*Editors*: H. Brezis (Paris), S.S. Chern (Berkeley), J. Damon (Chapel Hill), L.C. Evans (Berkeley), R.M. Hardt (Rice), J.A. Johnson (Houston), A. Lelek (Houston), J. Nagata (Osaka), B.H. Neumann (Australian National University), V. Paulsen (Houston), G. Pisier (College Station and Paris), R. Scott (Houston), S.W. Semmes (Rice), K. Uhlenbeck (Austin)
*Managing Editor*: G. Auchmuty (Houston)

Houston Journal of Mathematics

*Contents*

**M. S. El-Mosalamy, Z. A. Abd El-Bast
**

Converting Any Finite Group Presentation to a T(6)-Group Presentation, pp. 435-440.

**Sanghyun Cho, Tai Sung Song
**

Holomorphic Sectional Curvature of the Bergman Metric in C^{n}, pp. 441-448.

**Hideya Hashimoto, Kouei Sekigawa
**

Minimal Surfaces in a 4-Dimensional Sphere, pp. 449-464.

**Liming Yang
**

Boundary Values of Functions in P^{t} Spaces, pp. 465-472.

**Xiaohui Zhong
**

On the Fractional Derivative of Functions in Weighted H^{p} andBMOA, pp. 473-482.

**C. E. M. Pearce, J. Pecaric
**

Some Improvements to the Fundamental Inequality for L_{p} Norms, pp. 483-488.

**Scott McCullough
**

Matrix Functions of Positive Real Part on an Annulus, pp. 489-506.

**G. Diaz
**

A Maximum Principle for Fully Nonlinear Elliptic, Eventually Degenerate,Second Order Equations in the Whole Space, pp. 507-524.

**Doug Moore, Joe Warren
**

Adaptive Simplicial Mesh Quadtrees, pp. 525-540.

**Shangyou Zhang
**

Successive Subdivisions of Tetrahedra and Multigrid Methods on TetrahedralMeshes, pp. 541-556.

**Katsuro Sakai, Raymond Y. Wong
**

Manifolds of Lipschitz Maps, pp. 557-568.

**Hiromichi Nakayama
**

A Non-Flowable Plane Homeomorphism Whose Non-Hausdorff Set Consists of TwoDisjoint Lines, pp. 569-572.

**K. Kawamura, H. M. Tuncali, E. D. Tymchatyn
**

Expansive Homeomorphisms on Peano Curves, pp.
573-583.

**Yasunao Hattori, Tsugunori Nogura
**

Continuous Selections on Certain Spaces, pp. 585-594.

**Shannon Schumann
**

Characterizations of Decomposable and Indecomposable Inverse Limit Spaces, pp. 595-612.

**Ian J. Tree
**

Constructing Regular Spaces That Are Not Completely Regular, pp. 613-622.

**E. E. Grace, E. J. Vought
**

Any Map From a Continuum Onto a Continuum That Contains No n-od Is (2n-4)-Confluent, pp. 623-627.