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1. Introduction and preliminaries. Let 7/be a separable, infinite di- 
mensional, complex Hilbert space, and denote by œ(7/) the algebra of all 
bounded linear operators on 7/. If {T• }•eA is a farfilly of operators in œ(7-/) 
and x is a nonzero vector in 7/such that for each c• 6 A, 

= 
n--O 

then x is said to be a common noncyclic vector for the farfilly {T,},eA. 
(Of course, since the subspaces d•4,,c• 6 A, need not be the same, the 
existence of a common noncyclic vector for a family of operators does not 
imply that the family has a common nontrivial invariant subspace.) The 
purpose of this paper is to use some techniques from the theory of dual 
algebras to obtain some (perhaps surprisingly strong) theorems concerning 
the existence of common noncyclic vectors for certain countable families 
{Tn}•=• of (in general) noncommuting operators. 

We shall suppose that the reader is familiar with the theory of dual 
algebras, as presented in [2], and, in particular, the notation and terminol- 
ogy employed below are taken from [2]. If T • œ(7/), we write AT for the 
dual algebra generated by T and QT for the predual Cx(7i)/ñ.AT of AT, 
where, as usual, Cx (7-/) denotes the Banach space and ideal of trace-class 
operators in œ(7/). The elements of QT will be written as cosets [L], where 
L 6 ½x(T/), or, when there is more than one dual algebra under consider- 
ation, as [LIT. As usual, we write •q for the set of positive integers, C for 
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the complex field, D for the open unit disk in C, and T for (9D. Further- 
more, we shall write H • = H•(T) for the Banach algebra of all bounded 
holomorphic functions on D, and identify this algebra routinely with the 
corresponding algebra of boundary functions. Recall that a subset • C D 
is said to be dominating for T if almost every point of T is a nontangential 
limit of a sequence of points from •. For an operator T in/•(7-l), we write 
•(T) for the spectrum of T and •e(T) for the essential (Calkin) spectrum 
of T. We shall employ the customary notation C.0 - C.0(7-l) for the class 
of all (completely nonunitary) contractions T in œ(7-l) such that the se- 
quence {T* }n converges to zero in the strong operator topology, and write, 
as usual, Co. = (C.0)* and Coo = Co. CI C.0. 

A typical corollary of our main theorem (Theorem 2.1) is as follows. 

Proposition 1.1. Let {Tn}•=• be an arbitrary (not necessarily commut- 
ing) family in C.o(7-[) such that •(Tn) • D is dominating for T for every 
n • N. Then the family {Tn}n•__l has a dense set of common noncyclic 
vectors. 

This proposition is pertinent to the invariant subspace problem for 
contraction operators with spectral radius one, as is evidenced by the fol- 
lowing corollary. 

Corollary 1.2. Suppose T is a contraction in œ(TI) with spectral radius 
one. Then either T has a nontrivial hyperinvariant subspace, or there exists 
a contraction S in œ(7-l) satisfying Lat S = Lat T or Lat S = Lat T* such 
that the family of operators {S 2, S 3, S4,... } has a dense set of common 
noncyclic vectors. Moreover, in the latter case, if any pair {S p, sq}, where 
2 _< p, q < c• and p and q are relatively prime positive integers, has a 
common nontrivial invariant subspace, then T has a nontrivial invariant 
subspace. 

Proof of Corollary 1.2: If the unitary part of T is a scalar A of modulus 
one, then either T = Jk, in which case we set $ = Jk and the theorem is 
proved, or T has a nontrivial eigenspace. On the other hand, if T has 
a (nonzero) unitary part which is not a scalar, then T has a nontrivial 
hyperinvariant subspace [4]. Thus we may suppose that T is completely 
nonunitary, and another well-known argument enables us to conclude that 
either T 6 C.0 tJ Co. or T has a nontrivial hyperinvariant subspace. If T 6 
C.0, then we may apply [5, Theorem 2.1 and the discussion preceding Prop. 
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1.1] to conclude that either T has a nontrivial hyperinvariant subspace, or 
there exists a contraction $ of the form $ - f(f(T)), where f is some 
appropriate conformal map of D into D, such that Lat S = Lat T and 
erie(S) C3 D is dominating on a subarc of T of length greater than 3•r/2. 
Furthermore it follows from [3, Theorem 7.2] that S ß C.0, and it is easy to 
see that the family {Sn)•=2 satisfies the hypotheses of Proposition 1.1, so 
this family has a dense set of common noncyclic vectors. In case T ß Co., the 
above argument is applied to the operator T*, and once again the desired 
conclusion follows, with Lat $ = Lat T*. To conclude the proof, suppose 
now that for some 2 _< p _< q < cx• with p and q relatively prime, $P and $q 
have a common nontrivial invariant subspace A4, and let x0 be a nonzero 
vector in A4. It is an exercise, using the fact that there exist integers s and 
t with ps + qt = 1, to see that the cyclic subspace 

Af = V sP'q+kx0 

for S is contained in J•4, so either .if = (0), in which case S has zero as an 
eigenvalue, or iV' •: (0), in which case A/' ß Lat S = Lat T. In either case, 
Lat T •: { (0), 7-/}, and the proof is complete. 

Remark 1.3. In connection with Proposition 1.1, it is worth point- 
ing out that two arbitrary operators may not have any common noncyclic 
vector. Recall (cf., for example, [7, Prop. 3.8 and Corollaries]) that there 
exist unicellular weighted backward unilateral shifts. Let T and T • be two 
of those defined (by their weight sequences) with respect to the orthonormal 
bases {e,•},•e• and {e[},•e•. Then the only proper invariant subspaces for 
T (resp. T •) are exactly the subspaces = (resp. œ•n = V•_<ne[), 
n ß N. Thus any common noncyclic vector x for T and T • will belong to a 
subspace œ,• f• œ•m for some n, ra ß [q. If the orthonormal bases are chosen 
so that œn fq œ• = {0},n, ra ß N], then the pair {T,T'} will not have any 
(nonzero) common noncyclic vector. To achieve this, consider the Hilbert 
space L2(0,2•r) (with respect to Lebesgue measure divided by •r) with, on 
one hand, the orthonormal basis (e,•),•_>0 defined by 

eo(t) ---- :• 
2 • 

e2k-l(t) --sin (kt),k •_ 1, 
e2•(t) -- cos (kt), k _• 1, 
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! 

and, on the other hand, the orthonormal basis (en)n)0 obtained from the se- 
quence of polynomials {t -• tn}•>0 via the Gram-Schmidt procedure. Take 
now 7/to be the orthocomplement of e0 in L2(0, 2•r). Then the orthonor- 
mal bases (e•)•)l and (e[)•)l of 7/do satisfy the required conditions. (To 
see that, observe, for instance, that any element in œ•m has an identically 
vanishing derivative of order (m + 1) while nonzero elements of œn have 
nonconstant derivatives of any order.) 

2. The main theorem. In this section we provide the details which 
constitute a proof of our principal theorem. We recall that an absolutely 
continuous contraction T in /2(7/) is said to belong to the class /1(7/) if 
its Nagy-Foias Høø-functional calculus •bT : H © -• AT is an isometry. 
Furthermore, such a T is said to belong to the class/1• 0 (7/) if T •/1(7/) and 
every system of equations [xi © Yj[T = [Lij]T, 0 <_ i,j < c•, in the predual 
QT, where the Lij,O <_ i,j < ec, are arbitrary trace-class operators, has a 
solution ({xi}?=o, {YJ}•=0) consisting of a pair of sequences of vectors from 
7/. For more information about the class/1•0 (7/), see [2, Chapter V]. Our 
principal theorem is the following. 

Theorem 2.1. Suppose {Tn}nøø=l is aJly sequence of operators contained 
in the class/•so (7/)•1 C.o(7/), {[L,•]T•}•=i is an arbitrary sequence (where 
[L,•]T• e QT•), and {•r•)•__• is any' sequence of positive numbers. Then 
there exists a dense set 1) • 7/ such that for every x in 1), there exists a 
sequence {ynX}r%1C 7/satisfying 

(1) Ix © - e 

and 

Proof of Proposition 1.1: We now show how Proposition 1.1 is a corol- 
lary of Theorem 2.1. If { n}n=X satisfies the hypotheses of Proposition 
1.1, it follows immediately from [2, Theorem 6.8] that each T• • /1• 0 . 
Thus the sequence {T• } satisfies the hypotheses of Theorem 2.1, and we set 
[Ln]T,• = 0 and •r• = 1 for each n • hi. Thus there exists a dense set/) in 
7/and for each x in/) a sequence {y• },•ø•__ 1 from 7/satisfying 

[x © = O, n 
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and 

• k 
With such a nonzero x in V fixed, define for each n ß N,JMn = Vk=0(Tn) x. 
A standard computation (cf. [2, Prop. 4.8]) shows that y• is orthogonal to 
.A4• for each n ß N, and hence that x is noncyclic for each T•, n ß N. This 
completes the proof of Proposition 1.1. 

The proof of Theorem 2.1 is based on some preparatory lemmas which 
are of independent interest. 

Lemma 2.2. Suppose •4 C œ(TI) is a commutative dual algebra with the 
property that for every weak* dosed ideal •7 C A, the quotient A/•7 is 
either finite dimensional or nonseparable. Then, for every x in 7/, there is 
an orthonormal sequence {t•} • in TI satisfying n•-I 

(3) © x]ll 0[resp. II[ © tnlll 01. 

Proof: Since the hypothesis remains valid if A is replaced by A* = {T* ß 
T ß A}, and one has [t © U]Q• = [u © t]Q•. II for t, ß ?/, i• clearly 
suffices to prove the first statement in (3). Also, of course, we may take 
x • 0. Define •b' 7-/-• Q.4 by •b(t) = [t © l,t ß ?/. C•ear•y •) is linear and 
bounded. Using the Open Mapping Theorem it is easy to see that if (3) 
does not hold, then ker •b is finite dimensional and •b (ker •b) ñ is bounded 
below. (Thus we must rule out this possibility.) Supposing this to be the 
case, the range of •b is closed, and therefore •b* ß A • 7-/* (where 7/* is the 
Banach space dual of 7/) has closed range .A4* which is infinite dimensional 
(being the annihilator of ker •b). Therefore, there exists an invertible, weak* 
continuous (thus bounded), linear mapping ½* of A/(ker •b*) onto .M*, and, 
in view of the hypothesis, to complete the argument, it suffices to show that 
ker •b* is a weak* closed ideal in A. Thus, let A ß ker •b* and let B ß A. 
Then, for every t ß 7/, 

(4) O= (•b*(A),t>+t,x+t= (A,[t©x]>=(At, z)+t=(t,A*z), 

and hence A*z = 0. Thus B*A*z = A*B*z = 0, and another computation 
like (4) shows that AB = BA ß ker •b*. This, together with the weak* 
continuity of •b*, shows that ker •b* is a weak* closed ideal in ,4, which 
completes the proof. 

In order to adapt Lemma 2.2 to our needs, we need the following 
proposition, whose proof was provided to us by Allen Shields. 
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Proposition 2.3. /f•b is an inner function in H ©, then the quotient space 
H•/q3H © is separable if and only if q3 is a finite Blascbke product, in which 
case this quotient space is finite dimensional. 

Proof: If •b is a finite Blaschke product, then H•/q3H © is obviously finite 
dimensional, so we may suppose that •b is not a finite Blaschke product. We 
consider first the case in which •b is divisible by a singular inner function 
S•, where p is a singular Borel measure on T. Then we can write •b = BS•, 
where either B - 1 or B is a Blaschke product. For t ) 0, let S• denote 
the singular inner function associated with the measure tp. We assert that 
if0•a•b• 1, then 

II[&•]- [sb•] H-/•H- •_ 1, 

and hence the quotient space is not separable in this case. To establish this 
inequality, let f • H ©, recall that Sz• -- (S•) z, and compute: 

$• - &• - •/[n• = [[(s•) • - ($•)• - $•m/ n• 
--I (S/•)a[1 -- (Slz) b--a -- (Slz)l-aB f] H © 
= I1 - (s.) •-• - 

But associated with every inner function • which is not a finite Blaschke 
product is a sequence •z•) C V such that Iz• -• 1 and •(z•) -• 0. Choos- 
ing such a sequence {z•) for S• and evaluating Mong this sequence gives 
the desired inequality. 

Finally, we consider the c•e in which b is divisible by an infinite 
Blaschke product B, so • = BS, where either S = 1 or S is a singular 
inner function. By virtue of the case already done, we may suppose S = 1. 
Choose an interpolating sequence {z•) from •ong the zeros of B with 
the property that • the terms in {z•) are distinct, and let B• be the 
corresponding Blaschke product, so • = B•B• where B• is also a Bl•chke 
product. 

To see that H•/bH © is not septable in this c•e, we define, for each 
n•N, 

5•(•) = •1(z)(1- •z) z• I (z•-z)• , •6•, 
and rec• from [6, p. 196] that there exists 5 ) 0 such that 

(4) 15•(z•)l & 5, • e •. 
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Next we arrange Q, the set of rational real numbers, in a sequence 
and for each real number x we choose a subsequence {q,•,)m, eN• of {%) 
that converges to x. Observe that if x • y, then Nx V• Ny is a finite set, 
and for each real x, write B• for the Bl•chke product whose zeros are the 
sequence {z•)•eN•. We •sert that 

(5) II[s•]- [S•] s•/•s• • •, x,y e •, x • y, 

which is, of course, su•cient to prove the nonseparability of H•/•H •. To 
establish this inequality, fix x, y E • with x • y, and let f E H •. Write 
B(•,y) for the Blaschke product that is the greatest co--on divisor of B• 
and By, and note that since N• • Ny is finite, B(•,y) is a finite Bl•chke 
product such that B•/B(•,y) and By/B(•,y) •e (infinite) Bl•chke products 
with no zeros in co--on. Thus 

IIB• - By -•fllH• = B• - By - SlSefl I 
= B(•,•)(B,/B(,,•) - Bu/B(,,• ) - (B•/B(•,•))B2f) 
= I B•/B(,,•) - B•/B(•,•) - (B•/B(,,•))B•f, 

and if we evaluate this expression at any zero w of B•/B(•,•), then we obtain 

- - w-zl - 

w•ch estab•shes (5). (The l•t inequ•ity is from (4), and the preceding 
one is obvious from the definitions of B1, B•, and B(•,•).) 
Coroll•y 2.4. Suppose T • g(•). Then, for every x in •, there is an 
orthonortoN sequence {t•}• in • satisfying 

I[t• • xl • 0[•p., II[x • t•111 • 01. 

Prooff By definition of the class g one knows that the H • functional c•- 
culus •T ' H • • AT is a we•* continuous, surjective, isometric, •gebra 
isomorphism. To see that Le•a 2.2 can be applied to AT, we observe 
that if ff is •y we•* closed ide• of AT, then there e•sts an inner func- 
tion $ such that ½T($H •) = J, so AT/J is isometric•ly isomorphic 
to H•/½H •, and we apply Proposition 2.3 to see that AT/J cannot be 
septable and infinite dimensionS. 

The following le•a constitutes the essenti• step of an induction 
ar•ent which is at the heart of the proof of Theorem 2.1. 
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Lemma 2.5. Under the hypotheses of Theorem 2.1, suppose N 6 N, the 
numbers e, eN, eN+l are positive, and there exist vectors x and zi, . . . , ZN 
in 7-I such that 

(6) II[• • Zi]Ti --[Li],,ll < eN, i= 1,...,N. 
! 

Then there exist vectors x' and z•,..., z•+• in 7-l such that 

(7) I1[•' • z•]., -[LilT, II < •N+•, i = 1,... ,N + 1, 

1 

(8) 

1 

(9) I z,- z•l • •, i- 1,...,_•, 

and 

(lO) I[z}+• > •-n+• + e. 

Proof.' Since T• 6/ls0, AT• has property X0,• (cf. [2, Def. 2.7 and Prop. 
• r o• 8 oo 6.1]) and thus there exist sequences • n•n-• and • n•__• in the unit ball 

of 7/such that 

(11) ]([x©z•]T•- [L•]T•)- [r= © SdT,[ I -•0, eN 

and 

(13) II[w © 

It is easy to see, using (6) (for i = 1), (11), (12), and (13) that if we define 
i 1 

t e•yr n t - (14) x• = x + , z• = z• + e•vsn 



NONCYCLIC VECTORS 645 

for some n sui•ciently large, then it results that 

[4 © •i]• -[•]• II < •+•. 

Moreover, since T2,..., 

(15) II[r,, © zi]•, l •' 0, i= 2,...,N, 

•nd hence, using (6), we see that n m•y Mso be chosen su•ciently l•rge to 
ensure that 

II[x• • Zi]T, -[Li]T, II < e•, i = 2,...,N. 

Moreover, from (14) it is automatic that 
i 1 

I• - • 5 •, Iz• - z•ll • •. 

Next, using the f•ct that A• h• property X0,1, we obt•n sequences 
U • V { =}==• •d { =}==• from the unit b• of • such that 

[4 • z•]•- [•]•- [• • •]•[[ • 0, 

Thus, anMogous to what w• done before, if we define 

i 1 

•2=•l+•u=, z 2=z2+ , 

for some n su•ciently large, then we c• •range that 

•[4 • zl]• -[•]• • < •+•, 
[4 • z•]•, - [•]• • < •+•, 

and 
i i 
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After repeating this argument N- 1 times, we obtain, successively, vectors 
' zSv satisfying ' .. x•v and vectors Zl, X•, X 2, . , ß ß ß • 

, 

II[xS• • z•]•, - [L,]•, < ½N-]-1, i = 1,... ,N, 
1 

IIx -/Svll < II/- x;11 +... + I XSV_l -/Svll < 

and 
1_. 

IIz,- z•11 <_ •/•, i- 1,... ,N. 

In order to obtain inequality (7) for i = N + 1, we recall that, by [1], the 
set 

$= {s e 7-/ß 3 w with [s © w]T•,+• = [LN+i]T•,+•} 

is dense in 7-/, and therefore we may choose a sequence {$n}nøø=l from 
satisfying 

Sn -- x•v --+ 0 

and a sequence {wn} from 7-/such that 

[sn © W•]T•v+• = [LN+i]T/v+•,n e 

Thus we may set x' = s• and z•+ 1 -- Wn for n sufficiently large, and 
thereby arrange that (7) and (8) are satisfied. Unfortunately, (10) may not 
be satisfied, so the final step in the proof is to modify the definition of z•+ 1 
so that (10) will be satisfied and (7) (for i = N + 1) will be maintained. 
To this end, let {tk} be an orthonormal sequence given by Corollary 2.4 
(applied to T•v+l) such that 

and define z•V+l - z5•+1 -}- (27rN+ 1 or- e)tk for some k sufficiently large that 

I zSv+ll[ > 71-N+l -}- • 

and (7) for i = N + 1 remains valid. Thus the proof of the lemma is 
complete. 

We are now prepared to prove Theorem 2.1. 
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Proof of Theorem 2.1: Let x0 in 7-/ be fixed, and let e > 0 be given. 
We will show that there exist a vector x and a sequence {ynX}n•=l from 7-g 
satisfying (1), (2), and IIx- x011 < e, which will complete the proof. The 
vectors x and {y•}n•__l are constructed by an inductive process. We begin 
by choosing a sequence { n}n=X of positive numbers such that 

1 

(16) •-•(n-'F 1)e• < el2. 

The first step in the induction process is to consider the equation 

(17) [Xl (•) g,]T, -- [L1]T,, 

where X 1 and gl are unknowns. Since T• E/As o , we know from [1] that the 
set of vectors Xl in 7-/ for which there exists some gx -- gX(XX) satisfying 
(17) is dense in T/, and hence, in particular, we may choose such Xx and gl 

1 

satisfying (17) and x0 - Xl < 2e•. Since we do not know that gill > 
•x-Fe, we must now replace gl by a vector YX for which (17) is almost satisfied 
and [Yx > 71-1 -]-6. TO accomplish this, we obtain from Corollary 2.4 an 
orthonormal sequence {tn}nc•__l for which I[Xl (•)tn]T, '--+ 0. Therefore, by 
choosing n large enough and setting yx -- gx -]- (2•2 -]- 6)tn we obtain the 
inequalities 

[Xl (•)Yl]T• --[L1]T• < 61, 
1 

X 0 -- X 1 < 26•, 

and 

Suppose now that we have constructed vectors Xl,... ,XN, and as- 
sociated with each such xi a sequence i i {Yk}k=X, such that the following 
inequalities are satisfied: 

1 

I Xi+l - x,II < (i + 1)e•, i= 2,...,N- 1, 
II[x, © y]n - < •,, 1 <_ k _< i, i = 1,... ,N, 

1 

yi+l_y• <e•,l<k<i i-1 N 1, k -- -- ' ' ' ' ' ' • 

Ily11 > + i= 
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We wish to construct now a vector XN+i and an associated sequence 
{y•+• oN+• ,"', s•v+• } such that 

and 
•N+I •+•1> •+• +e. 

But things have been arranged so that we may apply Lemma 2.5 to 
accomplish this by setting x = x• and zi = y f, 1 $ i $ N, and then 

x' and y/N+1 , defining x•v+l -- -- zi, 1 _< i _< N + 1. Thus, by induction, 
we may construct a sequence {x•v}•v=• and for each i • •q, a sequence 
{Y•}•=i such that 

1 

IIx•+• - x• I < (N q- 1)e•v , N e N, 
1 

Ily/•+x - y/•ll < e}, i e NI, N -i,i + 1,..., 
I[x• • y•]r, -[Ld•,11 < ½•,N • •, i- X,2,...,N, 

and 

y•ll > •ri q- e, i e N. 
1 

Since y]•=l (N + 1)e•v < e/2, it follows easily from these inequalities that 
the sequences {xjv}•=l and {y•V}•=i,i • N, are Cauchy, and thus con- 
verge. Let us write x = lim x jr and y•' = hmjvyff, i ½ N. Then it is clear 
from these inequalities and continuity that (1) and (2) are satisfied, and 
thus the proof of Theorem 2.1 is complete. 

3. Some questions and examples. Theorem 2.1 and its corollaries raise 
some interesting questions. A first question is whether we might expect that 
every countable family of operators {T•}•__• in the class/1•o(7-/) •C. 0 has 
a common nontrivial invariant subspace. The following example shows that 
this is not the case. 

Example 3.1. Let {e•}•=• be an orthonormal basis for 7-/, and 
consider the operator B ½/2(7-/) defined by Be,• = (n/(n+l))«e,•+•,n • N. 
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This operator B is a Bergman shift operator, and it is well known (cf. [2, 
Chapter IX]) that B • /1• 0 ffl Coo and hence (cf. [2, Remark 5.7]) that 
B* •/1• 0 ClC00 also. But ifJM were a nontrivial common invariant subspace 
for the pair B, B*, then JM would be reducing for B, and it is well known 
(cf. [7]) that unilateral weighted shifts with nonzero weight sequences have 
no nontrivial reducing subspaces. Thus the pair {B, B*} has no nontrivial 
common invariant subspace. 

This example leaves open, however, the following questions. 

Problem 3.2. Suppose that {Tx, T2} is a pair of commuting operators 
in the class/1•0 ('1 C.0. Does the pair necessarily have a nontrivial common 
invariant subspace? 

We remark, once again, that if the answer to Problem 3.2 is affir- 
mative, then every operator T in /2(7/) whose norm and spectral radius 
coincide has a nontrivial invariant subspace (Corollary 1.2). 

Another interesting question related to Theorem 2.1 and Problem 3.2 
to which we do not know the answer is the following. 

Problem 3.3. Suppose that {Tx, T2 } C/2(7/) is a pair of operators in 
the class/Is0 ('lC.0. Is it necessarily the case that there exist nonzero vectors 
x and y in 7/such that Ix © Y]T, = 0 and [x © Y]T2 = 07 Note that Theorem 
2.1 provides nonzero vectors xx, Yx, and Y2 such that Ix © Yi]Ti ---- O, i = 1, 2 
and that, if Tx, T2 are arbitrary operators, even this weaker property need 
not hold (cf. Remark 1.3 above). 

One cannot hope to improve Theorem 2.1 to the extent that all of the 
vectors {Y•}•=x given in the conclusion of that theorem can be taken to 
be the same without placing some restrictions on the sequence {[L•]Tn }, as 
the following example shows. 

Example 3.4. Suppose T •/Is0 (7/) Cl C.0(7/). It follows easily from 
the known structure theory of this class that {T2,T 3} C 11• o FI C.o, and for 
any operator A •/1 and A • [1, let [Cx]•, denote that element of Q•, such 
that (•A(f), [Cx]) = f(A) for every f in H ©. Suppose now that, for some 
A • 0, we could solve the simultaneous system of equations 

Ix © = 
Ix © = 
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Then it would follow trivially that 

: : : 

and obvious absurdity. 

4. Remarks. 1. Both authors were supported by a grant from the 
National Science Foundation during the period when this paper was written. 

2. Our friend and colleague Constantin Apostol, upon being told a 
weaker version of Theorem 2.1 several years ago, told the authors that he 
had proved a similar result (unpubhshed). 
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