that G is 
indeed triangularizable. [] 

Corollary 3.2. Suppose that G is a weakly dosed algebra of operators that 
contains a max/ma/abdian self-adjoint a/gebra. lf G/RadG is commutative, 
then G is triangularizable. 

Remarks 1. A crucial step in the above proof involved showing 
that the compression of 6 to K is closed in the weak operator topology. 
This was done using the fact that the projections in LatG are contained in 
G. Note that if P and Q are projections, then i(PQ - QP) is Hermitian; 
thus PQ - QP is quasinilpotent if and only if PQ = QP. Thus if G is 
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an algebra that contains all of the projections in Lat6, and if 6/Rad• is 
commutative, then the projections in Lat• commute with each other. It 
is possible, however, for the compression of • to K to be weakly closed 
without • containing the projection onto K. 

2. If, in the above proof, it could not be shown that B is weakly closed, 
then one would hope that the commutativity of B/RadB would imply the 
same for the weak closure of B. However, it was shown in [9] that this is 
not the case. (A more general construction is given in the next section of 
this paper.) [] 

For direct integrals of algebras on Hilbert spaces of bounded dimen- 
sion, we can prove results related to [19], [8], [16], [17]. We let 
denote the complex n x k matrices, and we let .M,, = 

We first prove a lemma that may be of independent interest. It is the 
analogue for direct integrals of the fact that every unital finite-dimensional 
complex algebra is the linear span of its nilpotents and idempotents. 

Lemma S.S. Suppose that • = f9 • •di•(w) is an algebra on a separable 
Hilbert space H - f• H•di•(o:) and for some positive integer n, dim H• _• 
n a. e. . Lets be the linear span of{Te• 'T 2 =TorT*' = 0}. Then 
every element of • is the limit in the strong operator topology of a sequence 
in $. 

Proof: By considering finite direct sums of algebras, we can assume [4] that 
dimH• = n for every •, and we can assume that H• = C*' and 6• C .M,, 
for every •. It follows from the Jordan canonical form that the unital al- 
gebra generated by a single n x n matrix is spanned by n (not necessarily 
distinct) idempotents {P•,... P,,} and n (not necessarily distinct) nilpo- 
tents {Q•,..., Q,,). That is, each Pi and each Qj is a linearcombination 
of {Tø,T•,... ,T*'-•), and each Tk(1 _• k _• n - 1) is a linear combination 
of {P•,..., P,,, Q•..., Q,,}. (In the next paragraph we express these linear 
combinations as formal matrix products.) 

Let X be the product of A/t,• and A/t2,,x,, and A•,,x2,, with 2n copies of 
with the product topology. Let E be the set of those 

(T,A,B,P•,...,P•,,Qx,...,Q•,) in X such that p•2 = Pi and Q? = 0 for 
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each i, and such that the formal products hold: 

Q1 

Q• 

and B 

Clearly E is closed and is thus a complete separable metric space. 
Therefore, by [2, Thin. 3.4.3] the projection map •1 into the first coordinate 
has an absolutely measurable cross-section 

It follows from the previous remarks about the Jordan canonical form 
that the range of 7[ 1 is all of •4n. Hence • ß •4n • E is absolutely 
measurable. It follows that there are absolutely measurable maps pL, qL ' 
.A•, -• .A•, for 1 _• k _• n, and absolutely measurable maps •ij,•ji ' 
JM, -• C for 1 •_ i _• 2n and 0 _• j _• n- 1 such that, for each T in J•n, 

= (z, (z)), (z)), (z),..., (z), (z), ß ß ß, (z)). 

Now suppose that TeO and T - f• T•odp(•). Define measurable 
maps PL, QL ' [2 -• JM• for 1 _< k <_ n, and absolutely measurable maps 
ci,di' [2 • C for 1 _< i <_ n by PL(•) = pL(T•o),QL(w) = qL(T•o), and 
ci(co) = •li(T•o), and di(•) = •(•+i). We can write [2 as a disjoint union 
of measurable sets [21, [22,... such that all of the P•s, Q[s,c•i s, and d•i s are 
bounded on each [2m. 

We will show that T is a strong limit of a sequence in $ by showing 
that, for each ra, X•,,T is in the norm closure of X•,,$. Hence we can 
assume that all of the PL•s, QL %,ci•s and di ts are bounded on [2. It 
follows that PL - f• PL(w)dp(w) is an idempotent operator in • and QL = 
f• QL(w)dp(w) is a nilpotent operator in •. Moreover, for each w, we 

n 

have Too -- E2-1Ck(cd)Pk(ø•) qt_ Ek--1 dk(cd)Qk(ø•) ß Suppose e > 0. We can 
approximate the cL •s and dL •s by simple functions eL •s and fL •s so that, 
for each o: in f• we have [ E2=• eL(w)PL(co) + E2=l fL(w)QL(w)- T•11 _< •. 

If F is a measurable subset of [2 on which each of the eL •s and the 
fk •s are constant, then xFPL is an idempotent in • and xFQk is a nilpo- 
tent in • and XF (•=1 eL(w)P•(w) + E•=i fL(•:)QL(w)) is therefore in $. 
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n 

Hence, by adding over finitely many F's, we see that Ek.=l 
fk()Qk(o:) • $. Thus T is in the norm closure of $. This completes 

the proof. [] 

Under the hypothesis dim(H,o) < n a. e., we can, by [4] assume that 
there is a measurable integer-valued function n(cv) such that H,o = C '•('ø) a. 
e.. Hence the following theorem is more general than it might first appear. 

Theorem 3.4. Suppose • = f• •d!•(w) acts on the separable Hilbert 
space H = f• H•dy(•v). Suppose aIso that there is a bounded measurable 
integer-valued function n(a•) such that H• = C n(•) a. e.. The following 
axe equivaIent: 

(1) 6 is hypertrianguIarizabIe, 
(2) 6/Rad6 is commutative, 
(3) There is a muItipIicative semigroup •q C 6 such that each 

element of • is a limit in the weak operator topology of a 
sequence in •q, and such that for each A, B, C ß •q, we have 
trA•B•C• = trB•A•C• a.e., 

(4) Rad6 = {T ß 6' T is nilpotent }, 
(5) There is a unitary operator V - f• V(•)•/•(•) such that 

U(w)*G•U(w) is upper triangular in J•ln(•) a. e. . 

Proof: We can write G as a finite direct sum of algebras for which dimH• 
is constant. Thus we can assume that dimH• - n for all •, and hence that 
H• -- C n for each •. 

(2) =• (3). First note that if T - f• T•d!•(•) is quasinilpotent, then so 
is almost every T•, whence, (T•) • = 0 a. e. It follows from (2), for 
all A,B, C in G, that (AB- BA)C ß RadG. Thus (A•B• - B•A•)C• is 
nilpotent a. e., and therefore has trace 0. This proves (3) with 
(3) (1). Suppose (3) holds. It follows that almost every G• is the closed 
linear span of the multiplicative semigroup {S• ß S ß •q•. It follows from 
[19] that almost every G• is hypertriangularizable. Thus, by Theorem 2.4, 
G must be hypertriangularizable. 

(5). Suppose holds. It follows from Theorem 2.4 that almost 
every • is hypertriangularizable. Let X be a countable product of copies 
of .Mn with the product topology, and let E be the set of (U, T1,T2,... ) 
in X such that U is unitary and U*TkU is upper triangular for k •_ 1. 
Cleaxly, E is a closed subset of X and is therefore a complete separable 
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metric space. Hence, by [2, Thm. 3.4.3], the map that sends (U, T•, T2,... ) 
to (T1, T2,... ) has an absolutely measurable cross-section c•. Let • = •r• oc•, 
where 71' 1 iS the projection onto the first coordinate. Choose {A•, A•,... ) 
to be sequentially dense in {• with respect to the weak operator topology, 
write each Ak = fa • Ak(•)d/u(•) and let U(a•) - •(A•(•),A•(•),... ) for 
each a•. Then U(w)*6,•U(•) is upper triangular a. e.. This proves (5). 
(5) =• (4). The beginning of the proof of (2) =• (3) shows that Rad{• C 
iT e •' T n -- 0). It follows from (2) that we can assume that {•,• is upper 
triangular a.e.. Thus Rad{• C (T • {• ß T,• is strictly upper triangular 
a.e.). However, the latter set is an ideal of nilpotents in {•, and is therefore 
contained in Rad{• [11, Thin. II.8]. 
(4) =• (2). It follows from (4) that Rad{• is closed under limits of sequences 
in the strong operator topology. It follows from the preceding lemma and 
(4) that it suff•ces to show that PQ - QP E Rad{• whenever P and Q are 
idempotents. However, if P• = P, then PQ-QP = PQ(1-P)-(1-P)QP. 
Since each of the operators PQ(1- P) and (1-P)QP is nilpotent, it follows 
from (4) that PQ- QP • Rad{•. [] 

Theorem 3.5. Suppose that B is a (not necessarily dosed) unitaJ subal- 
gebra of the direct integral {• = fa • {•,•d•u(w) on the separable Hilbert space 
H = fa • H,•d/•(•) wit/• dim H,• • o• a.e.. If either 

(1) or 
(2) For each A,B,C • ]•, •ve have trA,•B,•C,• = trB,•A,•C,• 

a.e.• 

then B is l•ypertriangularizable. 

Proof: Suppose that {Tn) is a sequence that is closed under multiplication 
and dense in the weak operator topology on B. For each n, write Tn - 
fa • Tn(w)d/u(w). For each a• let B,• be the algebra generated by {Tn(w) ' 
n_•l}. 

If (2) above holds, then it follows from [19] that each B,• is hyper- 
triangularizable. On the other hand, condition (1) above implies that 
(AB-BA)C e Red(B) for all A,B, C in B. This implies that (AB-BA)C 
is quasinilpotent, which in turn implies that (A,•B,•- B,•A,•)C,• is nilpotent 
a.e.. Hence condition (1) above implies condition (2) since every nilpotent 
matrix has trace 0. 

It follows from the preceding paragraph that almost every B,• is hy- 
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pertriangularizable. Thus, by Theorem 2.4, f• B,odla(w) is a hypertriangu- 
larizable algebra that contains B. Hence B is hypertriangularizable. [] 

The following example shows that the converse of the preceding the- 
orem is false. 

Example. Suppose that f• is the unit circle in the plane and /• is 
normalized linear Lebesgue (i.e., Haar) measure on f•. For each A in 542 
and each positive integer k, let Ak = f• zkAdl•(z) acting on the Hilbert 
space H = f• C2dlu(co). It is clear that A•Bj = (AB)•+j. Thus {A•' A E 
542, k _> 1} is a multiplicative semigroup. Let • be the weakly closed unital 
algebra generated by $. It is clear that condition (2) in Theorem 3.5 does 
not hold; whence neither does condition (1) (in fact, • is semisimpie). 

Suppose that {e•,e2} is the standard basis for C 2. We know that 
{z •' n -- 0, +1, +2,... } is an orthonormal basis for L2(/•). For each integer 
n and each j in {0, 1}, let e,•j = f• z'•ejdl•(z). It is easy to show that the 
e,•j •s form an orthonormal basis for H. Furthermore, if we define M,•j = 
•pp{e,•i ß rn >_ n,i _< j}, we see that the M,•j's form a (discrete) masa- 
generating chain. It is also clear that the M,•j •s are invariant subspaces for 
the A• •s, and thus are invariant subspaces for •. [] 

The preceding example suggests another possible result. Suppose that 
H - f• Cnd•u(w) and •u is a finite measure. There is a natural trace TR 
defined on f• B(Cn)dla(Oz) = f• 54ndla(Oz ) by 

= 

It is reasonable to ask whether a subalgebra 6 of f• 54,•dl•(w) such that 
TR(ABC) = TR(BAC) always holds must be hypertriangularizable. In 
the preceding example, we had TR(Ak) = 0, so the above trace condition 
held. 

We suspect that the preceding question has a negative answer in gen- 
eral. However, it is possible to say something about algebras satisfying the 
trace condition TR(ABC) = TR(BAC) ,under the additional rather strin- 
gent hypothesis that no element in the algebra has spectrum that separates 
0 from o•. We first require a lemma. 

The following lemma is a generalization of [12] and [19]. 
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Lemma 3.6. Suppose A = f• A•dlu(V: ) is an operator acting on the sepa- 
rable Hilbert space H = f9 • Cndtt(w) with tt a tinire measure. If a(A) does 
not separate 0 from • and ifTR(A •) = 0 for k = 1,2,3,..., then A • = O. 

Proof: I• fo•ows from par• (5) of Theorem 3.4 •ha• we c• •sume •ha• 
e•h A• is upper tri•l•. Let Xl(•),X2(•),...,Xn(•) be the diagonM 
entries of A• for each •. By throwing away a set of me•ure zero, we can 
•sme that each X•(•) is in a(A). 

Using Le•a 1.5, we c• choose a sequence {p•} of polyno•als uni- 
for•y bonded on a(A) such that p•(0) = 0 for each k, •d p•(z) • 1 
on a(A) {0}. fonow from the hypothesis that 0 = TR(p•(A)) = 
fn p•(Xl(•))d•(•) + fn p•(X2(•))d•(w) +... + fn p•(Xl(•))d•(•) for each 
k. It follows from the donnated convergence theorem that Ai(•) .... = 
A•(•) = 0 a. e.. Thus a•ost every A• is nilpotent of index at most n. 
Hence A • = 0. D 

Theorem 3.7. Suppose that • is a (not necessarily dosed) unitM re• 
subalgebra of f• •dp(w) acting on fff C•dp(•) with • finite. ff a(A) 
does not separate 0 from • for ea& A in 6, and ifTR(ABC) = TR(BAC) 
for every A, B, C in •, then 

= e 6: = 0 c 6}, 
(2) 6/Rad6 is co•utative, and 
(3) • is hypertriangul•izaMe. 

Proof: (1). It follows from the preceding le•a that {T • 6: TR(TC) = 
0 for every C in 6 } is • ideal consisting of nilpotents, •d is thus cont•ned 
in Rad6. On the other hand, it is clear that if T • 6 •d T is nilpotent, 
then TR(T) = 0. This proves the reverse inclusion. 
(2). The trace condition TR(ABC) = TR(BAC) implies, by (1) that AB- 
BA • Rad6 for every A, B in 6. Thus 6/Rad6 is co•utative. 
(3). This follows from Theorem 3.5. D 

4. Algebras of nilpotent operators. 

Theorem 4.1. Let • be a subalgebra of B(H) su& that for some fixed 
k, A • = 0 for all A in •. Then 6 is triangularizable. 

Prooff We can certainly assume that k > 1 •d that there is • A in 6 with 
A •-1 • 0. For every B in 6 •d every complex z we have (A + zB) • = O, 
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implying that the coefficient of each z'" in this polynomial is zero. In 
particular, m = i yields the equation 

BA *:-1 = _A(BA *:-2 + ABA *:-3 +... + A*:-2B). 

Thus B(Ak-•H) C AH. Fix nonzero vectors x in Ak-•H emd y orthogonal 
to AH. Then the equation (Bx, y) = 0 holds for every B in •. Hence either 
the closure of •x or {Ax: A • C} is a non-trivial invariant subsp•ce for 
• depending on whether •x • 0 or •x - 0. Thus we have the existence 
of a non-trivial invariant subspace whenever the underlying subspace has 
dimension greater than 1. 

By Zorn's lemma there exists a maximal chain C of invariant subspaces 
for •. We must show that C is a maximal subspace chain. This follows from 
the observation that if M and N are invariant subspaces for • with M C N, 
then the compression of • to N © M consists of nilpotent operators of index 
at most k. Thus if N ©M has dimension greater than one, this compression 
will have a non-trivial invariant subspace by above argument. The span of 
this subspace and M is clearly an invariant subspace for • lying strictly 
between M and N. It follows that any gaps in C are one-dimensional and 
• is hypertriangularizable. [] 

Corollary 4.2. ff 6 is a norm closed algebra oœ nilpotent operators, then 
6 is triangularizable. 

Proof.' It was shown by S. Grabinet [7] that if 6 is a Banach algebra of 
nilpotents, then there is a fixed k with A • -- 0 for every A in •. [] 

The above theorem is not true if "algebra" is replaced with "semi- 
group" as examples given below show. It is also not true if "algebra" is 
replaced with "linear manifold" as the following simple example of 3 x 3 
matrices shows: the linear manifold 

0 Z 0 
a 0 -• 
0 a 0 

consists of nilpotents but has no nontrivial invariant subspaces. 
However, there is one easy special case where linear manifolds are 

triangularizable. 
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Theorem 4.3. ff œ is a linear manifold of operators on H with A 2 -- 0 for 
all A in œ, then œ is triangularizable. 

Proof.' As before, we must only show that œ has a non-trivial invariant 
subspace. Assuming, with no loss of generality, that there is a non-zero A in 
œ, we observe that (A+B) 2 - 0 implies BA - -AB, so that B(AH) C AH 
for all B in œ. Thus the (non-trivial) closure of AH is invariant for œ. [] 

In [9] we constructed an algebra of nilpotent operators on Hilbert 
space with a semisimpie uniform closure. Here we make a more general 
construction that includes the example in [9] as a special case. 

Suppose {nk} is a sequence of integers greater than 1. There is a 
natural embedding of .k4n, © .k4n• © ... © .k4•k into .k4•, © .k4• © ... © 
A4•k © A4•+, that sends A• © A2 © .-- © Ak to A• © A2 © .-. © A• © 1. 
The resulting C*-algebraic direct limit is the Glimm algebra iT associated 
with the sequence {n•}. 

Note that A4•, © A4n• © -.. © A4• is naturally isomorphic to A4,• 
where m• - n•n2...n•. Furthermore, the natural embedding described 
above induces the embedding of A4,• into A4,•k+, that sends a matrix A 

A 0 ... 0'] 

to the matrix o •... o•. 
Using the latter view, we can easily represent iT on a separable Hilbert 

space H with an orthonormal basis {e•,e2,... }. If T = (tij) is an n x n 
matrix, let • be the operator on H whose matrix is defined as follows for 
integers m, k •_ 0 and integers 1 •_ i,j _• n: 

[•ej+k• ei+.•) = { tij if k = m ' 0ifk•m 

Thus • is just a direct sum of infinitely many copies of T. It is clear that 
if f//,• = {•' T E A4,•), then f//,• C 2•/,•+•, and that the inclusion 
map coincides with the above embedding of A4,•k into A4,•+•. Thus iT is 
represented as the norm closure • of the union of the ^ • M• s. 

Our general construction proceeds as follows. Suppose, for each k _• 1, 
that œ• is a non-zero subalgebra of gdn•, and let $• = gd• © gd• 2 ©..- © 
.k4•_• © œ•. It is clear that each $• is a closed subalgebra of iT and 
that $kSm C $m•x(•,m) for all k, m >_ 1. Let • = $• + $2 + "' + $• for 
k > 1. It follows that • = •k C $•2+$2+...+$•,• = •• C 
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$•3 + $2 + $3 + '" + $k, .... Thus 6k is an algebra for each k, and if $• 
consists of nilpotents, then 6• consists of nilpotents (i.e., if $• = 0, then 
•' C ,-q2 +'" + •, • ., = 0). Fina•y, c & +-.. +&,.. 
we let 8• = U•8•, and 6• = U•6•, •d let 6 be the norm closure of 6•. 
It is clear that if •k cont•ns the identity matrix for infinitely m•y k's, 
then 8• is the union over k of the sets • • • • ... • •, which 
m•es 6 = if. The example constructed in [9] is the special case of the 

} above construction where each n• = 2, and each • = • ß a • C . 

Theorem 4.4. If 6 is constructed • aboue, tfien 

(1) • is se•simple; 
(2) • is a strict½ dense subalgebra of B(H); 
(3) if ea& • is an algebra of nilpotents, then so is 6•. 

Proof: (3) follows from the remarks preceding the theorem, and (1) follows 
from (2). Hence, we need to prove (2). Since œ• •- 0, we can choose a 
nonzero operator $• in œk for each positive integer k. Since the numerical 
radius of an operator is at least one-half its norm, we can assume that 
[[$• _< 2 and that the numerical range of $• contains the number 1 for each 
k >_ 1. Since applying a unitary automorphism on each Adnk corresponds 
to a single unitary automorphism on •, we can assume that the (1, 1) entry 
of the matrix $• is 1 for each k _> 1. 

For each positive integer k, let P• be the orthogonal projection of H 
onto the span of {ex,e2,...,e,•k}. Suppose T • B(H) and IITII < 1. The 
upper rnk x rn• left hand corner of the matrix for T is a matrix in Adm• of 
norm at most 1, and corresponds to a tensor product A• ©A2 ©" '©Ak with 
IIAill <_ 1, and ni • J•ni for each i. Let T• = A• © A2 ©..-© A• © $k+•. 
Then T• • c•k+l, and II:r _< 2, and P•IP•Pk = P•TP•. Thus IP• -• T in 
the strong operator topology. Hence twice the unit ball of (• is strongly 
dense in the unit ball of B(H). It now follows as in [9] that (• is strictly 
dense in B(H). [] 

5. Some unsolved problems. 

5.1 Does Theorem 1.2 hold if T) is not assumed to be self-adjoint? 

5.2 If G is uniformly closed and 6/Rad6 is commutative, must •7 be trian- 
gularizable? 
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5.3 If • is weakly closed and •/Rad• is commutative, must • be triangu- 
larizable? What if • contains the unilateral shift? 

5.4 If • is triangularizable, what are necessary and sufficient conditions that 
•/Rad• be commutative (see [3])? 
5.5 What other sufficient conditions are there that insure that a collection 

of operators is hypertriangularizable? 
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