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Abstract. We study the problem of adequate data sub-sampling for consistent parametric es-
timation of unobservable stochastic differential equations (SDEs), when the data are generated by
multiscale dynamic systems approximating these SDEs in some suitable sense. The challenge is that
the approximation accuracy is scale dependent, and degrades at very small temporal scales. There-
fore, maximum likelihood parametric estimation yields inconsistent results when the sub-sampling
time-step is too small. We use data from three multiscale dynamic systems, the Additive Triad, the
Truncated Burgers-Hopf models, and the Model with the Fast-Oscillating Potential to illustrate this
sub-sampling problem. In addition, we also discuss an important practical question of constructing
the bias-corrected estimators for a fixed but unknown value of the multiscale parameter.
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1. Introduction Stochastic modeling of discrete dynamic data has been an
active area of research for many decades. This is motivated by the fact that in
practice, observations are discrete and, typically, sampled with a fixed predefined
time-step. Major examples include, for instance, stochastic modeling of multiscale fi-
nancial data [3, 36, 12, 15], reduced stochastic description of the large-scale structures
in the atmosphere-ocean (e.g. [22, 14, 7, 20]), and stochastic models for conforma-
tional changes of proteins [34, 16, 17]. In most situations, the exact dynamic model,
even if it is known, is too complex and too costly to be used directly in numerical
simulations. Thus, various stochastic modeling techniques have been designed to pro-
vide effective simplified descriptions of the process of interest. For instance, in the
atmosphere/ocean problems one is interested in reproducing the statistical behavior
of the leading empirical orthogonal functions. Therefore, typically, the discrete dy-
namic data are not generated by the proposed stochastic model; instead the goal of
stochastic modeling is to recover long-term statistical properties of the data generated
by the full model. Thus, the effective stochastic model is essentially used as as an
approximation of the true dynamics in statistical sense.

The multiscale nature of complex dynamics has been an important research focus
in this context. It has been recognized that many systems involve multiple interacting
temporal and spatial scales, which cannot be disentangled in a trivial manner. Be-
havior of the atmosphere-ocean structures and protein folding fall in this category. In
the last few years, several publications addressed the importance of multiscale effects
in data-driven stochastic modeling [9, 10]. In particular, the sub-sampling issue has
been addressed previously in the context of financial data [3, 36, 12], homogenized
diffusions [32, 31], and non-parametric estimation [9].
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In two recent papers we have provided a rigorous foundation for the paramet-
ric estimation of Gaussian diffusions Xt from discrete approximate data [5, 6]. In
particular, we considered the asymptotic behavior of the Maximum Likelihood Esti-
mators for the unknown parameters of the diffusion Xt, when these estimators are
computed from an observable multiscale approximating process Y ǫ

t . The main em-
phasis was on the limiting behavior of these estimators as the multiscale parameter
ǫ tends to zero. These two papers establish a connection between multiscale effects
and the behavior of such Maximum Likelihood Estimators computed from discrete
datasets sub-sampled from Y ǫ

t . In particular, we demonstrated that for consistent
estimation of the diffusion parameters the underlying dataset has to be sub-sampled
with time-steps constrained by specific sub-sampling criteria, depending on the value
of the multiscale parameter ǫ. Otherwise, if these sub-sampling criteria are violated,
the estimated underlying diffusion model will not reproduce the statistical features of
the data and the corresponding parameter estimators will be biased even in the limit
ǫ→0.

The main emphasis of the current paper is two-fold. First, extensive numerical
investigation of our sub-sampling criteria in the context of homogenized models is
performed. Second, we describe the construction of new bias-corrected estimators
from datasets generated by an approximate multiscale model with an unknown fixed
parameter ǫ. This is an important point, addressing a practical question of stochastic
modeling of large-scale structures in multiscale high-dimensional systems. Typically,
in such situations the time-series of the large-scales are available from numerical simu-
lations of the full model, but the exact value of the multiscale parameter is unknown,
since it does not enter the full equations explicitly.

To deduce the appropriate sub-sampling regime and construct the bias-corrected
estimators we consider the Maximum Likelihood Estimators γ̂ of the underlying dif-
fusion parameter γ as functions of the sub-sampling time-step, γ̂≡ γ̂(∆). In this
paper we concentrate on the Maximum Likelihood Estimators in the vanishing lags
regime, i.e. computed for the small value of the sub-sampling step, ∆. The situa-
tion with non-vanishing lags is addressed in [6, 4], but this is not the subject of this
paper. Since the Maximum Likelihood Estimators are expressed through the lagged
covariance function (also called the correlation function), the behavior of the lagged
covariance for small lags is crucial for understanding the behavior of the estimators.
In this paper we consider the behavior of such parameter estimators when the discrete
data are sub-sampled from trajectories generated by multiscale diffusions. We infer
the behavior of the estimators as the sub-sampling step ∆ is varied by comparing
the asymptotic behavior of the correlation function in multiscale diffusions with the
correlation function of the Smoothed Ornstein-Uhlenbeck process considered in [5].
Moreover, we also develop an approach for constructing the bias-corrected estimators
when the data are generated from a trajectory Y ǫ

n∆ with a fixed, but unknown value of
the multiscale parameter. The implementation of this approach and validating results
are discussed in sections 2.2, 3.2, and 5.2. In particular, we show that this approach
does not require the knowledge of the actual value of the scale-separation parameter
ǫ, and enables us to construct an unbiased estimator by analysis of the curve γ̂(∆)
vs ∆. In the examples considered here this curve is a straight line and we show that
the slope estimator is an unbiased estimator for the damping parameter γ. In other
examples the curve γ̂(∆) vs ∆ can be more complicated, but we expect that in each
particular case unbiased estimators can be constructed using nonlinear regression for
the shape of this curve. Thus, we expect the approach developed in this paper to be
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applicable to other systems, including nonlinear models and systems of SDEs. This
will be discussed in subsequent papers.

The rest of the paper is organized as follows. In section 2 we discuss the indirect
observability framework, outline the general form of the multiscale approximating
processes considered in this paper, and recall briefly major results for the Ornstein-
Uhlenbeck process from [5]. In sections 3 and 4 we consider two prototype multiscale
approximating processes given by the triad model and fast-oscillating potential, re-
spectively. In section 5 we introduce a more realistic dynamic model - the truncated
Burgers-Hopf equation - and present results for parametric estimation of the modified
truncated Burgers-Hopf model.

2. Indirect Observability Framework

The mathematical description of the indirect observability framework is a formal
way to address an important case when the nature of the observed process is not
known exactly or too complex to use in numerical/analytical calculations; instead,
it is desirable to approximate this process by a suitable stochastic process Xt with
matching statistical features. The observable process is denoted as Y ǫ

t where ǫ is
the scale-separation parameter in multiscale systems. The limit process of interest is
denoted as Xt, but it is not observed directly; instead the parameters of the stochastic
model for Xt are inferred from the data sub-sampled from Y ǫ

t . Here Y
ǫ
t is also referred

to as an approximating process in this paper.
To test the consistency of the estimation procedure we consider examples when Y ǫ

t

is such that Y ǫ
t →Xt as ǫ→0 in some suitable sense. In the examples considered here

the limiting behavior of Y ǫ
t can be derived explicitly via a fairly classical homogeniza-

tion procedures, which we only outline briefly. Nevertheless, the analytical expression
for the limit stochastic model are only used to test the behavior of the Maximum
Likelihood Estimators as ǫ→0. In particular, since Xt is the limit process of Y ǫ

t as
ǫ→0, it is desirable that the maximum likelihood parameter estimators computed
from discrete data sub-sampled from Y ǫ

t converge to the “true” parameter values as
ǫ→0. The homogenization procedure is used to derive the explicit equations for the
limiting process and the “true” values of the parameters. We strongly emphasize that
the homogenization procedure is only used here to test the consistency of parametric
estimation; the maximum likelihood parameter estimators do not rely at all on the
homogenization technique nor on the statistical knowledge of fast scales.

One practical example where the indirect observability framework is widely used
is the data-driven stochastic modeling of slow variables in multiscale systems. In par-
ticular, there has been a significant effort to develop effective stochastic models for
slow variables (often represented by leading empirical orthogonal functions) in geo-
physical applications (see e.g. [2, 11]). Such multiscale systems can be schematically
represented as

dxt=f(xt)dt+
1

ǫ
g(xt,yt)dt

(2.1)

dyt=
1

ǫ
h(xt,yt)dt+

1

ǫ2
q(yt)dt+

1

ǫ
s(yt)dWt,

where Wt is the Brownian motion and ǫ represents the scale separation parameter.
A formal asymptotic theory as ǫ→0 has been developed in [19, 18, 21, 30] (see also
[25, 26, 27, 28, 14, 13] for more recent examples and applications) and it has been
proved that there exists Xt such that xt→Xt as ǫ→0 in some suitable sense. There-
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fore, in such multiscale systems, Xt plays the role of the unobserved limiting process
and Y ǫ

t ≡xt plays the role of the observed process. Often, a functional form of the
effective stochastic model for Xt can be derived, but the model coefficients, typically,
depend on the statistical behavior of the fast variables (yt in the notation of (2.1)).
Therefore, it is necessary to develop efficient parametric estimation techniques using
only observations of the approximate process, Y ǫ

t .
Moreover, often the exact value of the multiscale parameter ǫ is unknown in simu-

lations of the full coupled system in (2.1). This is a typical situation in fluid dynamics
where the multiscale parameter does not enter the partial differential equations de-
scribing the motion of the fluid explicitly. Instead, the multiscale nature manifests it-
self through the time-scale separation between different empirical orthogonal function
(e.g. Fourier coefficients in simulations with periodic boundary conditions). There-
fore, it is necessary to develop techniques for estimating the coefficients in the limiting
process using the dataset generated from the simulations of multiscale systems with
a fixed, but unknown value of ǫ.

Another multiscale example which is considered in this paper is the stochastic
differential equation with a fast-oscillating potential

dxt=−V ′(xt)dt−
1

ǫ
p′(

xt

ǫ
)+sdWt, (2.2)

where V (xt) is the regular potential, p(y) is the fast-oscillating potential, and Wt is
the Brownian motion. Similar to the multiscale model presented earlier, equations
for the limiting process can be derived explicitly in many cases. Here we study a
particular case considered in [32] when the limiting process is the Ornstein-Uhlenbeck
process. Estimating effective models with data generated from stochastic differential
equations falls under the indirect estimation framework, since the limiting process is
not observed directly.

Connection with previous work. In [5, 6] we discussed in detail the sub-
sampling strategy under the Lp (with p=2 or 4) convergence, i.e. ||Y ǫ

t −Xt||p<ǫ
as ǫ→0 for Gaussian limiting processes Xt. We considered the case when the vec-
tor of unknown parameters θ in the SDE driving the limiting process Xt can be
uniquely expressed as a differentiable function of lagged covariances K(Xt,uk)=
E[XtXt+uk

] with lags uk, k=1, . . .,J . The behavior of the stationary lagged co-
variances K(Y ǫ

t ,uk)=E
[

Y ǫ
t Y

ǫ
t+uk

]

is crucial for developing the optimal sub-sampling
strategy resulting in consistent estimation under indirect observability (when the co-
variances in the formula for parameters are estimated from the data of Y ǫ

t instead of
Xt). In particular, we proved that the speed of convergence of the lagged covariances
||K(Y ǫ

t ,uk)−K(Xt,uk)||2≤ρ(ǫ) determines the speed of convergence for the estima-

tors θ̂, which is given by ||θ̂−θ||2≤C
(

ρ(ǫ)+1/
√
T
)

, where ρ(ǫ) reflects the indirect

observability of the process Xt and 1/
√
T is a typical term arising due to the finite

observation time T . In previous work we considered the case when the speed of con-
vergence of covariances is identical for different lags, which may not hold in general.
Often some parameters may not depend on all covariances and, thus, the speed of
convergence for estimators for each individual parameter may vary.

Parameters of the Ornstein-Uhlenbeck process can be uniquely expressed through
the covariances r0=E[(Xt)

2] and r1=E[XtXt+∆] (see (2.5) in the next section).
Therefore, Ornstein-Uhlenbeck process falls in the category of processes discussed
above. In fact, the two quantities which are used for computing the drift and dif-
fusion parameters are r1/r0 and r0. Therefore, if the sub-sampling step ∆ is kept
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fixed, the speed of convergence for the drift estimator depends only on the behavior
of r̂1/r̂0 and the speed of convergence for the diffusion estimator depends on both,
r̂1/r̂0 and r̂0 (where r̂0 and r̂1 are estimators of the corresponding covariances com-
puted from a discrete dataset). In all examples presented here, rate of convergence of
the correlation function r1/r0 under the indirect observability determines the speed
of convergence for both, the drift and the diffusion estimators. This can be shown
analytically for the triad example and the model with the fast oscillating potential,
but we rely on numerical evidence for the Truncated Burgers-Hopf model.

Under sub-sampling, the observational step is allowed to depend on the multiscale
parameter, i.e. ∆≡∆(ǫ). Nevertheless, the speed of convergence (with respect to ǫ)
for the correlation function determines the leading order beahvior of the bias with
respect to ǫ. The functional form of the estimators with respect to ∆ determines
how the sub-sampling step ∆ enters the leading order term in the bias and thus, the
interplay of these two issues is reflected in the conditions on the optimal sub-sampling
strategy.

The behavior of the variance of approximating processes is quite different in the
three examples presented in this paper. For the triad example, the estimator for the
variance is not affected by indirect observability since the variance of the slow variable
in the triad is identical to the variance of the reduced equation. For the example with
the multiscale oscillating potential the variance of the approximating process depends
on the multiscale parameter ǫ and it is possible to prove the convergence to the vari-
ance of the reduced equation as ǫ→0 and estimate the speed of convergence with
respect to ǫ. The Truncated Burgers-Hopf (TBH) model represent a more realistic
example of a deterministic multiscale system with many degrees of freedom. Since
the energy of this model is conserved, the stationary distribution has bounded sup-
port. The behavior of the variance can be estimated as the total number of variables
is increased, but since the system is deterministic, all rigourous statements rely on
the assumption of ergodicity and mixing. Nevertheless, the numerical data indicates
that the TBH example falls in the category of equations suitable for homogenization.
Therefore, our numerical investigation of the Truncated Burgers-Hopf example sug-
gests that the sub-sampling strategy and the regression approach we have developed
in a recent series of paper and illustrated here are applicable to a rather wide class of
examples, including deterministic models.

Unfortunately, it is impossible to compute the L2 speed of convergence for tra-
jectories under the joint measure under the homogenization, since the process Y ǫ

t is
not explicitly obtained from Xt. Therefore, we concentrate on the behavior of the
covariances, since they contain the information which is crucial for understanding
the behavior of the estimators. In particular, we use the L∞ speed of convergence
of covariances as an indicator for speed of convergence of estimators, since the L∞

norm is an upper bound for the L2 norm. We demonstrate numerically that the rate
of convergence as ǫ→0 between correlation functions r1/r0 for the full and reduced
models is consistent with the leading order term in the expression for the bias and,
thus, the choice of sub-sampling step ∆≡∆(ǫ) in the optimal sub-sampling schemes
for the consistency of estimators.

In [5] we considered the vanishing lags estimators and emphasized that the be-
havior of the stationary lagged covariance functions for small lags determines the
consistency criteria for the maximum likelihood estimators. Here we explore this ap-
proach further and we also show numerically that the leading order behavior of the bias
can be inferred from the rate of convergence between correlation functions in the full
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reduced equations. We demonstrate numerically that the leading order terms in the
asymptotic expansion of the lagged covariance provide sufficient information to (i) un-
derstand the asymptotic behavior of the bias, (ii) construct the optimal sub-sampling
regime to ensure the asymptotic consistency of the estimators, and (iii) construct the
bias-corrected estimators for estimating parameters from a single dataset generated
with a fixed, but unknown value of ǫ.

In contrast with the previous work, the goal of the present paper is to analyze
the behavior of the Maximum Likelihood Parameter Estimators when the observable
process, Y ǫ

t , is generated by one of the multiscale systems discussed above and the
processXt is the limiting process derived as ǫ→0 using the homogenization approach.
For multiscale diffusions Y ǫ

t , the homogenization implies the convergence of infinitesi-
mal generators and is weaker than the Lp convergence of process trajectories. Hence,
it is often a hard complementary step to establish rigorous bounds on the lagged co-
variance of the approximating process. Therefore, the main goals of this paper are
the following
(i) analyze numerically the sub-sampling rates which enforce consistent parameters es-
timation, (ii) present efficient empirical arguments to deduce the optimal sub-sampling
rates from the behavior of the correlation function near lag zero, and (iii) develop tech-
niques for consistent parametric estimation using the data generated with a fixed, but
unknown, multiscale parameter ǫ. We would like to emphasize that we only consider
the vanishing lags regime when estimators are computed for small sub-sampling time-
steps.

2.1. Estimation of the Ornstein-Uhlenbeck Parameters under Indirect

Observability In this paper we consider the problem of modeling a discrete dataset
by a stochastic differential equation. Most parametric estimation techniques assume
the direct observability, e.g. proposing a suitable parametric model based on the crude
statistical properties of the data and directly estimating the unknown parameters
by, for instance, constructing an approximate Likelihood function for the modeling
SDE. In addition, various non-parametric techniques for estimating the drift and
diffusion terms from discrete data (see, for example, [35, 8]) can be used in low-
dimensional systems. Consequences of the multiscale nature of the data for non-
parametric estimation are also considered in [9]. Due to the data limitations non-
parametric techniques are applicable only if the dimension of the SDE is less than
four. Here we consider the parametric approach under indirect observability, i.e.
when the data generation mechanism involves multiscale effects which can potentially
significantly affect the estimation procedure.

In particular, we study parametric estimation of the Ornstein-Uhlenbeck SDE

dXt=−γXtdt+σdW (2.3)

under indirect observability, i.e. when formal parameter estimators are constructed
from the equation (2.3) as explicit functions F (∆,N) of a discrete sub-sample {Un=
Xn∆, 1≤n≤N}, but the process Xt is not directly observable and the available data
do not correspond to a discretely sampled Ornstein-Uhlenbeck trajectory. Instead, the
data are sub-sampled at N discrete instants tn=n∆ from an approximating process
Y ǫ
t such that Y ǫ

t →Xt as ǫ→0. Particular examples of the process Y ǫ
t will be presented

in subsequent sections.

Parametric estimation of the OU SDE (2.3) from a discrete stationary dataset
Un=Xn∆, n=1 . . .N can be recast through differentiable functions of lagged covari-
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ances {rk(∆)}k∈Z, given by

rk = rk(∆)=E[UnUn+k]=
σ2

2γ
e−γ|k|∆, (2.4)

where E[·] denotes the expected value with respect to the invariant distribution. In
particular, parameters γ and σ in the OU SDE (2.3) can be expressed through the
lagged covariances using the relationships r0=(σ2/2γ), r1= r0exp(−γ∆), which are
readily inverted to yield the expressions

γ= g(r0,r1)= (−1/∆)log

(

r1
r0

)

, σ2= s(r0,r1)=−(2r0/∆)log

(

r1
r0

)

=2r0γ.

We define the estimators γ̂, σ̂2 by

γ̂= γ̂(N,∆)= g(r̂0, r̂1), σ̂2= σ̂2(N,∆)= s(r̂0, r̂1), (2.5)

where the covariances estimators are the standard empirical covariance estimators r̂k
given by

r̂k = r̂k(N,∆)=
1

N

N−1
∑

n=0

UnUn+k, for k=0,1. (2.6)

Estimators in (2.5) are asymptotically equivalent to the Maximum Likelihood Esti-
mators for the OU SDE.

An important practical issue is to determine necessary and sufficient conditions for
the consistency of parametric estimation under indirect observability, i.e. conditions
to ensure that estimators (γ̂, σ̂2)→ (γ,σ2) as ǫ→0 when the unobservable random
variables Un=Xn∆ are replaced in (2.6), (2.5) by the observable variables Y ǫ

n∆. Typ-
ically, such conditions are formulated in terms of the number of observational points,
N ≡N(ǫ), the sub-sampling time-step, ∆≡∆(ǫ), and the convergence parameter, ǫ.

In [5] we investigated the question of consistent estimation when the approximat-
ing process Y ǫ

t is the Smoothed Ornstein-Uhlenbeck process

Y ǫ
t =

1

ǫ

t
∫

t−ǫ

Xsds. (2.7)

We obtained necessary and sufficient conditions for the consistency of the Maximum
Likelihood Parameter Estimators based on adequately sub-sampled approximate data,
and we investigated the optimal speed of convergence. In particular, the consistency
conditions for vanishing lags estimators can be formulated as

SOU Consistency : N(ǫ)→∞, ∆(ǫ)→0, N(ǫ)∆(ǫ)→∞, ǫ/∆(ǫ)→0. (2.8)

If, for simplicity, we consider power-law relationships between N , ∆, and ǫ, then, the
consistency requirement for the sub-sampling procedure becomes

SOU Conditions : ∆= ǫα, α∈ (0,1), N = ǫ−β, β >α. (2.9)

We also derived explicit equation for the bias of the estimators and showed that for
small sub-sampling step ∆, for small ǫ, and finite N the bias is approximately

SOU Bias : γ̂−γ∼− γǫ

3∆
+

C√
N∆

, for ∆≥ ǫ, (2.10)
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where C is some fixed constant. The second term in the right-hand side of (2.10) is a
familiar term which describes errors due to a finite global observational time T =N∆.
The first term on the right-hand side in (2.10) arises due to indirect observability of
the data. Therefore, the last condition in (2.8) reflects the O(ǫ/∆) contribution to
the bias under indirect observability and ensures that the bias converges to zero as
ǫ→0.

Often in practice ǫ is fixed and the number of observations can be chosen such
that β> 2−α. The last condition is equivalent to the requirement Nǫ2/∆≫1. In
this case, the second term C/

√
N∆ in (2.10) becomes negligible in comparison with

the first term and the bias becomes

SOU Bias : γ̂−γ∼− γǫ

3∆
, for ∆≥ ǫ,

Nǫ2

∆
≫1. (2.11)

As discussed previously, the scaling of the correlation function of Y ǫ
t is directly related

to the particular form of the consistency conditions in (2.8), (2.9) and the expression
for the bias in (2.10), (2.11). Statistical properties of Y ǫ

t can be computed explicitly
and for small ǫ the correlation function near ∆=0 scales as

CFSOU (∆)=
E
[

Y ǫ
t Y

ǫ
t+∆

]

E[(Y ǫ
t )

2]
≈ 1−∆2

γǫ
for ∆<ǫ. (2.12)

In particular, correlation scaling is directly linked to the condition α∈ (0,1) in the
consistency requirement (2.9) and the scaling of the bias in (2.11).

Convergence of the SOU process Y ǫ
t to the OU process Xt does not fall in the

homogenization category. Therefore, the goal of the present paper is to analyze the
consistency conditions and the behavior of the bias when the approximating process
is of the form (2.1) or (2.2). The Lp convergence of process trajectories cannot be
easily established for such examples and we proceed by analogy by analyzing the
scaling of the correlation functions for small lags. We show that the correlation
function CF (∆) scales differently compared with the CFSOU (∆) scaling for small
lags and from the CF (∆) scaling we deduce the appropriate condition for parameter
estimation consistency and the scaling of the bias. We test our conjectured consistent
sub-sampling schemes numerically for three multiscale systems which have been shown
to yield a reduced effective stochastic differential equation under the homogenization
procedure.

2.2. Modeling a given dataset generated at a fixed but unknown scale

In applied analysis of complex dynamic models, one is often confronted with the
problem of estimating an effective stochastic model for the large-scale structures from
a single dataset generated by intensive direct numerical simulations (DNS) of the full
dynamics. Thus, the process Y ǫ

t corresponds to the large-scale structures in a high-
dimensional turbulent system (e.g. space-discretization of a turbulent PDE) and it
is often known (or simply presumed) that the large scale dynamics Y ǫ

t can be well
approximated by a relatively low-dimensional parametrized stochastic system Xt. In
this context the multiscale parameter ǫ often does not enter the equations explicitly
and can be inferred indirectly by comparing the statistics of the large and small scales
in full simulations. Moreover, the process Y ǫ

t is non-Markov since it corresponds to a
subset of all dynamic variables in the DNS.

Thus, in practice the value of ǫ is not known a priori, but, nevertheless, it is
desirable to model the dataset with a specifically parametrized reduced stochastic
model. Therefore, there is a discrepancy between the data and the model which can
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potentially lead to significant errors in Maximum Likelihood Parameter Estimators.
An important task is hence to develop a practical approach to compute accurate
(unbiased) parameter estimators, when we are given a single dataset of indirect ob-
servations Y ǫ

t corresponding to a fixed, but unknown value of the scale parameter ǫ.
Here we outline a general approach to this problem; particular examples are presented
in sections 3.2, 4.2, and 5.2.

We assume that the data are generated by a stochastic process Y ǫ
t which is close

to the unobserved process Xt in (3.3) in a suitable probabilistic metric, implying at
least that statistical moments of the Y ǫ

t are close to those of Xt. When Xt is the OU
diffusion process, the drift and diffusion parameters can be expressed by an invertible
function of the variance and the lagged correlation function of Xt. In [5] we showed
that, for small lags, the correlation functions of the approximating process Y ǫ

t and
of the unobserved process Xt can be quite different. This can lead to significant
errors when one implements naive parametric estimation for the parameters of the
underlying SDEs.

When modeling a single dataset Y ǫ
t generated as above for a fixed but unknown

scale parameter ǫ, one has to determine from the data alone the correct sub-sampling
regime corresponding to consistent estimation of the underlying diffusion parameters.
To achieve this goal we let the sub-sampling time-step ∆ vary, and consider multi-
ple parameter estimators computed for several distinct values of ∆. Essentially, we
consider estimators of the unknown parameters γ and σ2 as functions γ̂≡ γ̂(∆) and
σ̂2≡ σ̂2(∆) of the observational time-step ∆ . We show that the analysis of the graph
of γ̂(∆)∆ versus ∆ clearly identifies the correct sub-sampling regime. Moreover, bias-
corrected estimators can then be easily computed by linear regression of γ̂(∆)∆ versus
∆. We expect that this methodology can be adequately extended to model discrete
datasets generated by a reasonably wide range of complex dynamic systems. In par-
ticular, we expect that in many situations the behavior of γ̂(∆) and/or γ̂(∆)∆ versus
∆ will provide adequate information to recover the unbiased estimator of γ. This will
be investigated in a subsequent paper.

The key observation for understanding the behavior of parameter estimators in
this context is the behavior of the bias for small ǫ and ∆. In particular, we will
show that for the parametric estimation of the Ornstein-Uhlenbeck under the indirect
observability the leading term of the bias follows a hyperbolic relationship

γ̂(∆)≈γ+
C(ǫ)

∆
(2.13)

in the correct sub-sampling regime where the estimators are consistent under ǫ→0
and a sufficient number of observations are used to compute the estimators, so that
the term 1/

√
N∆ is negligible compared to C(ǫ)/∆. In (2.13), the term C(ǫ) does not

depend on ∆, but only on ǫ. Note that this relationship is only valid in the correct
sub-sampling regime.

In practice, the numerical data are generated by numerical simulations with a
fine time-step δ. To study the estimators’ behavior as we sub-sample the data, we
consider several discrete sub-sampling time-steps ∆j = jδ and analyze the estimators
γ̂(∆j) and σ̂2(∆j) as functions of ∆j . In sections 3.2, 4.2, and 5.2 we omit the index
k in the notation for the sub-sampling time-step, but values of ∆ in these sections are
discrete and are integer multiples of the fine integration time-step δ.
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3. Triad Model The first model which we consider is the additive triad model
[27]

dxt=
1

ǫ
A1ytztdt,

dyt=
1

ǫ
A2xtztdt−

1

ǫ2
g2ytdt+

1

ǫ
s2dW1(t), (3.1)

dzt=
1

ǫ
A3xtytdt−

1

ǫ2
g3ztdt+

1

ǫ
s3dW2(t),

where A1+A2+A3=0, gi, si are known parameters with g2, g3> 0, W1, W2 are
independent Brownian motions, and ǫ> 0 is the scale separation parameter. Here
the slow variable xt plays the role of the approximating process introduced in the
generic presentation in section 2, i.e. Y ǫ

t ≡xt. The stationary covariance of xt can be
computed explicitly for small lags ∆ and is given by

CFxt(∆)=
E[xtxt+∆]

E[x2
t ]

≈ 1−C
∆2

ǫ2
, (3.2)

where C=γ(g2+g3)/2 with γ given by (3.4). Details of the derivation are provided
in the appendix A.

Asymptotic behavior of this model was analyzed in [27]. In particular, it was
shown that xt can be treated as a slow variable compared to the fast yt and zt, and xt

converges weakly to the OU process Xt as ǫ→0. The limiting equations are obtained
by homogenization and are given by

dXt=−γXtdt+σdWt, (3.3)

where Wt is Brownian motion, and γ and σ can be computed explicitly as

γ=
−A1

2(g2+g3)

(

A2s
2
3

g3
+

A3s
2
2

g2

)

, σ2=
(A1s2s3)

2

2g2g3(g2+g3)
. (3.4)

As ǫ→0, the weak convergence of xt in (3.1) to the OU process can be proved using
the homogenization procedure [27, 33]. The derivation uses the asymptotic expansion
of the backward Kolmogorov equation. Weak convergence is equivalent to conver-
gence of expectations of bounded continuous functions of the process. Nevertheless,
we conjecture that the moments up to order 4 of xt converge to the moments of the
Ornstein-Uhlenbeck process Xt in (3.3) as ǫ→0. Indeed we note that the station-
ary distribution of the triad model can be computed explicitly for any ǫ (see [27]).
It can be shown that the stationary distribution for the triad is a product measure
and the stationary marginal distribution of xt is Gaussian exactly matching the sta-
tionary distribution (also Gaussian) of the limiting Ornstein-Uhlenbeck process Xt.
Therefore, one-point moments of xt and Xt are identical for all ǫ. Secondly, numerical
results confirming the convergence of the correlation function and the kurtosis (fourth
moment quantifying departures from Gaussian distributions)

Kurt(τ)=
E
[

x2(t)x2(t+τ)
]

(E[x2(t)])
2
+2(E[x(t)x(t+τ)])

2 (3.5)

as ǫ→0 are displayed in Figure 3.1. Therefore, for small ǫ, the consistent parametric
estimation procedure based on the observed xt process should yield values for γ and σ
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Fig. 3.1. Left part: Convergence of the stationary correlation function E[xtxt+τ ]/E[x2
t ] in the

triad model (3.1) to the stationary correlation function e−γτ of the effective SDE (3.3) for several
values of ǫ. Note: graphs for ǫ=0.1 and ǫ=0.2 overlap, thus graph for ǫ=0.1 is almost invisible on
this figure. Right part: Convergence of the stationary kurtosis (3.5) in the triad model (3.1) to the
stationary kurtosis of the effective SDE (3.3) (Kurt(τ)=1) for several values of ǫ.

close to the analytical asymptotic expressions in (3.4). Thus, we use expressions (3.4)
to test the performance of the parameters estimation under indirect observability,
when the observable data xt≡Y ǫ

t are generated by the triad model (3.1).

3.1. Sub-sampling for the Additive Triad Model

In this section we test various sub-sampling strategies for adaptive parametric
estimation of the OU process Xt, when the estimators are computed from indirect
observations, namely we use formulas (2.5), but covariances r̂0 and r̂1 are estimated
from the data generated by the triad model, i.e. Un=xn∆(ǫ).

As ǫ→0, we then compare the behavior of these estimators with the desired true
parameter values, given by the explicit expressions (3.4). The triad model parameters
in (3.1) are chosen to be

A1=0.9, A2=−0.4, A3=−0.5,
g2= g3=1,

s2=3, s3=5,

and we consider four values of ǫ

ǫ=0.1, 0.2, 0.3, 0.4.

With this choice of triad parameters values, the true values of the drift and diffusion
coefficients of the unobservable limit process Xt are computed by formula (3.4), which
yields the values

γ=3.2625, σ=6.75. (3.6)

The values of the “true” drift and diffusion parameters in (3.6) are only used to test
the performance of the Maximum Likelihood Parameter Estimators under indirect
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observability, i.e. when the data in (2.5) are generated by the slow variable xt in the
triad model with different sub-sampling strategies.

To determine the appropriate sub-sampling strategy for datasets generated by
the triad equations we compare the asymptotic behavior of the correlation functions
respective correlation functions CFSOU and CFxt of the SOU and xt processes (2.12)
and (3.2), in order to adequately match the scaling of these two correlation functions
with respect to the scale parameter ǫ. In particular, for small time lags ∆, the
correlation function of the triad slow process xt is given by (c.f. with (2.12))

CF{xt}(∆)∼ 1− C∆2

ǫ2
,

where C denotes a numerical constants. Since the scaling of the correlation function
for the xt in the triad model is different from the SOU process (ǫ−2 vs ǫ−1), we conjec-
ture that ǫ2 (instead of just ǫ) should be substituted into the consistency conditions
and the expression for the bias. Thus, when N , ∆ are powers of ǫ the necessary
condition for the consistency of the sub-sampling strategy for the triad model should
be given by

Triad Consistency : ∆= ǫ2α, α∈ (0,1), N = ǫ−2β, α<β. (3.7)

Moreover, when N is large enough (we require a stronger condition β> 2−α which
implies that Nǫ4/∆≫1) the bias for the adaptive indirect parametric estimation from
the triad data is proportional to γǫ2/∆, i.e.

Triad Bias : γ̂−γ∼C
γǫ2

∆
for

Nǫ4

∆
≫1. (3.8)

In the simulations described below, the size of datasets is chosen to be N =500,000
and is kept constant in all simulations; Nǫ4/∆=500≫1 holds for the smallest ǫ=0.1
and largest ∆=0.1 considered here. Therefore, the term on the right-hand side of
(3.8) is the dominant term in the bias.

To support the above conjecture we compare several sub-sampling strategies. In
particular, behaviors of the parameter estimators (2.5) computed from the triad data
for four distinct sub-sampling strategies ∆= ǫ, ∆= ǫ2, ∆=4ǫ2, and ∆= ǫ3 are dis-
played in the left part of Figure 3.2. Sub-sampling strategies with ∆= ǫ1.75, ǫ1.5, ǫ1.25

are also presented in the right part of Figure 3.2. As conjectured, as ǫ→0, the bias
is approximately constant for sub-sampling with ∆= ǫ2 and ∆=4ǫ2, the bias decays
to zero for sub-sampling with ∆= ǫp with p< 2, and the bias grows unboundedly
for sub-sampling with ∆= ǫ3. Expression in (3.8) indicates that the bias should re-
main constant for both sub-sampling strategies ∆= ǫ2 and ∆=4ǫ2, but errors for the
sub-sampling strategy ∆=4ǫ2 should be four times smaller. Relative errors for γ̂ for
sub-sampling with ∆= ǫ2 and ∆=4ǫ2 plotted in the lest part of Figure 3.2 support
our conjecture in (3.8) to a very high precision. We also estimate the y-intercept for
the straight line given by the relative errors computed from the sub-sampling strategy
∆= ǫ. The y-intercept for this line is approximately equal to 1.57, which means that
this sub-sampling strategy should yield relative errors 1.57% as ǫ→0. This is well
within the numerical averaging errors for this particular example.

We also plot the error between the correlation functions CFxt(∆) of the slow
variables xt in the triad model and the correlation function of the Ornstein-Uhlenbeck
effective process e−γ∆ with γ in (3.6) for several values of ǫ=0.4, 0.3, 0.2, 0.1 computed
at a particular value of the lag ∆=0.2 in Figure 3.3. Similar results hold for other
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values of the lag in the favorable sub-sampling regime ∆>ǫ2. The error between the
correlation functions clearly follows the ǫ2 power law decay as ǫ→0. This indicates
that the lower bound for the speed of convergence γ̂(ǫ)→γ is equal to ǫ2 for a fixed
value of ∆. This supports our conjecture for the asymptotic behavior of the bias
in (3.8). Therefore, numerical results for the convergence of correlation functions
presented in Figure 3.3 clearly confirm our conjecture (3.7) about the optimal sub-
sampling regime.

Moreover, it is possible to prove (see [27]) that the stationary distribution of the
triad variables in (3.1) is a product Gaussian measure with mean zero and variance
of xt≡Y ǫ

t exactly matching the variance of Xt in the reduced model (3.3) with (3.4),
i.e. V ar{xt}=V ar{Xt} for all ǫ. Therefore, the estimator r̂0 in (2.5) (the variance
estimate for the sub-sampled xt dataset) does not depend on ǫ under indirect observ-
ability and the estimation error only depend on the length of observations. Thus,
the leading order contribution to the bias arises due to the under-estimation of the
lagged covariance r̂1 in (2.5). Therefore, this shows that sub-sampling errors mani-
fest themselves first in γ̂ and “propagate” into σ̂2 as evident from (2.5). Numerical
convergence results for σ̂2 are indeed quite similar to those outlined for γ̂, and hence
are not presented here for brevity. We will sketch the behavior of σ̂2 for a different
model.

3.2. Triad data analysis for fixed but unknown ǫ and bias-corrected

estimators

In the previous section we used several datasets generated by numerical simula-
tions of the multiscale triad system (3.1) with known values of ǫ to validate numerically
the sub-sampling strategy (3.7) which guarantees that the bias converges to zero as
ǫ→0. In this section we use numerical data generated by the triad model (3.1) with
a fixed particular value of ǫ to demonstrate how to model a specific dataset when the
scale parameter ǫ is fixed but unknown.

When the data are generated by the SOU process, we have seen that the parame-
ter estimators are linked to the true parameter values by an approximately hyperbolic
relationship (2.13). By analogy with these results, we conjecture that similar approx-
imately hyperbolic relationship holds in the correct sub-sampling regime for the data
generated by the triad model. In particular, since the correct sub-sampling regime for
the triad should be ∆>ǫ2, we conjecture that the following approximate hyperbolic
relationships should hold for the MLEs computed from the triad data

γ̂(∆)≈γ+
C1

∆
, σ̂2(∆)≈σ2+

C2

∆
for ∆>ǫ2, (3.9)

where C1 and C2 are unknown constants which do not depend on ∆ and N is the
number of observational points which is large enough (i.e. N ≫∆/ǫ4) so that the
terms in (3.9) are the leading terms of the bias.

We use the triad data with ǫ=0.3 to elucidate the behavior of the estimators
for a fixed small positive value of ǫ. In particular, the behavior of γ̂(∆) and γ̂(∆)∆
as functions of ∆ is presented in Figure 3.4. Numerical results displayed in the left
part of Figure 3.4 show a typical hyperbolic graph for γ̂(∆), which is consistent with
the expression (3.9). The critical scaling threshold for ∆ is in this case ǫ2=0.09, but
we point out that the estimator γ̂ is biased for any value of ∆, including ∆> 0.09.
Moreover, plotting the function γ̂(∆) versus ∆ for a given triad generated dataset for
a fixed but unknown ǫ (left part of Figure 3.4) does not provide direct quantitative
information about the unknown value of ǫ.
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In order to deduce the value of the small scale parameter ǫ, we consider the graph
of the function γ̂(∆)∆ versus ∆. As conjectured, the graph of γ̂(∆)∆ displayed in
the right part of Figure 3.4 becomes approximately a straight line for ∆> 0.1, with
ǫ2=0.09 in this specific case. The region where γ̂(∆)∆ does not follow the relationship
(3.9) is clearly identifiable from Figure 3.4. Since the constants C1 and C2 in (3.9)
are not known a-priori, it might be impossible to use this graphical information to
compute the precise value of the multi-scale parameter ǫ. Nevertheless, the size of
the region where the graph of γ̂(∆)∆ does not follow an approximate straight line
provides an estimate on the size of ∆ for which the multiscale effects in datasets
become significant.

Moreover, the expressions (3.9) suggest a practical approach for the construction
of unbiased estimators. In particular, expressions (3.9) indicate that the graph of
γ̂(∆)∆ versus ∆ should be an approximately straight line in the region ∆>ǫ2 for the
triad data. The slope of this straight line segment yields an unbiased estimator for
the drift parameter γ. Linear regression is then an obvious standard tool to estimate
the slope of the numerical graph of γ̂(∆)∆ in the region ∆>ǫ2.

To use the linear regression approach we eliminate the first few points in the graph
of γ̂(∆)∆, corresponding to small values of ∆; in our specific numerical example, we
eliminate the two values ∆=0.02, 0.06 and compute the unbiased estimator for γ as
the estimated slope coefficient for standard linear regression

γ̂regression ≈ 3.23.

The relative error for the regression estimator is approximately 1%. This is a re-
markable improvement compared to the standard MLE estimator γ̂ under indirect
observability. We point out that although the bias in γ̂ decays as ∆−1, the regression
estimator is much more accurate than the estimator γ̂ even for large values of ∆; for
instance one has γ̂(∆=0.58)≈ 3.
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Fig. 3.2. Relative errors (percent) for the estimator γ̂ in (2.5) computed from the data of triad
slow component xt in the additive triad model in (3.1) sub-sampled with several different strategies.
Left part: sub-sampling with ∆= ǫ3, ∆= ǫ2, ∆=4ǫ2, ∆= ǫ. Right part: sub-sampling with ∆= ǫ2,
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Fig. 3.3. Log-log plot for the decay of the error between correlation function |CFxt(∆)−
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4. Multiscale Model with Fast Oscillating Potential

In this section we consider the parametric estimation of the Ornstein-Uhlenbeck
process when the data are generated from a multiscale model of type (2.2). In par-
ticular, we consider the model discussed previously in [32]

dxt=−gV ′(xt)dt−
1

ǫ
p′
(xt

ǫ

)

dt+
√
2sdBt, (4.1)
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where Bt is the Brownian motion, the large-scale potential is V (x)= 1
2x

2, and the
fast-oscillating part of the potential is p(x)=cos(x). The resulting SDE becomes

dxt=−gxtdt+
1

ǫ
sin

(xt

ǫ

)

dt+
√
2sdBt. (4.2)

It has been shown (see [33] on homogenization for parabolic equations and references
therein) that as ǫ→0 the process xt in (4.2) converges to the Ornstein-Uhlenbeck
process

dXt=−γXtdt+σdWt

with parameters γ and σ given by

γ=α
L2

ZZ̃
, σ=

√

2s
L2

ZZ̃
, (4.3)

where L is the period of function p(x) and hence equal to 2π and

Z=

∫ L

0

ecos(y)/sdy, Z̃=

∫ L

0

e−cos(y)/sdy.

The convergence xt→Xt is a weak convergence of generators which can be proven
using homogenization techniques for parabolic equations. We would like to note that
in this particular case Z= Z̃ due to the symmetry of the fast-oscillating potential.

The invariant density of the model (4.2) can be computed explicitly and is equal
to

ρinv(x)=Ce−v(x), where v(x)=
g

2s
x2+

1

s
cos

(x

ǫ

)

, (4.4)

where C is the normalization constant. Therefore, the invariant density has a fast-
oscillating component, but converges to the Gaussian density weakly in the sense of
test-functions.

We choose the parameter values in (4.2) as

g=0.5, s=1, (4.5)

and the corresponding homogenized coefficients are

γ=0.3119, σ=1.117. (4.6)

4.1. Sub-sampling Strategy for the Model with the Fast Oscillating

Potential

In this section we test various sub-sampling strategies by computing estimates
(2.5) for the Ornstein-Uhlenbeck parameters γ and σ from the data generated by
the model with the fast oscillating potential in (4.2). Parametric estimation for the
Ornstein-Uhlenbeck process and the sub-sampling issue when the data is generated by
(4.2) was also investigated analytically and numerically in [32, 31]. Here we perform
a more detailed numerical study of parametric estimation under indirect observabil-
ity when the data is generated by the model (4.2). Numerical experiments support
presented in this section support our conclusion about the crital sub-sampling scaling
for parametric estimation under indirect observability when the limiting process is
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obtain by a homogenization procedure. Moreover, our numerical experiments suggest
that the conditions on the sub-sampling time-step ∆ which guarantee consistent es-
timation can be extended compared with the analytical prediction in [31]; we discuss
this issue in more detail in the conclusions.

First, to understand the behavior of the leading term in bias with respet to ǫ we
analyze the rate of convergence of the correlation function r̂1/r̂0 computed from the
data of xt in (4.2). In particular, similar to the triad case we depict in Figure 4.1
the difference between the correlation function computed from for the process xt in
(4.2) and the correlation function for the Ornstein-Uhlenbeck process with parameters
(4.6). Figure 4.1 clearly indicates that the correlation function for the process xt in
(4.2) converges with the same speed as the correlation function of the slow variable
in the triad model (c.f. with the Figure 3.3). Since the stationary distribution (4.4)
of the process xt in (4.2) depends on the multiscale parameter ǫ, the variance of the
process xt in (4.2) depends on ǫ as well. It is possible (see B for an outline of the
proof) to show explicitly the convergence of the variance, i.e. V ar{xt}→V ar{Xt}
as ǫ→0. Moreover, it is also possible to analyze the rate of convergence with respect
to ǫ in order to understand the behavior of the estimator r̂0 computed from the data
xt in (4.2). Using the proof sketched in the appendinx B one can derive that an
upper bound for the speed of convergence is |V ar{xt}−V ar{Xt}|≤Cǫ2. In fact, our
numerical simulations indicate that the speed of convergence for the variance estimator
is even faster. Thus, similar to the triad case, the convergence of the estimators γ̂ and
σ̂ in (2.5) computed from the data of xt in (4.2) is determined by the behavior of the
correlation function r̂1/r̂0. Therefore, we conjecture that the critical scaling when the
bias is constant with respect to ǫ for the estimators (2.5) computed by sub-sampling
from the model with the fast oscillating potential (4.2) is identical to the triad case
and is ∆= ǫ2.
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Fig. 4.1. Log-log plot for the decay of the error between correlation function |CFxt(∆)−
CFXt(∆)| for ǫ=0.3, 0.25, 0.2, 0.15, 0.1 computed at a particular lag ∆=0.2 (left part) and ∆=0.5
(right part) where xt is the process (4.2) and Xt is the Ornstein-Uhlenbeck process with parameters
(4.6).

Behavior of the bias in the estimator γ̂ in (2.5) computed from the data of xt in
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(4.2) for several different sub-sampling strategies in presented in Figure 4.2. These
results demonstrate that, indeed, the behavior of the estimators (2.5) computed using
the data Un=xn∆, where xt is a trajectory generated by the model with the fast
oscilating potential (4.2) is identical to the behavior of the estimators computed from
the data of the triad. In particular, the critical scaling ∆= ǫ2 corresponds to the esti-
mation when the error |γ̂(∆= ǫ2)−γ| remains constant with respect to ǫ. Similar to
the triad case, estimation errors decay to zero for sub-sampling strategies ∆= ǫp with
p< 2. In particular, the relative errors for the scaling ∆= ǫ follow a linear relationship
and the intercept of this line computed by the linear regression is approximately 0.57
which corresponds to the estimated 0.57% relative error as ǫ→0.

The total number of sample points N is much larger than ∆/ǫ4 for all simulations
depicted in Figure 4.2. In particular, the number of sample points for the largest ∆=
0.3 is N =2×106, thus, Nǫ4/∆≈ 600≫1 for the smallest value of ǫ=0.1 considered
in the simultions. Therefore, calculations presented in this section confirm that the
behavior of the bias for the estimators (2.5) computed from the data of xt in the
model with the fast oscillating potential (4.2) is

γ̂(∆)−γ∼C
ǫ2

∆
, for

Nǫ4

∆
≫1, (4.7)

so that the number of observational points N in the dataset is large enough and the
term 1/

√
N∆ does not make a significant contribution.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

ε

Relative Errors in γ̂ (%)

ε3

ε2

4ε2

ε

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

ε

Relative Errors in γ̂ (%)

ε2

ε1.75

ε1.5

ε1.25

ε

Fig. 4.2. Relative errors (percent) in the estimator γ̂ in (2.5) computed from the data of xt

generated by the model with the fast oscillating potential (4.2) sub-sampled with several different
strategies. Left part: sub-sampling with ∆= ǫ3, ∆= ǫ2, ∆=4ǫ2, ∆= ǫ. Right part: sub-sampling
with ∆= ǫ2, ∆= ǫ1.75, ∆= ǫ1.5, ∆= ǫ1.25, ∆= ǫ.

4.2. Analysis of the Data generated by the Model with the Fast Oscil-

lating Potential for fixed but unknown ǫ
We use the data generated by the model with the fast oscillating potential (4.2)

with ǫ=0.15 to investigate the behavior of the estimators as a function of ∆. We
assume that the value of ǫ is fixed but unknown and apply our regression technique to
recover the correct value of the parameters. The left part of Figure 4.3 illustrates the
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behavior of the estimator γ̂ as a function of ∆. The behavior of γ̂(∆) vs ∆ exhibits
a hyperbolic profile consistent with the estimate for the bias in (4.7). The overall
behavior is similar to the triad case, except the damping parameter, γ̂ is severely
overestimated for small ∆. In particular, the “true” homogenized value of the damping
parameter is γ=0.3119 and values of the estimator γ̂(∆) for ∆∈ [0.002, . . .,0.22] are
in the range [0.49, . . .,0.326]. This is the consequence of the fact that the correlation
function for xt in the potential model decays faster than the homogenized correlation
function e−γτ for small lags.

We plot the behavior of γ̂(∆)∆ vs ∆ in the right part of Figure 4.3. The graph
γ̂(∆)∆ vs ∆ becomes approximately a straight line between ∆=0.02 and ∆=0.04
providing an approximate indication for the range of the multiscale effects in the
data (ǫ2=0.0225 in this case). Therefore, we can also use the regression estimator
to estimate the effective damping parameter from the slope of the line γ̂(∆)∆ vs ∆
where γ̂(∆) is computed from the dataset generated by the potential model (4.2) with
ǫ=0.15. It is clearly visible from the graph of γ̂(∆)∆ vs ∆ that the first two points
for ∆=0.002, 0.01 do not follow the linear relationship and should be neglected in
the regression estimator. This also can be quantified numerically by computing the
goodness of fit for the linear regression of the graph γ̂(∆)∆ vs ∆ on different intervals
for the sub-sampling parameter ∆. Thus, the regression estimator discussed in section
2.2 computed using the data γ̂(∆) with 0.02<∆≤ 0.22 becomes

γ̂regression(ǫ=0.15)≈ 0.3139

which is in a very good agreement (only 0.6% relative error) with the analytical
prediction for the homogenized coefficient (4.6). We would like to point out that if a
straightford estimation is used, the estimator γ̂(∆=0.22)=0.326 which amounts to
the 4.5% relative error. Therefore, the regression estimator significantly outperforms
the straightforward estimation in the indirect observability context. Moreover, the
regression estimator computed on the interval 0.02<∆≤ 0.22 is much more accurate
than the standard estimator γ̂(∆=0.22), but the regression estimator is computed
using the same number of observaional point, N , as the standard estimator γ̂(∆=
0.22).

Overall, parametric estimation of the Ornstein-Uhlenbeck process under indirect
observability using the data generated by the SDE with the fast oscillating potential
(4.2) falls in the same category as the triad model discussed in section 3. Our nu-
merical simulations clearly indicate that the speed of convergence of the correlation
function r1/r0 in the multiscale SDE (4.2) controls the speed of convergence (w.r. to
ǫ) of the estimator for the drift parameter γ̂ and, also, determines the leading term in
the bias with respect to ǫ. Our numerical simulations also indicate that the behavior
of the estimator for the diffusion σ̂2 is also controlled by the behavior of the corre-
lation function and, although, the stationary variance of the process xt in the SDE
(4.2) depends on ǫ, it does not significantly contribute to the scaling behavior of the
estimator for the diffusion parameter σ̂2. Moreover, the regression technique outlined
in section 2.2 can be successfully applied to datasets generated by the SDE (4.2) with
a fixed but unknown value of ǫ.

5. Truncated Burgers-Hopf Equations In this section we consider the
sub-sampling problem for the Truncated Burgers-Hopf (TBH) model

∂tUΛ(x,t)+
1

2
∂xPΛU

2
Λ(x,t)=0, (5.1)
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Fig. 4.3. Left part: estimator γ̂(∆) for different values of ∆ computed from the data generated
by the SDE with the fast oscillating potential (4.2) with ǫ=0.15. Solid line: γ̂(∆) in (2.5), dashed
line: analytical asymptotic value in (4.3) computed from (4.5). Right part: behavior of γ̂(∆)∆ with
γ̂ computed for different values of ∆ from the data generated by the SDE with the fast oscillating
potential (4.2) with ǫ=0.15. Solid line: γ̂(∆)∆, Dashed line - straight line with the slope γ=0.3119
given by the analytical formula in (4.3).

where x∈ [0,2π] and PΛ is the projection operator in Fourier space

PΛu(x,t)=
∑

|k|≤Λ

uk(t)e
ikx, (5.2)

and UΛ is a finite dimensional projection

UΛ(x,t)=
∑

|k|≤Λ

uk(t)e
ikx=PΛu(x,t). (5.3)

Equation (5.3) is supplemented with the reality condition u−k(t)=u∗
k(t), where u∗

denotes complex conjugation. Equation in (5.1) can be recast as a 2Λ-dimensional
system of ordinary differential equations

d

dt
uk=− ik

2

∑

k+p+q=0

|p|,|q|≤Λ

u∗
pu

∗
q , |k|≤Λ, (5.4)

where uk≡uk(t). Equations in (5.4) conserve energy

E=
1

4π

∫

U2
Λdx=

Λ
∑

k=1

|uk|2. (5.5)

and Hamiltonian

H=
1

12π

2π
∫

0

U3
Λdx.
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This model was introduced in [23, 24] and statistical properties of this model were
further studied in [1]. Stochastic modeling for the large-scale structures in the Trun-
cated Burgers-Hopf is a more realistic problem since the model arises as a suitable
projection of a partial differential equation. Thus, we can expect that the effects ob-
served in the stochastic models of the TBH dataset are typical for datasets generated
by numerical integration of realistic partial differential equations.

Since the equation for u0 is trivial, we can assume u0(0)=0 without loss of gen-
erality. In particular, it was demonstrated that generic initial conditions correspond
to H≈ 0. Moreover, for generic initial conditions Fourier coefficients achieve equipar-
tition and equilibrium statistical properties of Fourier coefficients follow a joint Gaus-
sian distribution

π(u1,u2, . . .uΛ)=Ce−βE, (5.6)

where C is a normalization constant, E is the energy defined in (5.5), and β is the in-
verse of the temperature determined by the energy of the initial condition. According
to the distribution in (5.6) modes uk achieve equipartition of energy with

V ar{Re uk}=V ar{Im uk}=
1

2β
.

In [29] it was demonstrated that homogenization can be applied to the TBH
model. In particular, equations in (5.4) can be modified by introducing a small
parameter, ǫ, into the model and the limit as ǫ→0 of the modified equations can be
computed explicitly. The approach to introduce the small scale parameter ǫ depends
specifically on the number of essential variables in the equation, i.e. the number of
modes to be retained in the limit. For a detailed discussion on homogenization of the
TBH model see [29]. Here we only consider the case where u1 is the essential variable.
The rest of the variables k=2 . . .Λ are considered to be fast and are eliminated by the
homogenization procedure.

Effective Equations for u1. When u1 is the only essential variable, the TBH
equations are modified as follows

u̇1=− i

2ǫ

∑

p+q+1=0

2≤|p|,|q|≤Λ

u∗
pu

∗
q , (5.7)

u̇k=− ik

2ǫ
(uk+1u

∗
1+uk−1u1)−

ik

2ǫ2

∑

k+p+q=0

2≤|p|,|q|≤Λ

u∗
pu

∗
q , (k≥ 2) ,

where we used the reality condition u−k=u∗ to simplify the right-hand side of the
second equation.

The limiting behavior of u1 is given by the Ito SDE

dak =B(a)akdt+H(a)akdt+
√
2σ(a)dWk(t), (k=1,2) (5.8)
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where a=(a1,a2)≡ (Re u1,Im u1) and



















































B(a)=−(1−2M−1)E−1(a)
(

E1/2(a)I2|a|2+E3/2(a)If

)

,

H(a)=−M−1E−1/2(a)|a|2I2+2E1/2(a)I2−3M−1E1/2(a)If ,

σ2(a)=E1/2(a)|a|2I2+E3/2(a)If ,

E(a)=M−1(E−|a|2).

(5.9)

Details of the derivation are provided in [29]. We point out that the proof of conver-
gence requires assumptions of ergodicity and mixing on the deterministic system in
(5.7). Expressions in (5.9) depend on the following 4 parameters: M =2Λ−2 is the
number of fast degrees of freedom, E is the total energy of the full TBH model, I2 and
If are two parameters related to the averaged cross-correlations of the fast variables,
i.e.

I2= I [Re u2,Re u2]= I [Im u2,Im u2] ,

If = I [f r,f r]= I
[

f i,f i
]

,
(5.10)

where I[·, ·] is a short-hand notation for the area under the graph of a correlation
function and f r and f i are the terms without u2 on the right-hand-side of ure

1 and
uim
1 , respectively. For specific details see [29].

Parameters I2 and If are estimated from a single microcanonical simulation of
the full equations on the energy surface E=2Λ, so that 〈(Re uk)

2〉t= 〈(Im uk)
2〉=1.

Then, I2 and If depend only on the truncation size and can be computed a priori
for all initial conditions for a given truncation. For the process a1=Re u1 generated
by the TBH dynamic model, numerical convergence of empirical estimates of the
stationary correlations and kurtosis defined by (3.5) are presented in Figure 5.1.

Equations (5.8) are highly nonlinear, but can be simplified by considering the
limit of infinitely many fast variables. In particular, in the limit M→∞ equations in
(5.8) become

dak = b(a)akdt+
√
2s(a)dWk, k=1,2, (5.11)

where the drift and the diffusion simplify to

b(a)=−
(

√

2β|a|2I2+(2β)−1/2If −
√

2/βI2

)

s2(a)=(2β)−1/2|a|2I2+(2β)−3/2If .

We would like to point out that the limits ǫ→0 and M→∞ do not commute, and
(5.11) is only an approximation for the reduced model in (5.8). In particular, values
of I2 and If depend on M , but are treated as fixed in the limit of (5.8) as M→∞.

It is straightforward to verify that the Gaussian density

ρ(a)=
1

2πβ
e−β|a|2 (5.12)
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Fig. 5.1. Left part: Convergence of the stationary correlation function 〈ure
1 (t)ure

1 (t+τ)〉 in the
modified TBH model (5.7) to the stationary correlation function of a1 in the effective equation in
(5.8) for several values of ǫ. Note: graphs for ǫ=0.1 and ǫ=0.25 nearly overlap, thus graph for
ǫ=0.1 is almost invisible on this figure. Right part: Convergence of the stationary kurtosis (3.5)
for ure

1 (t) in the modified TBH model (5.7) to the stationary kurtosis of a1 in the effective equation
(5.8) for several values of ǫ.

defines a stationary distribution for the equations in (5.11). Equation (5.11) have cubic
and linear damping and multiplicative and additive noises. In [29] equations (5.7) and
(5.8) were considered in the weak energy regime β=50 (V ar{a1}=V ar{a2}=0.01).
Here we consider the truncation size Λ=20, so that the total energy is E=0.4 and
the number of fast variables is M =2Λ−2=38. Parameters I2 and If become

I2=0.14, If =4.3. (5.13)

Although the reduced equations in (5.8) and (5.11) are valid for any energy level
(arbitrary β), they are close to a linear OU system (I2≪ If ) for β=50. Moreover,
numerical simulations indicate that higher moments are approximately Gaussian; this
also indicates that for β≫1, the cubic terms and multiplicative noises become weak.
Therefore, in the regime I2≪1, the modes (a1,a2)= (Re u1,Im u1) become approxi-
mately uncorrelated and the two-point correlation function is well-approximated by
an exponential function. Stationary correlation functions of a1 in simulations of the

effective SDE (5.8) and (5.11) are compared to the exponential function e−(2β)−1/2If t

in the left part of Figure 5.2. The kurtosis for the distribution of a1=Re u1, de-
fined as in (3.5), is estimated by simulations of the reduced models (5.8) and (5.11)
is presented in the right part of Figure 5.2. Kurtosis (see definition (3.5)) quantifies
non-Gaussianity since Kurt(τ)=1 for Gaussian processes. The observed kurtosis be-
havior indicates that both reduced models in (5.8) and (5.11) are practically Gaussian
from the point of view of second, third, and fourth moments. This represents a re-
alistic situation when the non-Gaussian features of the dataset are barely detectable
and cannot be estimated reliably.

Therefore, in the weak energy regime β≫1, the system (5.11) is well-
approximated by the reduced system with I2=0. In this regime the reduced equation
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Fig. 5.2. Left part: correlation function of a1 =Re u1 in the simulations of the effective model
in (5.8) (black dashed line), limiting equations in (5.11) (blue solid line), and the exponential func-

tion e−(2β)−1/2If t. Right part: Kurtosis Kurt(τ) in the simulations of the reduced models (5.8)
and (5.11).

becomes a system of two independent linear Ornstein-Uhlenbeck processes

dak=−γak+
√
2sdWk, k=1,2 (5.14)

with γ=(2β)−1/2If and s2=(2β)−3/2If . It is easy to verify that the linear system
(5.14) has a Gaussian stationary distribution given by (5.12).

In order to evaluate in this context the performance of the parameters estimators
(2.5) we consider that as ǫ→0, the limiting “true” value of the drift and diffusion
coefficients in the OU approximation of the modified TBH model are

γ=(2β)−1/2If , σ2=2s2=2(2β)−3/2If . (5.15)

We fix the value of If as in (5.13) and β=50. The coefficients γ and σ2 then become

γ=0.43, σ2=0.0086.

In particular, we expect that in the correct sub-sampling regime, and as ǫ→0,
the empirical estimators r̂0 and r̂1 should converge to the drift and diffusion param-
eter values given by (5.15). We point out that additional assumptions have been
made in the derivation of the equation (5.8). The main simplifying assumption is
that the cross-correlation is zero between a1=Re u1 and a2=Im u1. It can be shown
numerically that this cross-correlation is very close to zero, but there is no analytical
justification for this point. The assumption of zero cross-correlation leads to small dis-
crepancies between the modified model (5.7) and the reduced model (5.8). Moreover,
the weakly non-Gaussian nature of the full model can also lead to small discrepan-
cies in the estimation procedure. Nevertheless, parametric estimation of the linear
OU model from the TBH data represents a more realistic case when the proposed
parametric model is not perfect even in the limit ǫ→0. We demonstrate that our
conclusions about sub-sampling rates and unbiased estimators are still valid in this
case.
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5.1. Sub-sampling Strategy for the Truncated Burgers-Hopf Model

We test the performance of the parameter estimators (2.5) for various sub-
sampling strategies by studying four TBH datasets generated by simulating the dy-
namics (5.7) for four values of ǫ. Since the effective linear dynamic equations in (5.14)
decouple a1 and a2, we only need to study the parameter estimators for the dynamics
of a1. Parametric estimators for the dynamics of a2 have similar behavior. To test
the sub-sampling strategy, we consider the dataset Un=Re u1(n∆) and compare the
limit behavior of the parameter estimators (2.5) as ǫ→0 with the analytical values
given by (5.15).

Since a similar homogenization procedure is applied to derive the reduced equa-
tions in the Triad model and the modified TBH model, the time-scale of the fast
variables in both models is O(ǫ2). Hence the behavior of the estimators γ̂ and σ̂2

should be similar to the Triad case. We study again several sub-sampling strategies
depicted in Figure 5.3. Relative errors for the estimator γ̂ exhibit the same behavior
as for the Triad data (cf Figures 5.3 and 3.2). When ∆ is a power of ǫ, the critical
scaling is clearly ∆= ǫ2 so that the estimation error in γ̂ is approximately constant
for different values of ǫ. Figure 5.3 shows that relative errors in the estimation of
parameters decay to zero as ǫ→0 only for sub-sampling regimes where ∆(ǫ)= ǫ2α

with α∈ (0,1).

5.2. Unbiased parameter estimators for fixed but unknown ǫ
As in section 3.2, we also analyze how the estimator γ̂ depends on ∆ for an

arbitrary fixed dataset generated by simulations of the modified TBH model with a
particular fixed value of ǫ. In particular, for a fixed ǫ=0.3 we plot the graphs of γ̂(∆)
and γ̂(∆)∆ as functions of the sampling time-step ∆. These 2 graphs are presented
in Figure 5.4, where the left part displays the graph of γ̂(∆) as a function of the
sub-sampling time step, ∆. As for the Triad model, the graph of γ̂(∆) vs ∆ provides
only limited information about the estimator bias or the appropriate value of ∆ for
consistent parameter estimation. This graph shows nevertheless that the estimator
γ̂(∆) is sensitive to changes in ∆ even for very large ∆≈ 0.5.

On the other hand, the graph of γ̂(∆)∆ versus ∆ (see the right part of Figure 5.4)
provides much better estimates for the unknown value of the small scale parameter ǫ
and for the favorable sub-sampling regime. The graph of γ̂(∆)∆ versus ∆ becomes
approximately a straight line for ∆> 0.15. Therefore, ∆≈ 0.15 is correctly identified as
the time-scale of fast variables in this problem. Small discrepancy between ǫ2=0.09
and 0.15 can be attributed to the finite-ǫ effects since the reduced model for the
accelerated TBH system is slightly different from the Ornstein-Uhlenbeck process
and should include small nonlinear terms.

To construct an unbiased estimator of γ, we use a linear regression fit to the
graph of γ̂(∆)∆, for ∆> 0.15. The slope coefficient generated by this linear regression
becomes a new estimate of γ, given by

γ̂regression(ǫ=0.3)≈ 0.45.

The relative error for this new regression estimator is approximately 5% since the
“true” value is γ≈ 0.43. The regression estimator performs much better than the
biased estimator γ̂, since the relative errors for the biased estimator are bigger than
10% for all values of ∆.

We also illustrate the behavior of γ̂(∆) and σ̂2(∆) as functions of ∆ for another
simulated TBH dataset computed for ǫ=0.1. Overall, the observed numerical be-
havior of the parameter estimators is similar to the behavior presented for ǫ=0.3.
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In particular, γ̂(∆)∆ and σ̂2(∆)∆ are plotted in Figure (5.5). There is a noticeable
change in the curvature of both graphs at ∆≈ 0.01. This value of ∆ corresponds to
the critical scaling ∆= ǫ2. Therefore, the fast time-scale is clearly identifiable on both
graphs. Moreover, linear regression provides the following values for the slopes of the
two approximating line segments associated to these two graphs

γ̂regression(ǫ=0.1)≈ 0.4101, σ̂2
regression(ǫ=0.1)≈ 0.0089. (5.16)

Similar to regression estimators considered for other models in this paper, we neglect
the first five points which do not follow the expected linear relationship. We plot the
biased estimator (2.5) and the linear regression estimator computed from the TBH
dataset with ǫ=0.1 on the same display in Figure (5.6). The relative errors for the
regression estimators for γ and σ2 are 5% and 3%, respectively. On the other hand,
we would like to emphasize that the regression estimators are extremely robust and
are not affected by the necessity to choose a particular fixed value of the sub-sampling
time-step, ∆.
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Fig. 5.3. Relative errors (%) in the estimator γ̂ in (2.5) computed from the data of xt in
the Truncated Burgers-Hopf model in (5.7) sub-sampled with several different strategies. Left part:
sub-sampling with ∆= ǫ3, ∆= ǫ2, ∆= ǫ. Right part: sub-sampling with ∆= ǫ2, ∆= ǫ1.75, ∆= ǫ1.5,
∆= ǫ1.25, ∆= ǫ.

6. Conclusions

In this paper we have studied numerically three examples of parametric estimation
of an effective SDE for the process Xt from approximate data when the observations
are sub-sampled from a discrete dataset generated by an approximating multiscale
process Y ǫ

t . We considered cases when the approximating process Y ǫ
t converges to the

process Xt as ǫ→0 which allows to test our estimation strategy. The main aspect
here is parametric estimation under indirect observability, i.e. when the available nu-
merical data are not generated by the limit process Xt, but instead, are generated
by an approximate dynamic process Y ǫ

t . This is a typical situation in many physical
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problems of interest, where one needs to study high dimensional and complex mul-
tiscale dynamics. When the multi-dimensional diffusion Xt is actually observable,
the natural Likelihood function to maximize in order to generate efficient parameter
estimators is constructed from a suitable discretization of the SDEs driving Xt. For-
mally it is then desirable to select the observational time-step as small as possible.
On the other hand, the indirect observability context typically imposes a lower bound
on the observational time-step and this lower bound depends on the scale parameter
ǫ. Moreover, our analytical and numerical results demonstrate that the Maximum
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Fig. 5.6. Estimators as functions of ∆ computed from the TBH dataset with ǫ=0.1. Left
part: solid line: γ̂(∆) in (2.5), dotted line: γ̂regression in (5.16), dashed line: analytical asymptotic
value in (5.15). Right part: solid line: σ̂2 in (2.5), dotted line: σ̂2

regression in (5.16), dashed line:

analytical asymptotic value in (5.15).

Likelihood Estimators computed from an approximating process are biased for any
finite value of ǫ. We validated our results on three different multi-scale approximating
systems - the triad model, the multiscale potential model, and the TBH model. For
all cases studied here, we show that the behavior of correlations of the approximating
process Y ǫ

t near lag zero is crucial for understanding the behavior of the parameters
estimators and deriving the appropriate conditions for consistency of parametric esti-
mation. As expected, the time-scale of the fast variables plays the role of the critical
scaling which determines the consistency of parametric estimation. These conclusions
were verified up to a very high precision.

In this paper we concentrate on studying estimators which are expressed as a
differentiable function of lagged covariances. In this case the behavior of covariances
is crucial for understanding the behavior of estimators, obtaining sufficient conditions
for the consistent estimation, and deriving the speed of convergence of estimators to
the “true” values. In particular, we would like to emphasize two main conclusions of
our study: (i) sufficient conditions for the consistent estimation and the estimators’
speed of convergence can be deduced from the speed of convergence of L2 or L∞ norms
between the covariances of the approximating and limiting processes and (ii) estima-
tors for different parameters (e.g. the drift vs the diffusion parameter) can depend
on different covariances (and their ratio, etc.) and this can result in different speeds
of convergence for different parameters. This issue can be particularly important in
higher-dimensional systems of equations.

Another important aspect discussed in this paper is estimation of an effective
model from a dataset generated with a fixed but unknown value of the scale parameter
ǫ. This issue is important in an applied context, since there has been a considerable
effort to develop data-driven stochastic parametrization for the large-scale structures
from numerical simulations of various geophysical models. Therefore, our results
demonstrate that the sub-sampling errors can be the leading cause of discrepancy
between the statistical behavior of large scales in full and reduced models and more
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elaborate estimation procedures taking the multiscale nature of the data into account
should be developed.

We also introduced a regression approach for constructing bias-corrected estima-
tors from a single dataset which is generated by a multi-scale approximating dynamics
with a fixed, but unknown, value of the parameter ǫ. This is the realistic parameter
estimation context when one is confronted with the task of adjusting a complex dy-
namic model to physical data for which the correct value of the scale parameter is not
directly readable from the data. These results are presented in section 3.2, 4.2, and
5.2 for the triad, multiscale potential, and the TBH model, respectively. To address
this problem we treated the sub-sampling time-step ∆ as an independent variable and
considered parameter estimators as functions of ∆ and analyzed their behavior as ∆
changes (for a fixed value of ǫ). We showed that the bias due to indirect observabil-
ity is typically proportional to ∆−1 in the favorable sub-sampling regime. We also
developed a practical approach for determining the favorable sub-sampling regime by
analysis of only the large-scale structures in the data generated by Y ǫ

t for a fixed but
unknown ǫ. We have thus introduced in this context a new class of unbiased param-
eter estimators derived by analysis (at fixed but unknown ǫ) of a family of standard
estimators associated to a whole range of potential sub-sampling time-steps ∆. We
showed that the unbiased estimators introduced in this paper can be used as practical
tools to compute the adequate range acceptable for the sub-sampling time step ∆,
and to practically implement consistent parametric estimation.

The results presented in this paper are also very closely related to recent studies in
[32, 31]. In [31] authors considered the sub-sampling problem in a general setting when
the observed dynamics is given by a multiscale SDE of the type (2.1). Therefore, the
setup is identical to the triad example presented in this paper. In [32] authors consider
SDEs with the fast-oscillating potential, including the model in (4.2). We would like
to point out that the TBH model is deterministic and, thus, does not fall in either
category. In [31] authors rigorously proved (Theorem 4.1 in [31]) consistency of the
Maximum Likelihood Estimators under the sub-sampling condition ∆= ǫα, α∈ (0,1).

On the other hand, our numerical simulations presented in this paper indicate that
the sub-sampling criteria on the observational time-step can be extended to cover a
larger range of ∆ resulting in consistent estimation of parameters. In particular, our
criteria is

∆= ǫ2α, α∈ (0,1). (6.1)

For small ǫ, the consistency criteria in (6.1) corresponds to a much large range of
acceptable observational time-steps resulting in consistent MLEs. Since MLEs are
often constructed using the Euler discretization of the corresponding SDE, smaller
observational time-steps are more desirable in practical situations. It is quite possible
that the triad example and the model with the fast-oscillating potential presented
in this paper fall into a special category, since the limiting process Xt is Gaussian;
this issue will be investigated further both analytically and numerically in subsequent
papers.

The present study is restricted to realistic parametric estimation of the unobserv-
able Ornstein-Uhlenbeck process, under indirect observability, where the available
data set is generated by a specific multiscale dynamics. However, we expect that the
methodology presented here is fairly generic and that similar conclusions will hold for
other multiscale dynamic models. It is unrealistic to expect that the graph γ̂(∆)∆ vs
∆ should always be a straight line in the correct sub-sampling regime for all, possibly
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nonlinear, effective models. Nevertheless, we expect that the behavior of the MLEs
as functions of the variable time-step, ∆, should contain sufficient information to con-
struct the unbiased estimators for the parameters for the underlying model. Future
work will include extension of the results presented here to parametric estimation of
nonlinear models and systems of SDEs.
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Appendix A. Statistical Properties of the Triad Model.

Invariant Density. First, we outline the calculation of the invariant measure
for the triad system in (3.1). The Fokker-Planck equation for the invariant measure
P =P (x,y,z) for the SDE (3.1) is

0=−1

ǫ
[A1∂x(yzP )+A2∂y(xzP )+A3∂z(xyP )]

+
1

ǫ2

[

s2∂y(yP )+
1

2
g22∂

2
yy(P )+s3∂z(zP )+

1

2
s23∂

2
zz(P )

]

.
(1.1)

The expression in (1.1) may be represented by,

0=

(

1

ǫ
Lnl+

1

ǫ2
Lou

)

P,

where Lnl is the differential operator corresponding to the nonlinear terms and Lou

corresponds to the OU terms in the second and third equations in (3.1). The differ-
ential operator Lou annihilates the bivariate Gaussian density function given by

Pou=K1exp(−(g2/s
2
2)y

2−(g3/s
2
3)z

2).

We use the energy conservation assumption by the non-linear terms (A1+A2+A3=0)
and impose that Lnl annihilates

P =K2exp(−Bx2−(g2/s
2
2)y

2−(g3/s
2
3)z

2), (1.2)

where B is some positive constant. Substituting (1.2) into (1.1) the constant B
becomes

B=−A−1
1

(

A2g2
s22

+
A3g3
s23

)

. (1.3)

Therefore, the stationary distribution is given by (1.2) with B given by (1.3), and
K1,K2 are then the associated normalizing constants. Note, that V ar{xt}=(2B)−1=
σ2/(2γ)=V ar{Xt}, where σ2 and γ are given by (3.4) andXt is the limiting Ornstein-
Uhlenbeck process in (3.3).

Quadratic Approximation of the Correlation function. To derive the
leading-order approximation for the correlation function of xt we consider a higher
order time-discretization scheme

xt+∆≈xt+
A1ytzt

ǫ
∆+

A1

2ǫ2
xt(y

2
tA3+z2tA2)∆

2

−A1ytzt
2ǫ2

(g2+g3)∆
2.

(1.4)
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Multiplying (1.4) by xt and taking expectations with respect to the invariant measure
in (1.2) we obtain

E[xt+∆1xt]≈E[x2
t ]

(

1+
∆2A1

4ǫ2

(

A2s
2
3

g3
+

A3s
2
2

g2

))

,

where E[x2
t ]= (2B)−1, with B given by (1.3). Therefore the leading-order approxi-

mation for the correlation function CFx(∆) of the slow variable xt, for ∆<ǫ<< 1, is
given by

CFx(∆)=1− (g2+g3)γ

2ǫ2
∆2+O(∆3), (1.5)

where γ, given by (3.4), is the drift coefficient of the reduced SDE. Note that the
derivative (∂Cǫ(∆)/∂∆) at ∆=0 is zero.

Appendix B. Computing Variance in the Model with the Fast-

Oscillating Potential.

Consider function f(x)> 0 which is integrable on R and having the property
limx→+∞f(x)= limx→−∞f(x)=0. We also assume that f ′(x) and f ′′(x) exist, are
continuous and integrable on R. Also, consider a bounded continuous function g(v)> 0
on R.

The goal is to compute the behavior of the fast-oscillating integral

J(ǫ)=

∞
∫

−∞

f(x)g
(

cos
(x

ǫ

))

dx,

where the small parameter ǫ> 0 tends to 0.
Let us consider a partition Ik =[2πkǫ, 2π(k+1)ǫ ], k=−∞, . . .,∞. Then the in-

tegral J(ǫ) is equal to the infinite sum of integrals over elementary intervals Ik, i.e.
J(ǫ)=

∑

kJk(ǫ) where

Jk(ǫ)=

∫

Ik

f(x)g
(

cos
(x

ǫ

))

dx.

Since the function f(x) is slowly varying, we use the Taylor expansion to obtain a
quadratic approximation for f(x) on each elementary interval Ik. Then an approxi-
mation for Jk(ǫ) can be computed as

Jk(ǫ)=

∫

Ik

[f(2πkǫ)+(x−2πkǫ)f ′(2πkǫ)+
1

2
(x−2πkǫ)2f ′′(zk)]g

(

cos
(x

ǫ

))

dx.

(2.1)
with zk ∈ Ik.

Next, we can integrate explicitly the fast-scillating function over each elementary
interval Ik in (2.1). In particular, if we define the following constants

∫

Ik

g
(

cos
(x

ǫ

))

dx= ǫ

∫ 2π

0

g (cos(y)) dy= ǫZ0,

∫

Ik

(x−2πkǫ)g
(

cos
(x

ǫ

))

dx= ǫ2
∫ 2π

0

yg (cos(y)) dy= ǫ2Z1,
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∫

Ik

(x−2πkǫ)2g
(

cos
(x

ǫ

))

dx= ǫ3
∫ 2π

0

y2g (cos(y)) dy= ǫ3Z2,

then the expression (2.1) for Jk(ǫ) becomes

Jk(ǫ)=Z0ǫf(2πkǫ)+Z1ǫ
2f ′(2πkǫ)+

1

2
Z2ǫ

3f ′′(zk). (2.2)

Substituting (2.2) into the summation for J(ǫ) we obtain an approximate expression
for J(ǫ)

2πJ(ǫ)=Z0

∑

k

f(2πkǫ)2πǫ+ǫZ1

∑

k

f ′(2πkǫ)2πǫ+
ǫ2

2
Z2

∑

k

f ′′(zk)2πǫ,

where zk ∈ Ik and we also multiplied both sides by 2π. The final step is to treat the
infinite summations in the above expression as Riemann sums for the corresponding
integrals and obtain the approximation

2πJ(ǫ)=Z0

∫

R

f(x)dx+ǫZ1

∫

R

f ′(x)dx+O(ǫ2)

where O(ǫ2) terms arise due to converting the Riemann sum into the integral and, also,
from estimating the remainder term with the second derivative. Since

∫

R
f ′(x)dx=

f(+∞)−f(−∞)=0, we obtain the second order expansion

2πJ(ǫ)=Z0

∫

R

f(x)dx+O(ǫ2). (2.3)

The second order expansion (2.3) for the integral J(ǫ) can be used to both, prove the
convergence of the variance for the process xt in the model (4.2) to the variance of
the Ornstein-Uhlenbeck process Xt with parameters in (4.3) and, also, to estimate
the speed of convergence. Clearly, since the linear term in ǫ is not present in (2.3),
the speed of convergence is at least as ǫ2.
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