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ENTROPY OF DYNAMICAL SYSTEMS AND 

PERTURBATIONS OF OPERATORS, II 

DAN VOICULESCU* 

1. Introduction. This paper is a sequel to our note [4]. In [4], for a family 
of unitary operators normalizing avon Neumann algebra, we introduced 
an invariant H? (and a variant of it, •?) called the perturbation-theoretic 
entropy. In the case of L øø of a probability measure space and of the unitary 
operator induced by a measure preserving ergodic transformation T, we 
showed that Hp (and hence also /f/p) is in an interval [C•,h(T), C2h(T)] 
for some constants C1, C2 and h(T) denoting the entropy of T. 

For the class of Bernoulli shifts we prove here that •? is actually pro- 
portional to h(T). This confirms our belief that the perturbation-theoretic 
entropy is an invariant equivalent to entropy. This also suggests that •p 
may have some advantages over Hj•. 

Note also that if we replace the assumption that the measure is invari- 
ant under T by the weaker assumption that the measure be only quasiinvari- 
ant, there is still a canonical unitary operator implementing the automor- 
phisin of Løø(X) induced by T. Hence •j• provides an entropy-like invari- 
ant for transformations with quasiinvariant measure. It is an open problem 
whether this extension is nontrivial, i.e. whether there exist such transfor- 
mations without an equivalent invariant measure, for which the value of •? 
is finite and non-zero. In section 5 we obtain certain results which may lead 
to an example of such a transformation. We also prove that a non-atomic 
dissipative transformation has infinite perturbation-theoretic entropy. In 
particular an affirmative answer to the preceding problem would involve a 
conservative transformation. 
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More generally, it is a consequence of the theory of the standard form 
of von Neumann algebras, that automorphisms have canonical unitary im- 
plementations in the standard form. This implies that the perturbation- 
theoretic entropy is defined for automorphisms of von Neumann algebras, 
without assuming the existence of invariant states. 

For the shift-automorphism of the II• factor of a free group on genera- 
tors indexed by 7' the Connes-Stormer entropy is either 0 or •x>, but it is an 
open question which of these two is the actual value (as I have learned from 
Erling Stormer). We prove here that the perturbation-theoretic entropy of 
the free shift automorphism is 

2. Preliminaries. Throughout this paper we will use definitions and no- 
tations of [4] with some amendments. This section is devoted to these 
amendments. 

The definitions of the perturbation-theoretic entropy and of its vari- 
ant, as well as the results of section 3 of [4], are given under hyperfinite- 
ness conditions. It is natural to expect that at a more advanced stage in 
the study of the perturbation-theoretic entropy hyperfiniteness assumptions 
should play a role, however in the definitions and results of section 3 of [4], 
the hyperfiniteness assumptions are not necessary. We will therefore remove 
these unnecessary assumptions. We will use this in the case of the free shift 
automorphism. 

As we mentioned in the introduction here, using the theory of the 
standard form, the perturbation-theoretic entropy for automorphisms of 
W*-algebras can be defined also in the absence of invariant states. In 
more detail, let M be a W*-algebra and let Q be a set of automorphisms 
of M. By [1] there is a standard form (M, T/, ,7, P) for M and this 
standard form is unique up to unitary equivalence. In particular for every 
c• • Q there is a unitary operatory u(c•) on 7-/ which implements c•, i.e. 
u(o•)xu(o•)* - c•(x) for x G M. By the uniqueness of the standard form 
up to unitary equivalence, it follows that Hp(u(Q),M) and •r(u(Q), M) 
depend only on Q and M. 

Definition 2.1. If M is avon Neumann algebra and Q a set of au- 
tomorphisms the perturbation-theoretic entropy Hp(Q, M) and its variant 
t•rp(Q, M) are defined to be Hp(u(Q),M) and, respectively, Bp(u(Q),M). 

In the case where M is L•(X, la), the standard form is on L2(X,/•) 
with ,7f - f and P the positive functions in L2(X, I•). If C•T is the auto- 
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morphism induced by a transformation T of X for which/• is quasi-inwariant, 
1 

(d• iT-1 (u(o•T)f)(•) = f(T-l•) k, d/z (6) 
In particular, the perturbation-theoretic entropy H•(C•T, L•(X, /z)) is an 
invariant of the transformation T with quasiinvariant measure/•. Note that 
this invariant does not depend on the choice of/• within a given equivalence 
class. 

Before closing this section let us point out that the assumption in [4], 
that the Hilbert spaces we consider are separable and that the yon Neumann 
algebras have separable predual, will be in force throughout the present 
paper. The adaptation to the nonseparable case, being quite routine, is 
omitted here. 

3. Bernoulli shifts. We prove in this section that for Bernoulh shifts 
the perturbation-theoretic invariant • is proportional to the Kolmogorov- 
Sinai entropy. We will use Sinai's theorem and the following general fact: 

Proposition 3.1. If u is a unitary operator normalizing a commutative 
yon Neum•n• •gebra A t•e• •,u •, A) = n •,u,a). 
Proof: The inequahty _• and the fact that the left-hand side is not changed 
when n is replaced by -n has been noted earlier for general A (Remark 3.5 
in [4]). It will suffice to prove the inequality _• when n > 0. This in turn 
will follow if, given B E •(A), we find C E •(A) such that k•(u '• C) _• 
nk•(uB). 

Since A is commutative, we m•y define C = V0<k<•-i u-kBuk. 
There are X• E N•+ f• C • such that X• T I as m -• oo and 

kZ(lc) = nm - 

Let Ym = n -• •0<k<•-lUkX• u-k' We have Y.• T I and Y.• • 7•1 + F1 
(fqo<k<n_1ukCu-k)' C •1 + fiB'. We have: 

kZo( c) = nm - 

= lim n uY.•u -1 - Ym]• >_ k•(u[B) 

Q.E.D. 
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Corollary 3.2. /f o• is an automorphism of an abelian yon Neumann alge- 
bra A then •rp(• n, A) = [n[•rp(•,A). 

With the notations of Theorem 4.1 of [4] we have the following theo- 
rem. 

Theorem 3.3. There is a universal constant ? • [2 -1, 18] such that 
•p(UT, Løø(X)) = ?h(T) whenever T is a Bernoulli shift. 

Proof: Combining Theorem 4.1 of [4] •nd the fact that Hp _• •p • 3Hp 
we h•ve: 

2-•h(T) • •(UT, L•(X)) • lSh(T). 

Let T• •d T2 be BernouUi s•fts; by Sin•'s theorem h(T•) • h(T2) 
imp•es that T• is a factor of T2 •d hence in view of Retook 3.5 of [4], we 
have that 

•.(v•,, L•(X•)) S •.(V•, L•(X•)). 

Hence there is • increasing function •'[0, •] • [0, •] such that 2-•t • 
•(t) • 18t •d 

•(V•,L•(X)) = •(•(•)) 
if T is a Bernou•i shift. 

If T is a Bernou•i shift, then Tn(n ) 0) is •so a Bernoul• shift of 
entropy nh(T); hence by Proposition 3.1 we have 

•(.•(•)) = •(•(•)) = •.u•., L•(X)) 
= nitp(UT, Lø•(X)) 
= •(h(T)). 

Since h(T) may be any number in [0, ee] we infer ck(nt) = nck(t) for all 
t e [0, ee]. It follows that ck(qt) = qq•(t) for all positive rational numbers 
q. Combining this with the fact that •b is increasing we easily get that 
•(t) = ?t. Q.E.D. 

4. The free shift. Let G be a free group on generators gn(n 6 Z). Let 
L(G) be the yon Neumann algebra (A(G))" where A is the left regulax 
representation of G. Further, let a be the free shift automorphism, i.e., 
a e Aut(L(G)) is such that a(•(gn)) - •(gn+•). 
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Proposition 4.1. Let c• be the free shift automorphism on L(G). Then 
•/•(•, •(•))= +o•. 

Proof: L(G) is in standard form on œ2(G) and the unitary implementing 
a is u • B(œ2(G)) which acts on the canonical basis of œ2(G) (indexed by 
G) as the free shift automorphism of the group G. We have 

•rp(,•, •(a))= •rp(,, •(a)). 

Further, let v e (A(g0))" be a unitary operator with v" = I and such that 
the trace of the spectral measure of v is Haar measure on the group of n-th 
roots of unity. We have 

I (uv, . . . UV n--1 •te(,, L(a)) >_ kZo(,,v,...,v "-•) >_ •;o , ). 

If • is the canonical trace-vector in œ2(G) for L(G), then: 

(UV P• )(ttV P2 )... (ttV P•: )• -' O• 1 (V P• )C•2 (V P2 )... O• k (V P•: )• 

and it is easily seen that (uv,... ,uv "-•) and • satisfy the assumptions of 
Proposition 2.3 in [4]. It follows that 

1 

He(u, L(G)) >_ • log(n- 1). 

Since u is arbitrary this proves the proposition. Q.E.D. 

5. Non-singular transformations. In this section we present some 
facts concerning He for general non-singular transformations which may 
lead to the construction of examples without invariant measure where the 
perturbation-theoretic entropy is finite and non-zero. We also prove that 
non-atomic dissipative transformations have infinite He. 

We begin with a generalization of the upper bound part of Theorem 
4.1 in [4]. 

Proposition 5.1. Let T be a non-singular invertible transformation of 
the probability measure space (X, y•, p), such that the Radon-Nikodym 
derivative d22-T- is a simple function (i.e. takes only finitely many values) d• 
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and let A = sup l log d•oT Assume moreover there is a constant C such dl• ' 
that for every finite partition q we have 

p>O,q>o P+q+l - 
p+q--•o• k'--q 

for a.e. x in X. Then we have 

•p(UT, Løø(X)) <_ (2C + 6A log'2) 

where UT = U(aT). 

Proof: Let B ß •(Lø•(X)) and let fl be the corresponding partition. In 
view of the assumption on the Radon-Nikodym derivative we may assume, 
after enlarging B, that • ß B and deøT-' d• d• ß B. 

Ifp < q and • > 0 let 

q 

%,,q(A) = {x ß xl(1 +q-p)-•I(V TJ/3)(x) < A} 
j=p 

Let further 

It is easily seen that 

W N (, • '-- •lp_< _ N Wp,q (,• ) . 
q>_N 

T'•w•v(A) C WN+i '• + 2N +• 
if a ß (-1,0,1}. Our assumptions imply lim•v-•o•p(wN(C + e)) = 1 if 
• > 0. For each n ß NI we define projections P,(A) and RN where 
is multiphcation by the characteristic function of w•(,X), while R• is the 
orthogonal projection onto the subspace of L2(X) consisting of function 
constants on the atoms of T-•/• V... V T•/•. 

If a ß {-1,0, 1 } we have 

U•PN(,•)U• øt _< PN+i ,• q- 2N +• ' 
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Note that the assumptions 

dla o T 
dl a 

dtt oT -1 
•B 

imply that if a • (-1, O, 1) then 

U•R•vU• '• _• RN+I. 

We define 

E Pk C'JI -A E (2t-[-3)-1 ' 
k=N+l 't=N+l 

2N 

Zn = N -• • Rk. 
k-N+1 

We have P•v(C + e) T I and Rt• T Q(]•), where Q(]•) is the projection onto 
the V?=_oo TJ/•-measurable functions. This implies Yn 2, I and Z•v T Q(]•) 

We have 

UTYNU•,-Yn --N -1 • UrPk e+C + 
k=N+l 

E 2t ql- 3 v•l 
t=N+l 

2t+3 

•=N+• 2t + 3 

• 2t+3 
t=N+l 

2t+3 ' 

k -P• e+C+ • 
t=N-t-1 

•_ N-1 • Pk+l e-]-C + 
k=N+l 

-P• 
2N+l _• N-1p2 N + i e-l-C-l- E 

't=N+l 
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UTY,,U•,-Yn > N -• P•-I e+C+ • 2t+3 
\k=N-]-I inN-i-1 

-Pk e+C+ E 2t+3 
/=N+i 

>_-N-1p2/V+i e+C+ E 2t+3 ' 
/=N+I 

We have: 

2N+1 1 1 ( in N+2 '• inN-i-1 

so that denoting P•/v+l = P2•+l(e + C + Ac•), we have 
-1 t 

-N P•/v+l < UTY/VU•.- Y/v < N-•P, ' -- -- 2N+l. 

It follows that 

UT YN U•' YN < -1 ! -- _ N P•/V+iKNP•N+i 

with IlK/vii • 1. 
Similarly 

UTZNU•. -- ZN : N-1R2N+iLNR2N+i 

where IlL/vii _• 1. 
Let D/v = Z/vY/vZ/v. 

[D/v, B] = 0. We have: 
We have DN t5 7•1 +, DN •, Q(/3) and 

I[D/v, Ur]17o -IUTDNU•- DNI• 
< I(Vrz/vv•. - 

< N -• (2 
_< 3N -• ( log rank 
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where 5 is a constant independent of N. 
The rs.nk of R2•v+l 2•v+1 equals the number of atoms of T-2•v-1/• V 

ß -. V T2•V+l/• which meet co2•v+•(e + C + Acer). Since the measure of such 
an atom is at least e -(c+AcN+•)(4N+s), it follows their total number does 
not exceed e (4•v+s)(e+c+cN'4). This in turn implies 

lim ][D•, STll•o < 12C + 6A log 2 + 12e. 

Replacing D/v by Q(/3)DlvQ(/3) gives 

kL ((UrIQ(/3)L2X))I(BIQ(/3)L2X))) < 12C + 6A log 2. 

Applying this to B © E f'(L•(X)) such that B © D B and Q(B ©) T l 
we easily get 

kL(UrIB) _< 12½ + 6A log 2 

and hence the desired conclusion. Q.E.D. 

Proposition 5.2. Let Tj be transformations of probability Lebesgue mea- 
sure spaces (Xj, Ej,PJ)(J - 1,2) such that T1 is non-singular wfiile T is 
me•ure-preserving and ergo die. Then we have 

•rp(UTlxT2,Løø(X 1 X X2) ) • 21--h(T2). 
Proof: Note that it will suffice to prove that if T2 is a Bernoulli shift with 
weights ( x x •,..., •) then 

I log(n- 1). i•p(UTi xT2,Løø(X1 x X2)) _• • 
The general case will then follow using Proposition 3.1 and Sinai's theorem. 
Indeed, if for an integer M we have Mh(T2) _> log n then by Sinai's theo- 
rem T2 M has a factor isomorphic to a Bernoulli shift with weights (-•,..., •). 
Moreover, by Proposition 3.1, 

•(Ur, xr•,•øø(x• x x2)) = •(Urfxrf,•øø(x• x x2)) 
> •¾(Uryxry,œøø(x• x x•)) 

• •o•(•- •) 
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where we used Proposition 3.3 of [4] for the last inequality. Hence for 
M -• oo we get the desired result. 

Assume now T2 is the Bernoulli shift. In the proof of the lower bound 
in Theorem 4.1 [4] using Lemma 4.2 [4], we proved the existence of a unitary 
element V ß A where A ß .•(Lø•(X2)), such that there is a unit vector 
• ß L2(X2) so that if Wj - VJUT2(1 _• j _• n-- 1) we have that the vectors 

{Wj• . . . Wj.]rn >_ O, l _• jk _• n -1, l_•k_•m) 
are pairwise orthogonal. 

Let ( ß L2(X1) be a unit vector and let r/- ( © •. Then the vectors 

{(UT• © Wj•)...(UT• © Wj•)rllm >_ O,I _< j _• n --1, l _• k _< m) 
are pairwise orthogonal. By Proposition 2.3 in [4], we have: 

I (TT• © W•,..., UT• © W,_•) 
1 log(n - 1) 

and hence 

1 log(n- 1) H(Vrxr2,Lø(X x > . 
Q.E.D. 

Corollary 5.3. Let T be a non-singular transformation ot' a non-atomic 
probability measure-space (X, y•, p). lit is dissipative, then Hp(Ur , Lø• (X) ) 

Proof.' Indeed T = T1 x T2 with T•, T2 like in the preceding proposition 
and with h(T2) = oo. Q.E.D. 

Remark 5.4 It is an open problem whether there exists a nonsingular 
T without invariant measure such that 

0 < Hp(UT, Lø•(X)) < 

Propositions 5.1 and 5.2 may provide a way towards finding such a T. It is 
however not clear whether the conditions in Proposition 5.1 can be satisfied 
by a transformation for which there is no equivalent invariant measure. 
Also checking the assumption on the lim sup of the information function 
appearing in Proposition 5.1 for a given T seems to represent a serious 
difficulty. Perhaps the results in [3] and [2] may provide some inspiration 
on how to deal with this question. 
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