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Abstract We consider a Gaussian diffusion Xt (Ornstein-Uhlenbeck pro-
cess) with drift coefficient γ and diffusion coefficient σ2, and an approximat-
ing process Y ε

t converging to Xt in L2 as ε → 0. We study estimators γ̂ε,
σ̂2

ε which are asymptotically equivalent to the Maximum likelihood estima-
tors of γ and σ2, respectively. We assume that the estimators are based on
the available N = N(ε) observations extracted by sub-sampling only from
the approximating process Y ε

t with time step ∆ = ∆(ε). We characterize
all such adaptive sub-sampling schemes for which γ̂ε, σ̂2

ε are consistent and
asymptotically efficient estimators of γ and σ2 as ε → 0. The favorable adap-
tive sub-sampling schemes are identified by the conditions ε → 0, ∆ → 0,
(∆/ε) → ∞, and N∆ → ∞, which implies that we sample from the process
Y ε

t with a vanishing but coarse time step ∆(ε) >> ε. This study highlights
the necessity to sub-sample at adequate rates when the observations are not
generated by the underlying stochastic model whose parameters are being
estimated. The adequate sub-sampling rates we identify seem to retain their
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validity in much wider contexts such as the additive triad application we
briefly outline.

1 Introduction

Long-term evolution of high-dimensional deterministic systems governed by
complex PDEs, have often been approximated by low-dimensional reduced
stochastic models focused on larger time scales and with a good statistical
fit to the observed dynamic data. For instance, stochastic mode-reduction
technique [12–14] has successfully modeled the dynamics of large-scale struc-
tures in systems with time-scale separation, an optimal prediction setup has
enabled coarse grain dynamic modeling of statistical descriptors [5,3,4], spin-
flip processes have provided coarse-grained models of traffic flow [9–11,1],
reduced Markov chain models have been applied to prototype atmosphere-
ocean interactions [6], and a generic framework has been developed for dimen-
sion reduction in metastable systems [17,8]. In most practical contexts of this
type, one seeks to approximate the dynamics of key statistical descriptors of
a chaotic high-dimensional deterministic dynamical system by a closed form
low-dimensional stochastic process, such as a (vector) stochastic differential
equations (SDE). Then the available data Un = Yn∆ , n = 1, 2, ...N are not
generated by the underlying SDE, but sampled from observations Yt gener-
ated by some complex, not completely identifiable, deterministic dynamics.

On short time scales, the trajectories Yt of the observable physical process
are quite different from sample paths Xt of a vector SDE (see [7]), but on
longer time-scales the behavior of Yt is well emulated by Xt. This situation
is typical for data generated by a numerical dynamic model, such as fluid
dynamics PDEs. The Yt trajectories then decorrelate slower than those of
Xt, and good estimators f(Xt1...XtN ) of the underlying SDE parameters
can lose their consistency if one simply substitutes Xt for Yt in the function
f and uses observations (Yt1...YtN ) which are too dense in time.

Sub-sampling strategies are then essential when the parameters of an SDE
driven Xt must be estimated using discrete data extracted from a process
Y ε

t quite close to Xt for small ε, but having higher trajectory smoothness
than Xt. Sub-sampling approaches have, for instance, been studied for the
homogenization problem [16,15].

In this paper, for a class of Gaussian processes, we characterize efficient
sub-sampling strategies with a complete determination of the optimal sub-
sampling rates. For brevity, we focus on a prototypical case where Xt is driven
by a one-dimensional Gaussian SDE and Y ε

t is a Gaussian process with dif-
ferentiable trajectories. Extension to higher-dimensional Gaussian diffusions
looks quite feasible by similar techniques, and we expect to fully generalize
to these cases our present characterization of good sub-sampling strategies
enforcing consistent estimation of the underlying process parameters .

Our main results are presented via a prototype example in which Xt is
a stationary Ornstein-Uhlenbeck (OU) process with unknown drift and dif-
fusion coefficients γ and σ2. We assume that the only available observations
are generated by another stationary Gaussian process Y ε

t , indexed by a small
parameter ε > 0. We assume that as ε → 0, the correlation function of Y ε

t
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converges to the correlation function of Xt. We analyze explicitly the case
where Y ε

t is generated by averaging Xt on a sliding time window [t − ε, t].
The Y ε

t trajectories are then a.s. differentiable. The process Xt is not di-
rectly observable here, and the only available information is N observations
extracted from Y ε

t by sub-sampling with a time step ∆.
We consider estimators γ̂ and σ̂2 of γ and σ2 based on the second-order

sample moments of the underlying process. We show that these estimators
are asymptotically equivalent to the maximum likelihood estimators (MLEs)
ĝ, ŝ of γ and σ2. In these approximate MLEs γ̂ and σ̂2, based on N unavail-
able observations of Xt, we replace the Xt by the available observables Y ε

t ,
extracted by sub-sampling with a time step ∆ > 0. We study estimators γ̂ε

and σ̂2
ε for all adaptive sub-sampling schemes where ε determines the time

step ∆ = ∆(ε) and the number of observations N = N(ε). We show that if
the adaptive sub-sampling scheme verifies,

ε → 0, ∆ → 0, (∆/ε) → ∞, N∆ → ∞,

then, the estimators γ̂ε and σ̂2
ε converge in L2 to the underlying parameters

γ, σ2. Moreover, under the stronger conditions,

ε → 0, ∆ → 0, N∆ → ∞, (Nε2/∆) < cte,

where cte is an arbitrary positive constant, the estimators γ̂ε and σ̂2
ε converge

with L2-speed of convergence proportional to 1/
√

N∆.
The above conditions, as ε → 0, provide an explicit recipe for the optimal

choice of the time step ∆ = ∆(ε) and the number of observations N = N(ε),
given by,

∆ → 0, (∆/ε) → ∞, (1/∆) << N < cte(∆/ε2).

In the particular case where the number of observations N and the time step
∆ are of the form N = ε−η, ∆ = εα, then, for α, η such that α ∈ (0, 1),
and α < η ≤ (2 − α), the estimators γ̂ε, σ̂2

ε are asymptotically consistent

estimators of γ, σ2 with an L2-speed of convergence proportional to 1/
√

N∆.
The best L2-speeds of convergence are proportional to ε1−α, with α close to
0, and are reached for ∆ = εα, N = ε−2+α.

Our key result is presented in Theorem (1). We have validated this result
by numerical simulations presented in Section (9). A simple triad example is
presented in Section (10) to illustrate the sub-sampling problem for a class
of systems with the limiting behavior (as ε → 0) given by the Ornstein-
Uhlenbeck model. Our formalism is applicable in this case and can be used
to analyze the consistency of the estimators. A simple intuitive explanation
for the correct sub-sampling strategy is also provided. The triad example
provided the initial motivation for investigating the sub-sampling problem
and will be discussed in detail in a subsequent paper.

The outline of the paper is as follows. In sections (2) and (4), we present
asymptotically efficient estimators, γ̂ and σ̂2, for the OU parameters of the
stationary OU process and prove their asymptotic equivalence to the MLEs.
We apply known asymptotic results to fixed rate sub-sampling where obser-
vations are extracted from the OU trajectories themselves. We extend the
consistency results to adaptive sub-sampling schemes in section (5).
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In section (6) we present the Smoothed OU process Y ε
t and indirect esti-

mators of OU parameters based on observations extracted from Y ε
t . In sec-

tions (7) and (8), we characterize the optimal adaptive sub-sampling for such
indirect estimators and discuss the properties of the estimators. In section (9)
we illustrate numerically various sub-sampling strategies on simulated diffu-
sions. In Section (10) we briefly outline the additive triad application and
discuss numerical results obtained by using various adaptive sub-sampling
strategies for observations from the triad model.

2 Ornstein-Uhlenbeck Process

Consider a filtered probability space (Ω,F, P ; F) on which we define the
stochastic processes of interest. In dimension 1, we consider a basic example
of Gaussian diffusion, namely the Ornstein-Uhlenbeck process (denoted here
as OU-process), defined as the solution for t ≥ 0 of the linear SDE

dXt = −γXtdt + σdWt, (1)

where Wt is the standard Brownian motion and the unknown parameters
γ;σ are strictly positive. The solution Xt of SDE (1) is an asymptotically
stationary Gaussian process given by

Xt = X0e
−γt + σe−γt

∫ t

0

eγsdWs. (2)

When X0 = x0 ∈ R, the distribution of Xt is given by

Xt ∼ N

(

X0e
−γt,

σ2

2γ
(1 − e−2γt)

)

, (3)

where N(a, b) is the Gaussian distribution with mean a and variance b. The
covariance function of (Xt)t≥0 is given by

E[XtXs] =
σ2

2γ
e−γ|t−s|

(

1 − e−2γ(s∧t)
)

+ X2
0e−γ(t+s),

where (s ∧ t) = min{s, t}. Since γ > 0, the process (Xt)t≥0 is asymptot-
ically stationary as t → ∞, and converges in distribution to the Gaussian
N
(

0,
(

σ2/2γ
))

. The asymptotic stationary covariance is given by

lim
t→∞

E[XtXt+h] =
σ2

2γ
e−γ|h|. (4)

When X0 ∼ N
(

0, σ2/2γ
)

, then Xt is a stationary process. In this case, the
asymptotic results for parametric estimation of stationary Gaussian processes
from [2] are directly applicable to the discretely sub-sampled OU process.
These results, which we recall below, are easily extended to the situation
where the OU process is only asymptotically stationary because convergence
to its stationary distribution is exponentially fast. Hence, the OU process
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observed for t ≥ t0 such that t0 >> (γ−1), may essentially be considered as
stationary.

We now analyze the asymptotic properties of maximum likelihood esti-
mators (denoted here MLEs) of the unknown parameters γ and σ based on
large sets of sub-sampled but direct observations of the process Xt. These
MLEs are differentiable functions of the covariance estimators of the OU
process, a representation which is crucial here.

3 Fixed Rate sub-sampling and Adaptive sub-sampling

Assume N → ∞, and that we have (N + 1) direct observations Un = Xn∆

with n = 0, ..., N , extracted from the OU-trajectory Xt by sub-sampling at
discrete time steps t = n∆.

Definition 1 We say that we have a Fixed rate Sub-sampling scheme when
the time-step ∆ > 0 between observations remains fixed as N → ∞.

⊓⊔

Definition 2 We say that we have an Adaptive Sub-sampling scheme when
the time-step between observations depends on N , i.e. ∆ = ∆(N) → 0 as
N → ∞, and we then always impose the condition N∆ → ∞.

⊓⊔

As shown below, when the global time interval N∆ spanned by the N avail-
able observations remains bounded, the maximum likelihood estimators of
γ, σ based on these N observations are not be asymptotically consistent. This
is due to the O(1/

√
N∆)m, m ≥ 1, bias terms in the asymptotic expansions

of the estimators about the true values.
From (2) and (3), we infer that the Un satisfy the difference equation,

Un+1 = Une−γ∆ +

√

σ2(1 − e−2γ∆)

2γ
Zn, (5)

where the Zn are i.i.d. standard Gaussian variables, and are independent

of U0, ..., Un, for each n = 0, . . . , N − 1. When U0 = X0 ∼ N

(

0, σ2

2γ

)

, then

(Un) is a Gaussian stationary Markov process.

Proposition 1 Let (Un)n∈Z be a centered stationary Gaussian process. De-
fine the covariances rk for each k ∈ Z by

rk = E [UnUn+k] .

Define the empirical covariance estimators r̂k(N) by

r̂k(N) = (1/N)
N−1
∑

n=0

UnUn+k.
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Then for each pair of non-negative integers k, q, the covariance of the esti-
mators Ckq = Cov(r̂k(N), r̂q(N)) is given by

Ckq = (1/N)
N−1
∑

j=−(N−1)

f(j) − (1/N2)
N−1
∑

j=1

j (f(j) + f(−j)) , (6)

where f(j) = rjrj+k−q + rj+krj−q.

Proof . The covariance Cov(r̂k(N), r̂q(N)) = E [r̂k(N)r̂q(N)] − rkrq, where
E [r̂k(N)r̂q(N)] can be explicitly computed from the 4th order moments of
a Gaussian random vector, and is given by

N2E [r̂k(N)r̂q(N)] =
N−1
∑

m=0

N−1
∑

n=0

E [UmUm+kUnUn+q] . (7)

A well known result for the Gaussian random variables gives us the 4th order
moments in terms of the 2nd order moments, namely

E [UmUm+kUnUn+q] = rkrq + rm−nrm−n+k−q + rm−n−qrm−n+k. (8)

Substituting (8) in (7) gives the required result. ⊓⊔

4 Fixed Rate Sub-sampling

Assume fixed-rate sub-sampling, so that ∆ > 0 is fixed. The stationary co-
variances rk are given by

rk = rk(∆) = E[Un+kUn] =
σ2

2γ
e−γk∆, (9)

which implies the relation
∑

k∈Z

|k||rk(∆)| < ∞. (10)

Given the discrete observations Un, define the standard empirical covariance
estimators (r̂k)k=0,1 by

r̂0 = r̂0(N,∆) =
1

N

N−1
∑

n=0

U2
n, r̂1 = r̂1(N,∆) =

1

N

N−1
∑

n=0

Un+1Un. (11)

Since the covariances rk verify (10), known results [2] on stationary Gaussian
processes show that for each fixed ∆ > 0 as N → ∞, the covariance estima-
tors r̂k are the best estimators of the rk, they are consistent (i.e. converges
almost surely to the true rk), and asymptotically efficient (i.e. the asymp-
totic variances of r̂k attain the Cramér-Rao bound). We also know (see [2,
Chapter X]) that as N → ∞, the random vectors

√
N [r̂0 − r0, r̂1 − r1]
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are asymptotically centered and Gaussian, with limit covariance matrix Γ =
(Γst), s, t ∈ {0; 1} given by

Γst =
∑

m∈Z

(rmrm−s+t + rm−srm+t) ,

with rm given by (9), and hence, the covariance matrix Γ is given by

Γ00 = 2r2
0(1 + e−2γ∆)/

(

1 − e−2γ∆
)

, (12)

Γ11 = r2
0

(

1 + 4e−2γ∆ − e−4γ∆
)

/
(

1 − e−2γ∆
)

,

Γ01 = Γ10 = 4r2
0e

−γ∆/
(

1 − e−2γ∆
)

,

where r0 =
σ2

2γ
. The relation (9) between OU parameters γ, σ2 and the

covariances r0 and r1 imply that

γ = g(r0, r1), σ2 = s(r0, r1),

where the smooth functions g, s are given by

g(r0, r1) = (−1/∆) log

(

r1

r0

)

, s(r0, r1) = (−2r0/∆) log

(

r1

r0

)

.

We now study the estimators γ̂ and σ̂2 for γ and σ2 given by

γ̂ = g(r̂0, r̂1), σ̂2 = s(r̂0, r̂1),

which have the explicit expressions

γ̂ = − 1

∆
log

(

r̂1

r̂0

)

, σ̂2 = 2γ̂r̂0. (13)

Proposition 2 (Asymptotics for γ̂ and σ̂2) Consider an OU-process Xt

directly observed at times t = n∆, n = 0, . . . , N , sub-sampling at fixed rate
∆ > 0. Then as N → ∞, the estimators γ̂ and σ̂2 of γ and σ2 are consistent
(almost surely). Moreover

√
N(γ̂ − γ) and

√
N(σ̂2 − σ2) are asymptotically

Gaussian with limit variances vγ and vσ2 given by

vγ =

(

e−2γ∆ + e2γ∆ − 2

∆2(1 − e−2γ∆)

)

,

vσ2 = 4r2
0

(

2(1 + γ∆)2(1 + e−2γ∆) − 8γ∆ + e2γ∆ − e−2γ∆ − 4

∆2(1 − e−2γ∆)

)

.

Proof . Define the function F : R
2 → R

2 by

F (r0, r1) = [g(r0, r1), s(r0, r1)] .

Since F is twice continuously differentiable in the neighborhood of (r0, r1) for
each ∆ > 0, it follows from [2, Chapter X] that the estimator ν̂ = F (r̂0, r̂1) is

a consistent estimator of ν = F (r0, r1). Also, the distribution of
√

N (ν̂ − ν)
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converges, as N → ∞, toward the 2-dimensional centered Gaussian distribu-
tion with covariance matrix

ΣF = AΓAT

where, for each fixed ∆ > 0, the (2 × 2) matrix A = ∇F (r0, r1) is the
differential of F at true covariances (r0, r1), AT denotes the transpose of A,
and the covariance matrix Γ is given by (12). This says exactly that γ̂ and
σ̂2 are consistent and asymptotically Gaussian estimators of γ and σ2, and
that ΣF is the limit covariance matrix of the random vector

√
N
[

(γ̂ − γ) ,
(

σ̂2 − σ2
)]

.

⊓⊔
Recall that 2 asymptotically Gaussian estimators τ1,N and τ2,N of a

parameter τ are said to be asymptotically equivalent if
√

N(τ1,N − τ) and√
N(τ2,N − τ) have the same limit variance as N → ∞.

Proposition 3 (MLEs) The log likelihood LN,∆ of U = {Un} is given by

LN,∆(U ; γ, σ2) = −1

2
log

(

πσ2

γ

)

− γU2
0

σ2
− N

2
log

(

πσ2

γ
(1 − e−2γ∆)

)

−γ
(

σ2
(

1 − e−2γ∆
))−1

N−1
∑

n=0

(Un+1 − e−γ∆Un)2.

Call ĝ = ĝ(N,∆) and ŝ = ŝ(N,∆) the maximum likelihood estimators of γ
and σ2, obtained by maximizing LN,∆ in γ, σ2. Then, the MLE estimators ĝ
and ŝ are resp. asymptotically equivalent to the estimators γ̂ and σ̂2 defined
above by (13).

Proof . From (5), for a fixed ∆ > 0, we derive the Gaussian conditional den-
sity of Un+1 given Un, and then the likelihood exp(−LN,∆) of {U0, . . . , UN}
using the Markov property of the Un. This yields the explicit expression of
LN,∆ stated above.

The values
(

γ, σ2
)

maximizing LN,∆ must verify the necessary conditions

∇LN,∆(γ, σ2) = 0, namely the two equations

σ2 =

(

2γ

N + 1

)

(

Nr̂0 +
2γ
(

U2
N − U2

0 e−2γ∆
)

(1 − e−2γ∆)

)

, (14)

γ =
−1

∆
log

(

r̂1

r̂0 + N−1 ((σ2/2γ) − U2
0 )

)

.

The Hessian of LN,∆ is negative definite for large N , hence for large N, LN,∆

has a unique supremum reached at the point (ĝ, ŝ), which solves equations
(14). Note that these equations do not lead to an explicit expression for (ĝ, ŝ).
Using large deviation bounds for Gaussian processes, one proves that with
very large probability, γ̂ and σ̂2 is a good approximation to the solution of

(14), with an accuracy of the order of
1√
N

as N → ∞. ⊓⊔
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We have seen that under fixed-rate sub-sampling scheme the covariance
estimators r̂k and the OU estimators γ̂, σ̂2 are consistent (in L2) and asymp-
totically Gaussian. The L2-speed of convergence for the OU estimators γ̂, σ̂2

are proportional to 1/
√

N , for each fixed value of ∆ > 0.

5 Adaptive Sub-sampling

We now study the consistency of the estimators γ̂ = γ̂(N,∆) and σ̂2 =
σ̂2(N,∆) under adaptive sub-sampling scheme (see definition (2)).

Proposition 4 (Asymptotics of the Covariances) Consider an adap-
tive sub-sampling scheme where we have N observations Un = Xn∆ of the
stationary OU process Xt at time intervals of length ∆ = ∆(N) depending
on N . We assume (see definition (2))

∆ → 0, N∆ → ∞. (15)

The true covariances rk = rk(∆) of the process Un are now functions of N still
given by (9). Hence as N → ∞, and for each k ≥ 0, rk(∆(N)) → (σ2/2γ).

Then, under condition (15), and for each k ≥ 0, the empirical covariances
r̂k converge in L2 to (σ2/2γ). Moreover, for each k ≥ 0 the L2−norms of the

variables
√

N∆ (r̂k − rk) converge to
(

σ2/γ
√

2γ
)

.

Proof . The associated speed of convergence to zero in L2 for the difference
(r̂k − rk) can be computed directly, as outlined here for k = 0 and k = 1. Let

Jk = E
[

(r̂k − rk)
2
]

, then, using the expression (6) in proposition (1), such

that Jk = Ckk, we obtain for k = 0, 1,

J0 =
2r2

0(1 + e2γ∆)

N(e2γ∆ − 1)
+

4r2
0e

2γ∆
(

e−2γN∆ − 1
)

N2(e2γ∆ − 1)2
,

(16)

J1 =
r2
0(e

4γ∆ + 4e2γ∆ − 1)

Ne2γ∆(e2γ∆ − 1)
+

4r2
0e

2γ∆
(

e−2γN∆ − 1
)

N2(e2γ∆ − 1)2
.

Under the conditions (15), and as ∆ → 0, N∆ → ∞ using the convergence
of
(

∆/(e2γ∆ − 1)
)

→ (2γ)−1, and N(e2γ∆ − 1) → ∞ (for γ > 0), we have,

(N∆)J0 → σ4

2γ3
, (N∆)J1 → σ4

2γ3
.

This concludes the proof. ⊓⊔

Proposition 5 For each N,∆, the random variables Z0 = Z0(N,∆) and
Z1 = Z1(N,∆) defined by,

Z0 =
(r̂0 − r0)√

J0

, Z1 =
(r̂1 − r1)√

J1

, (17)
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have mean 0, variance 1, and covariance E[Z0Z1] = J01/(
√

J0J1), where
J0, J1, J01 are given by (16), (19). Then, under conditions (15) we have the
following first-order L2 approximations for the empirical covariances r̂k,

r̂0 = r0 +
r0√
N∆

√

2

γ
Z0 +

Z0√
N∆

× O

(

∆2 +
1

N∆

)

,

(18)

r̂1 = r1 +
r0√
N∆

√

2

γ
Z1 +

Z1√
N∆

× O

(

∆2 +
1

N∆

)

,

where the notation O(h) represents deterministic functions of h bounded by
a constant multiple of h.

Proof . The exact expression for J01 derived using proposition (1) is given
by,

J01 =
4r2

0e
γ∆

N(e2γ∆ − 1)
− 2r2

0e
γ∆(e2γ∆ + 1)(1 − e−2γN∆))

N2(e2γ∆ − 1)2
. (19)

Applying Taylor’s expansions to Jk as given by (16) and J01 given by (19),
we obtain

J0 =
2r2

0

γN∆

(

1 +
γ2∆2

3
− 1 + O(∆2)

2γN∆
+ O(∆4)

)

,

J1 =
2r2

0

γN∆

(

1 − 2γ2∆2

3
+ γ3∆3 − 1 + O(∆2)

2γN∆
+ O(∆4)

)

, (20)

J01 =
2r2

0

γN∆

(

1 − γ2∆2

6
− 1 + O(∆2)

2γN∆
+ O(∆4)

)

.

Substituting in (17) the above expressions for J0, J1 gives the required L2-
approximations as expressed in (18). ⊓⊔

Define the random variable Zk, for any integer k ≥ 0, as Zk = (r̂k−rk)/
√

Jk,
where Jk = Ckk is given by (6), in particular for the OU process. The next
lemma will be needed to prove the consistency of γ̂ and σ̂2.

Lemma 1 For each integer k ≥ 0, consider a random variable Vk = Vk(θ)
given by,

Vk =

(

akZk

1 + akθZk

)2

, (21)

where Zk = (r̂k − rk)/
√

Jk, θ ∈ (0, 1) and ak = eγk∆
√

Jk/r0, such that
Jk ∼ O(1/N∆). Then, under the condition (15), ‖Vk‖L2

→ 0, at a speed
proportional to 1/N∆.

Proof . The L2−norm is given by ‖Vk‖2
L2

= E
[

(akZk/(1 + akθZk))4
]

. Since,
the tails of the density for Zk decay exponentially fast, we have for any
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M ≫ 1, P
{

(1 + akθZk)−1 > M
}

< e−(C1

√
N∆/θ), where C1 is a positive

constant. Also,

P
{

(1 + akθZk)−1 < 0
}

= P
{

Zk < −(C2

√
N∆/θ)

}

< e−(C2/θ)
√

N∆,

where C2 is a positive constant. Therefore, using Cauchy-Schwarz inequality
we obtain,

‖Vk‖2
L2 ≤ a4

k‖Z4
k‖L2

‖(1 + akθZk)−4‖L2
≤ C3

N2∆2
,

where ‖Z4
k‖L2

is uniformly bounded in N,∆ for each k and C3 is some positive
constant. This proves the required result. ⊓⊔

Proposition 6 (Consistency of γ̂ and σ̂2) Consider the adaptive sub-
sampling scheme providing N observations Un = Xn∆ of the stationary OU
process Xt at time intervals of length ∆ = ∆(N). Define the estimators γ̂
and σ̂2 by formula (13).

Then, under the conditions

∆ → 0, N∆ → ∞, (22)

the estimators γ̂, σ̂2 are asymptotically consistent estimators of γ, σ2, i.e.,
γ̂ → γ, and σ̂2 → σ2 in L2.

Moreover, given (22), the L2 norms of the variables
√

N∆ (γ̂ − γ), and√
N∆

(

σ̂2 − σ2
)

converge, respectively, to
√

2γ and 0. Therefore, the estima-
tors converge to the true values with an L2-speed of convergence proportional
to 1/

√
N∆. In particular, under stronger conditions,

∆ → 0, N∆2 → ∞, (23)

the L2-speed of convergence of the estimator σ̂2 to σ2 is proportional to
1/
√

N , such that ‖
√

N
(

σ̂2 − σ2
)

‖L2
→ σ2

√
2.

Proof . From (17) we obtain, r̂0 = r0 +
√

J0Z0, and r̂1 = r1(∆) +
√

J1Z1,
which we substitute in

γ̂ = − 1

∆
log

(

r̂1

r̂0

)

.

First, we rewrite the ratio R̂ = (r̂1/r̂0) as follows,

R̂ = e−γ∆

(

1 +
eγ∆

√
J1

r0
Z1

)(

1 +

√
J0

r0
Z0

)−1

.

Then taking logarithms of the ratio R̂, we obtain,

γ̂ = γ − 1

∆
log

(

1 +
eγ∆

√
J1

r0
Z1

)

+
1

∆
log

(

1 +

√
J0

r0
Z0

)

.
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Using lemma(1), under the conditions (22), and using Taylor’s expansion we
obtain that the following holds in L2,

log

(

1 +

√
J0

r0
Z0

)

=

√
J0

r0
Z0 − (V0/2),

log

(

1 +
eγ∆

√
J1

r0
Z1

)

=
eγ∆

√
J1

r0
Z1 − (V1/2),

where the random remainder terms V0, V1 are given by (21) such that the L2

norms ‖V1−V0‖L2
∼ O(1/N), ‖V0‖L2

∼ O(1/N∆), and ‖V1‖L2
∼ O(1/N∆).

Let the random variable Zγ =
(

eγ∆
√

J1Z1 −
√

J0Z0

)

/(∆r0). The L2

norm of Zγ is given by,

‖Zγ‖2
L2 =

(

e2γ∆J1 + J0 − 2eγ∆J01

)

(∆r0)2
=

2γ

N∆
(1 + O(∆)) .

Then, the first-order L2 approximation for γ̂ is given by,

γ̂ = γ − Zγ + Rγ × O

(

1

N∆

)

, (24)

where the random remainder term Rγ = Rγ(N,∆) is uniformly bounded in
L2 norm. Therefore, under the conditions (22), the estimator γ̂ → γ in L2

with an L2-speed of convergence proportional to 1/
√

N∆ such that,

‖
√

N∆ (γ̂ − γ) ‖L2 →
√

2γ.

The diffusion estimator σ̂2 = 2γ̂r̂0 by (13). Let the random variable Zσ2 =
(2/∆)

(

eγ∆
√

J1Z1 − (1 + γ∆)
√

J0Z0

)

, then its L2 norm is given by,

‖Zσ2‖2
L2

=
2σ4

N
(1 + O(∆)) .

Hence, using (17) and (24) we obtain,

σ̂2 = σ2 − Zσ2 + Rσ2 × O

(

1

N∆

)

, (25)

where the random remainder term Rσ2 = Rσ2(N,∆) is uniformly bounded
in L2 norm. Therefore, under the conditions (22), σ̂2 → σ2 in L2. Moreover,
under the conditions (23), the following convergence holds,

‖
√

N
(

σ̂2 − σ2
)

‖L2 → σ2
√

2.

⊓⊔
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To summarize, when the observations are directly extracted from a stationary
OU process then, under the fixed rate sub-sampling scheme the MLEs for the
parameters of the OU-process are consistent and asymptotically Gaussian.
The L2-speed of convergence for the estimators γ̂ and σ̂2 as N → ∞ is
proportional to 1/

√
N for each fixed ∆ > 0.

Under the adaptive sub-sampling scheme (22), the estimators γ̂ and σ̂2 are
asymptotically consistent estimators of γ, σ2. The usual L2-speed of conver-
gence to true values proportional to 1/

√
N∆ is achievable for the estimators

γ̂, σ̂2. In fact for the diffusion estimator σ̂2, under stronger conditions on N ,
∆, one can achieve a faster L2-speed of convergence proportional to 1/

√
N .

The asymptotic distribution of the empirical covariance estimators and
the OU estimators, under the adaptive sub-sampling scheme, will be studied
elsewhere.

We now study a more common and more complex scenario in which only
indirect observations of the underlying OU-process Xt are available, and are
generated by another process Yt which is not identical to Xt, but is simply
close to Xt in L2. In this case sub-sampling will become an essential tool to
generate consistent estimators of the underlying parameters.

6 Indirect Estimation of OU-Parameters

Assume now that the stationary OU process Xt is not directly observable,
and that all available observations are extracted from a centered stationary
process Y ε

t , which tends to the process Xt in L2 as ε → 0. More precisely,
defining the covariance functions

Kε(h) = E[Y ε
t Y ε

t+h], and rh = E[XtXt+h],

we assume that

Kε(h) → rh as ε → 0.

We focus here on one precise example of this situation, namely, the specific
case where the process Y ε

t is the Smoothed Ornstein-Uhlenbeck process, also
denoted SOU-process, obtained by averaging the OU process over a sliding
window of fixed length ε > 0, so that

Y ε
t =

1

ε

∫ t

t−ε

Xsds. (26)

Note that Y ε
t is a centered stationary Gaussian process with a.s. differentiable

trajectories. The covariance function of Y ε
t at time lag h is given by,

Kε(h) = E[Y ε
t Y ε

t+h] =
1

ε

(

∫ t+h

t+h−ε

E[XsY
ε
t ]ds

)

.

As is well known, we may in this Gaussian context freely commute expecta-
tion signs and integral signs, so that the computation of Kε(h) boils down
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to computing simple deterministic integrals of the explicit stationary covari-
ance function of Xt. We thus obtain the following expressions for Kε(h), for
h ≥ 0:

Kε(h) =























σ2

2γ3ε2
e−γh (e−γε + eγε − 2) . h ≥ ε,

σ2

2γ3ε2
e−γh

(

2γ(ε − h)eγh + e−γε(e2γh + 1) − 2
)

. h < ε.

(27)

In particular, we have

Kε(0) =
σ2

γ3ε2
(e−γε − 1 + γε). (28)

Therefore, the correlation function of Y ε is given by

Kε(h)

Kε(0)
=

1

2
e−γh

(

e−γε + eγε − 2

e−γε − 1 + γε

)

, h ≥ ε, (29)

Kε(h)

Kε(0)
=

1

2
e−γh

(

2γ(ε − h)eγh + e−γε(e2γh + 1) − 2

e−γε − 1 + γε

)

, 0 ≤ h < ε. (30)

Next we present the study of the asymptotic properties of the estimators, γ̂ε

and σ̂2
ε , based on the observations sub-sampled from the process Y ε

t .

7 Fixed Rate Sub-sampling for Indirect Estimation of parameters

Recall that now the only available information are (N+1) indirect observa-
tions Uε

n = Y ε
n∆ extracted from the SOU-process Y ε

t by sub-sampling with a
fixed time-step ∆ > 0. The goal is still to estimate the parameters γ and σ2

of the underlying OU process. We will study the estimators given by formulas
(13) where we replace Un by Uε

n. These approximate MLEs of γ and σ2, are
given by

γ̂ε = − 1

∆
log

(

r̂ǫ
1

r̂ǫ
0

)

, σ̂2
ε = 2γ̂εr̂

ǫ
0, (31)

where r̂ǫ
k = (1/N)

∑N−1
n=0 Uε

nUε
n+k is the standard empirical estimator of the

covariance rε
k = Kε(k∆) given by (27), for k = 0, 1.

Proposition 7 (Asymptotic Bias of γ̂ε and σ̂2
ε) For fixed ε and ∆ the

following convergence holds in L2 as N → ∞, namely,

γ̂ε → G = G(ε,∆), σ̂2
ε → S = S(ε,∆),

where
G = −(1/∆) log (Kε(∆)/Kε(0)) and S = 2GKε(0), (32)

and where the covariances Kε(0) and Kε(∆) are given by (27).
Hence, as N → ∞, γ̂ε and σ̂2

ε have a non-zero asymptotic bias given by,

Biasγ = G − γ; Biasσ2 = S − σ2. (33)

The explicit expressions of these asymptotic biases are given below in (34)
and (35).
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Proof . Since the SOU-process Y ε is here a fixed stationary Gaussian process
from which we sub-sample the observations Uε

n with a fixed time-step ∆, the
proof applies exactly the same generic principles as the proof of proposition
(2) above, and we may directly apply the results from section (4) to the
covariance estimators r̂ǫ

k for k = 0, 1 and to γ̂ε = g (r̂ǫ
0, r̂

ǫ
1) and σ̂2

ε = s (r̂ǫ
0, r̂

ǫ
1),

given by (31). ⊓⊔

As expected, indirect estimation of the OU process is less favorable than
estimation based on direct OU observations, so that the estimators γ̂ε, σ̂2

ε

are not consistent as N → ∞, for a fixed value of ε and ∆. Instead, these
estimators have non zero asymptotic biases (G − γ) and (S − σ2) given by
(32),(33), that are functions of ∆, ε.

The asymptotic biases do not remain bounded for all values of ε → 0,
∆ → 0. In the following proposition we derive the exact regime where it is
possible to achieve asymptotic consistency of the estimators γ̂ε, σ̂2

ε in the
limit of ε → 0, ∆ → 0.

Proposition 8 (Favorable Regime for Consistency) As seen in propo-
sition (7), for fixed ε and ∆, the estimators γ̂ε and σ̂2

ε both have non-zero
asymptotic biases Biasγ and Biasσ2 as N → ∞, which depend only on
ε,∆, γ, σ. Assume now that ε → 0, and for each ε select a number N = N(ε)
of indirect observations of Y ε

t and a sub-sampling rate ∆ = ∆(ε) such that
∆ → 0 and N∆ → ∞.

Then, as ε → 0, Biasγ and Biasσ2 tend to 0 if and only if (∆/ε) → ∞.

Proof . From formula (28), we see that as ε → 0, we have Kε(0) → σ2/2γ;
then the expression of S given by (32) shows that whenever G → γ as ε → 0,
we must also have S → σ2. Hence we only need to study the asymptotic
behavior of Biasγ . Note first that whenever ∆ = ∆(ε) ≥ ε and ε → 0, we
have in view of (29) and (33),

Biasγ = −(1/∆) log

(

e−γε + eγε − 2

2 (e−γε − 1 + γε)

)

≈ − γε

3∆
(34)

We have several cases to consider.

– Case (a) : Assume that (∆/ε) → ∞ as ε → 0. Then, for ε small enough,
we have ∆ ≥ ε, and (34) proves that Biasγ → 0, as ε → 0, and, hence,
Biasσ2 → 0.

– Case (b) : Let ∆/ε remain bounded as ε → 0. Then, there exist a
subsequence ε → 0 such that ∆/ε → L for some non negative L.
– Case (ba) : If L ≥ 1 then for ε small enough we have ∆ ≥ ε and

hence, in view of (34), we have Biasγ ≈ (−γε/(3∆)) so that Biasγ

tends to the nonzero limit (−γ/(3L)).
– Case (bb) : Assume that L < 1. Then for ε small enough we have

∆ < ε and hence, in view of (30) and (33), we have

Biasγ = −(1/∆) log

(

2γ(ε − ∆)eγ∆ + e−γε(e2γ∆ + 1) − 2

2 (e−γε − 1 + γε)

)

. (35)
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Taylor expansions with respect to ε in (35) easily shows that Biasγ

tend to (γ/L)
(

1/3 − L + L2 + 2L3/3
)

, when ε → 0. But the polyno-

mial
(

1/3 − L + L2 + 2L3/3
)

remains strictly positive for 0 ≤ L < 1.
Hence, Biasγ tends to a nonzero limit in case (bb).

⊓⊔
Proposition (8), clearly defines a favorable regime for adaptive sub-
sampling. We have seen that the asymptotic biases of γ̂ε and σ̂2

ε , namely,
Biasγ and Biasσ2 , tend to 0 as ε → 0 if and only if (∆/ε) → ∞. This
strongly indicates that optimal adaptive sub-sampling schemes from indirect
observations based on Y ε should provide N = N(ε) observations Uε

n = Y ε
n∆

sub-sampled from Y ε
t at time interval ∆ = ∆(ε), under the following set of

simultaneous conditions,

ε → 0; ∆ → 0; ∆/ε → ∞; N∆ → ∞. (36)

These results highlight the necessity, as ε → 0, to sub-sample the approxi-
mating process Y ε with a vanishing but coarse time-step ∆(ε) >> ε to hope
to obtain asymptotically consistent estimates of the underlying parameters.

Under fixed rate sub-sampling, applying the general results on the asymp-
totic properties of empirical covariance estimators based on the observa-
tions from a stationary Gaussian processes as described in [2, Chapter X],
the estimators γ̂ε, σ̂2

ε are asymptotically Gaussian, i.e., the random vector√
N
(

γ̂ε − G, σ̂2
ε − S

)

converges to a Gaussian distribution with mean zero,

and covariance matrix dependent on the true parameters γ, σ2, ε, and ∆.
Since, in particular, for each fixed ε, ∆ > 0, as N → ∞, the empirical

covariance estimators r̂ε
0, r̂ε

1 are asymptotically Gaussian [2]. The estimators,
using (31), are given by γ̂ε = g (r̂ε

0, r̂
ε
1) and σ̂2

ε = s (r̂ε
0, r̂

ε
1), such that g, s

have continuous second-order partial derivatives in a neighborhood of the
true values r0, r1. Therefore, as N → ∞, for each fixed ε, ∆ > 0, the
estimators γ̂ε = g (r̂ε

0, r̂
ε
1) and σ̂2

ε = s (r̂ε
0, r̂

ε
1) are asymptotically Gaussian [2].

We now study these estimators under the conditions (36) in detail.

8 Adaptive Sub-sampling for Indirect Estimation

Proposition 9 (Asymptotics of the Covariances) Consider an adap-
tive sub-sampling scheme, based on N = N(ε) indirect observations extracted
from Y ε

t by sub-sampling with time steps ∆ = ∆(ε) . Then, under the con-
ditions (36), the L2 norms of the variables (r̂ǫ

0 − rε
0), and (r̂ǫ

1 − rε
1) converge

to 0 with speeds of convergence proportional to 1/
√

N∆.

Moreover, for each k = 0, 1, the L2 norm of
√

N∆ (r̂ǫ
k − rε

k) converges to
(σ2/(γ

√
2γ)), which is identical to the asymptotic limit obtained when direct

observations of the underlying OU process are available.

Proof . Define Jǫ
k = E

[

(r̂ǫ
k − rε

k)
2
]

for k = 0, 1 computed explicitly for ∆ > ε,

by using proposition (1). Let

C0 =
σ2(e−γε + γε − 1)

γ3ε2
, C1 =

σ2(eγε + e−γε − 2)

2γ3ε2
, and b = e−γ∆,
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then we have

Jǫ
0 =

2C2
1

N

(

C2
0

C2
1

+
2b2

1 − b2
− 2b2

(

1 − b2N
)

N(1 − b2)2

)

,

(37)

Jǫ
1 =

C2
1

N

(

C2
0

C2
1

+
2C0b

2

C1
+

b2(3 + b2)

1 − b2
− 2b2B1

N

)

,

where B1 =
[

(C0/C1) +
(

1 + 2b2 − b4 − 2b2N
)

/
(

1 − b2
)2
]

. From (37) we

obtain bounds for Jǫ
0 and Jǫ

1 given by

Jǫ
0 ≤ 2C2

0

N
+

2C2
1

γN∆
, and Jǫ

1 ≤ C2
0

N
+

2C0C1e
−γ∆

N
+

2C2
1

γN∆
.

These inequalities show that Jǫ
k → 0 under the adaptive sub-sampling scheme

defined in (36). The exact expressions in (37) gives, as ε → 0,

(N∆)Jǫ
k → σ4

2γ3
,

Therefore, the L2-speeds of convergence for the empirical covariance estima-
tors, as ε → 0, are proportional to 1/

√
N∆. ⊓⊔

Proposition 10 For each N,∆, ε, the random variables Z0 = Z0(N,∆, ε)
and Z1 = Z1(N,∆, ε) defined by,

Z0 =
(r̂ǫ

0 − rε
0)

√

Jǫ
0

, Z1 =
(r̂ǫ

1 − rε
1)

√

Jǫ
1

, (38)

have mean 0, variance 1, and covariance E[Z0Z1] = Jǫ
01/
√

Jǫ
0J

ǫ
1, where

Jǫ
0, J

ǫ
1, J

ǫ
01 are given by (37), (40).

Then, under the conditions,

ε → 0, ∆ → 0, N∆ → ∞, ∆ > ε,

the following first-order L2 approximations for the empirical covariances r̂ǫ
k

hold, namely,

r̂ǫ
0 = rε

0 +

√
2r0√

γN∆
Z0 +

Z0√
N∆

(

O(ε2) + O(∆2) + O

(

1

N∆

))

,

(39)

r̂ǫ
1 = rε

1(∆) +

√
2r0√

γN∆
Z1 +

Z1√
N∆

(

O(ε2) + O(∆2) + O

(

1

N∆

))

,

where O(h) is a deterministic function of h, bounded by a constant multiple
of h.
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Proof . Let b = e−γ∆ and,

C0 =
σ2(e−γε + γε − 1)

γ3ε2
, C1 =

σ2(eγε + e−γε − 2)

2γ3ε2
,

then, the exact expression for the covariance Jǫ
01 = E [(r̂ǫ

0 − rε
0) (r̂ǫ

1 − rε
1)] , is

given by

Jǫ
01 =

2C2
1

N

(

2C0b

C1
+

2b3

1 − b2
− B2

N

)

, (40)

where

B2 =

(

C0b

C1

)

+

(

3b3 − b5 − b2N+1(1 + b2)

(1 − b2)2

)

.

Using Taylor’s expansions we obtain the following approximations,

Jǫ
0 =

2r2
0

γN∆

(

1 +
γ2∆2

3
− 1

2γN∆
+ O(∆4) +

O(∆2)

N∆
+ O(ε2)

)

,

Jǫ
1 =

2r2
0

γN∆

(

1 − 2γ2∆2

3
+ γ3∆3 − 1

2γN∆
+ O(∆4) +

O(∆2)

N∆
+ O(ε2)

)

,

Jǫ
01 =

2r2
0

γN∆

(

1 − γ2∆2

6
− 1

2γN∆
+ O(∆4) +

O(∆)

N∆
+ O(ε2)

)

,

from which we can deduce (39). ⊓⊔

The following theorem presents the key results of our study.

Theorem 1 (Consistency of γ̂ε and σ̂2
ε) Consider an adaptive sub-sampling

scheme, based on N = N(ε) indirect observations extracted from Y ε
t by sub-

sampling with time steps ∆ = ∆(ε). Let the estimators γ̂ε and σ̂2
ε of γ, σ2,

be given by (31). Then, under the following conditions,

ε → 0, ∆ → 0, N∆ → ∞, ∆/ε → ∞, (41)

the estimators γ̂ε and σ̂2
ε are asymptotically consistent, i.e., γ̂ε → γ, σ̂2

ε → σ2

in L2.
Moreover, the expected L2-speed of convergence, proportional to 1/

√
N∆,

is achievable under the following conditions which are stronger than (41),

ε → 0, ∆ → 0, N∆ → ∞, Nε2/∆ < cte. (42)

In particular, under stronger conditions than (42), (41), namely,

ε → 0, ∆ → 0, N∆2 → ∞, Nε2/∆2 → 0, (43)

the estimators are asymptotically efficient, and the asymptotic limit of the
L2-norms of the random variables

√
N∆ (γ̂ε − γ),

√
N
(

σ̂2
ε − σ2

)

converge,

respectively, to
√

2γ, σ2
√

2, exactly as in the case of direct observations.
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Proof . Substitute the expressions for empirical covariance estimators r̂ǫ
k,

given by (38), in the expressions for the estimators γ̂ε and σ̂2
ε defined in (31).

In particular, the drift estimator γ̂ε is given by,

γ̂ε =
−1

∆
log

(

e−γ∆C1 +
√

Jǫ
1Z1

C0 +
√

Jǫ
0Z0

)

.

Then, using Taylor expansions as ε → 0 and using arguments similar to those
given in the proof of proposition (6), we obtain the following first-order L2-
approximation for γ̂ε given by,

γ̂ε = γ − γε

3∆
− Zγ + Rγ × O

(

1

N∆

)

+
ε

∆
× O(ε), (44)

where the zero mean random variable Zγ is given by,

Zγ =
eγ∆

√

Jǫ
1Z1

∆C1
−
√

Jǫ
0Z0

∆C0
.

The L2 norm of the random variable Zγ using Taylor’s expansion for ε → 0,
∆ → 0, N∆ → ∞ is approximated by,

‖Zγ‖2
L2 =

2γ

N∆

(

1 + 3γ∆ − 1 + O(∆)

2γN∆
+ O

( ε

∆

)

+ O(∆2) + O(ε)

)

. (45)

The remainder term Rγ = Rγ(∆, ε,N) is uniformly bounded in L2 norm.
Therefore, using (44) and (45), under the conditions (41) the estimator γ̂ε

converges in L2 to γ.
To compute the L2−speed of convergence we study

√
N∆ (γ̂ε − γ) = −

√
N∆Zγ − γε

√
N

3
√

∆
+ Rγ × O

(

1√
N∆

)

. (46)

Using (45), (46) we see that the L2−norm of
√

N∆ (γ̂ε − γ) converges to
a constant under conditions (42). Under the adaptive sub-sampling scheme
(42), we assume Nε2/∆ → 0 to deduce that the asymptotic variance of esti-
mation errors converge to the same constant as in the case of direct estimation
(see proposition (6)), i.e.,

‖
√

N∆ (γ̂ε − γ) ‖2
L2 → 2γ.

Similarly, given the conditions (41), the diffusion estimator σ̂2
ε = 2γ̂εr̂

ǫ
0 con-

verges in L2 to the true value σ2, and, hence, is asymptotically consistent.
Furthermore, under conditions (43) we obtain,

‖
√

N
(

σ̂2
ε − σ2

)

‖2
L2 → 2σ4.

⊓⊔
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The main conclusion of theorem (1) is that under conditions (42) the es-
timators γ̂ε, σ̂2

ε , based on indirect estimation, are asymptotically consistent

estimators of γ, σ2, with an L2-speed of convergence proportional to 1/
√

N∆.
A natural objective is to optimally select ∆ = ∆(ε) and N = N(ε),

verifying the conditions (42), in order to achieve the fastest speed of conver-
gence. A pragmatic interpretation of the conditions (42) is that, as ε → 0,
one selects ∆ = ∆(ε) such that

∆ → 0, ∆ >> ε, and N verifies, (1/∆) << N < cte(∆/ε2). (47)

The L2-speed of convergence (1/
√

N∆) of our estimators γ̂ε, σ̂2
ε then verifies,

cte
( ε

∆

)

<
1√
N∆

<< 1. (48)

Clearly, the lower bound (ε/∆) in (48) is the best L2-speed of convergence
achievable under the conditions (42). This speed is attained when N ∼
∆/ε2 → ∞, which corresponds to a global time interval of observations
T ∗ = N∆ = cte(∆2/ε2).

Choosing a global time interval of observations T >> T ∗ → ∞ will
not improve the accuracy, since, the L2 errors will then be dominated by
(ε/∆) >> (1/

√
N∆). This, indeed, provides evidence that under indirect es-

timation, observing the data on an increasing time interval N∆ will not im-
prove by itself the accuracy of the estimators, and coarse graining (i.e.,∆ >>
ε) of the data is necessary to reduce the estimation errors.

In the following corollary we provide a particular example of the optimal
criterion identified by the pragmatic interpretation (47).

Corollary 1 (Power Law Criterion for Optimal Sub-Sampling)
As ε → 0, assume that N(ε) and ∆(ε) are given by powers of ε, namely,

N(ε) = ε−η, ∆(ε) = εα. Then,

1. as ε → 0, for any α, η such that α ∈ (0, 1), η > α, the estimators γ̂ε, σ̂2
ε

are asymptotically consistent in L2 norm.
2. Moreover, as ε → 0, under stronger conditions, namely, for any α, η such

that α ∈ (0, 1), α < η ≤ 2 − α, the estimators converge with an L2-speed

of convergence proportional to 1/
√

N∆ = ε(η−α)/2.
3. The best speed of convergence are reached when α > 0 is close to 0, and

η = 2− α. Then, we obtain ∆ = εα, N = ε−(2−α), and the global time of
observations N∆ = ε−2(1−α).

9 Numerical Simulations

We now study numerically a few typical examples of adaptive sub-sampling
schemes ensuring asymptotic consistency of estimators γ̂ε, σ̂2

ε . In view of
the corollary (1), we let ∆(ε) = εα where α ∈ (0, 1), and the number of
observations N >> (∆/ε2). The following numerical results show that as
ε → 0, Biasγ(∆, ε) and Biasσ2(∆, ε) converge to 0 if and only if (∆(ε)/ε) →
∞ (See proposition (8)). As evident in the following numerical study and
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from corollary (1) for smaller values of α ∈ (0, 1), the convergence of the
Biasγ and Biasσ2 to zero is faster.

We generate numerical discrete simulations for the trajectory Xt of the
OU-process with fixed parameters γ = 3.2625 and σ = 6.7500. Each associ-
ated SOU-process trajectory Y ε

t is computed by direct integration of the dis-
cretized trajectory Xt on a sliding time window of duration ε . The N observed
data are then obtained by sub-sampling the discretized SOU-trajectory Y ε

t

with step size ∆. The goal was to verify the analytical results derived above
on indirect sub-sampling estimation of the underlying parameters.

The underlying discretized trajectory of Xt is generated using a hybrid
of Euler-Maruyama and second-order Runge-Kutta discretization schemes
for the SDE (1), with a time-step length of d = 10−4 and total time inter-
val T = 900, thus providing 9 × 106 points of OU-trajectory. To generate
SOU-observations, we average the simulated OU observations over a sliding
window of length ε, for the following values of ε,

ε = 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3.

We consider 3 examples of adaptive sub-sampling schemes, namely, when
observations are sub-sampled with time-step ∆(ε) = ε0.5, ∆(ε) = ε, and
∆(ε) = ε2. In each one of these 3 cases, for each simulated trajectory of
the SOU process, we compute the subsampled estimators γ̂N and σ̂2

N given
by (31). Figure (1) shows numerical verification of the consistency results
obtained in section (6). Errors (in %) in the figure is defined to be the absolute
value of the relative bias in the estimates. For instance, for the error in the
estimation of γ, we have

Error =

∣

∣

∣

∣

γ̂N − γ

γ

∣

∣

∣

∣

.

1. Case ∆(ε) = ε0.5 : Results are displayed in the top part of Figure (1).
The empirical relative bias (errors) of sub-sampled estimators tend to
zero as ε → 0, as expected, since ∆(ε)/ε → ∞ in this case.

2. Case ∆(ε) = ε : Results are displayed in the middle part of Figure
(1). The empirical relative bias (errors) of the sub-sampled estimators
converge to a non zero value, as ε → 0, as expected, since ∆(ε)/ε, is
bounded in this case.
Formula (34) for the asymptotic bias give Biasγ ≈ −γ/3 and Biasσ2 ≈
−σ2/3, which fit very well with the numerical results.

3. Case ∆(ε) = ε2 : Results are displayed in the bottom part of Figure
(1). The empirical relative bias (errors) of the sub-sampled estimators
increase as ε → 0, as expected, since ∆(ε)/ε → 0 in this case.

10 A practical example : the Additive Triad

We outline here a concrete example encountered in simplified dynamic models
of atmospheric evolution, when only 3 main modes are kept in the Additive
Triad model [13]. This example will be studied in detail elsewhere, and is
only sketched here. We provide results obtained from estimating parameters
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γ and σ2 in SDE (1) when data is sub-sampled from the slow mode in the
Additive Triad model.

The additive triad model comprises of the stochastic process [xt, yt, zt] in
R3, where the slow mode xt and the two fast modes yt, zt are driven by the
equations,

dxt = A1ytzt
dt

ε
, (49)

dyt = A2xtzt
dt

ε
− g1yt

dt

ε2
+ s1

dW1(t)

ε
,

dzt = A3xtyt
dt

ε
− g2zt

dt

ε2
+ s2

dW2(t)

ε
,

where A1 + A2 + A3 = 0, gi, si are strictly positive and ε > 0 is the scale
separation parameter, and where W1, W2 are Brownian motions. It is well
known [13] that in the limit of infinite scale separation as ε → 0, the slow
mode xt converges weakly to the OU process Xt with parameters γ and σ
given by

γ =
−A1

2(g1 + g2)

(

A2s
2
2

g2
+

A3s
2
1

g1

)

, σ2 =
(A1s1s2)

2

2g1g2(g1 + g2)
. (50)

In this context estimations of the parameters γ and σ must be performed
using only indirect observations of Xt generated by the slow mode xt of
the Additive Triad model. This example is quite close to the SOU process
analyzed above and we have carried out numerical simulations of the additive
triad model using the following parameter values,

A1 = 0.9, A2 = −0.4, A3 = −0.5, g1 = 1, s1 = 3, g2 = 1, s2 = 5.

The associated reduced model parameters are, γ = 3.2625, σ = 6.7500.
We consider the estimators γ̂N and σ2

N , given by (13), based on (N + 1)
observations sub-sampled from the slow mode x such that Un = xn∆. We
consider three adaptive sub-sampling strategies for the indirect estimation of
the OU SDE from the data generated by the additive triad model in (49).

Top part of the Figure (2) demonstrates that when
(

∆(ε)/ε2
)

→ ∞ es-

timates for γ and σ2 are consistent with respect to the theoretical results
in (50). On the other hand, errors remain bounded away from zero for the
adaptive sub-sampling strategy such that

(

∆(ε)/ε2
)

is bounded. This is de-

picted in the middle part of Figure (2) where
(

∆(ε)/ε2
)

tends to a non-zero
value, and hence, the errors converge to a constant strictly greater than zero.
The bottom part of Figure (2) is based on sub-sampling scheme such that
(

∆(ε)/ε2
)

→ 0, and the corresponding estimation errors increase to 100%.

Therefore, sub-sampling strategy ∆ >> ε2 is the favorable sub-sampling
regime for the estimation of the OU SDE from the triad data. The nature of
the results is similar to the ones obtained for the SOU process.

Effectively, here ε2 plays the same role as ε in the SOU process (c.f. Fig-
ures 1 and 2). This can be understood by analyzing the correlation function
of xt for small lags. It can be shown that the correlation function of xt scales
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as 1 − cte(τ2ε−2), where τ is the lag and ε is the parameter in (49). On the
other hand, the correlation function of Y ε

t scales as 1 − cte(τ2ε−1). There-
fore, ∆ >> ε2 is the correct sub-sampling criteria in the triad model in (49),
and the analogous adaptive sub-sampling scheme to ensure consistency of
estimators is given by the following conditions,

ε → 0, ∆ → 0, N∆ → ∞, (Nε4/∆) < cte.

11 Conclusions and further research

The main result of our study is the characterization of optimal adaptive
sub-sampling schemes in a Gaussian context. The goal was to consistently
estimate the drift and diffusion parameters γ and σ of a non observable
OU-process Xt, using N(ε) observations extracted by sub-sampling, at time
intervals ∆(ε), an approximating process Y ε

t which tends to Xt in L2 as ε →
0. We obtain explicit asymptotic results for the estimation errors, and derive
sufficient conditions on N(ε), ∆(ε) ensuring that γ̂ε, σ̂2

ε are asymptotically
consistent estimators of the unknown parameters γ, σ2 of the unobserved OU
process. We also analyze the speed of convergence of consistent estimators,
and show that under explicit stronger conditions, as ε → 0, the estimators
γ̂ε, σ̂2

ε , have an L2-speed of convergence proportional to 1/
√

N∆.
Our paper focuses on the favorable situation where the OU process Xt is

approximated by the Gaussian SOU processes Y ε
t , to characterize explicitly

the family of optimal sub-sampling regimes leading to consistent estimators
having the best L2-speeds of convergence. This specific framework replicates
the scenario observed in several applications where a mismatch between the
data and the stochastic model impedes the estimation procedure, so that
appropriate adaptive sub-sampling schemes become necessary to obtain con-
sistent estimates and good L2-speeds of convergence.

In an ongoing study, we will extend the main results of this paper to a
much wider class of stationary Gaussian processes Xt, and to arbitrary non-
Gaussian stationary processes Y ε

t such that as ε → 0, the random variables
Y ε

t tend to Xt in Lp for some p > 2. In such generic cases, the adequate
convergence speed of good adaptive sub-sampling schemes can be identified
by expanding the correlation function of Y ε for small lags, or alternatively by
the Lp-speed of convergence of the approximating process Y ε

t to Xt, as ε → 0.
In this paper, we have briefly illustrated the use of a small lag expansion of
correlation functions, while comparing the SOU process to the Additive triad
model.

From a pragmatic point of view, insufficient sub-sampling can lead to
large errors in practical fitting of stochastic models to physical data inten-
sively sampled from complex dynamic systems. On the other hand, opti-
mal regimes for efficient sub-sampling depend on an indexation parameter
ε which is rarely known ”intrinsically”, or even explicitly. Therefore, devel-
opment of efficient sub-sampling tests based on discrete datasets alone are
necessary. One of the natural approaches we are exploring in this direction is
the empirical robustness of estimators with respect to multiple sub-sampling
of large finite data sets with different values of ∆. This is equivalent to
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treating estimators as functions of the sub-sampling time step and analyzing
their behavior as ∆ decreases. This points out the part played by the data
points between X(t) and X(t + ∆), which have a potential efficient impact
to determine concretely wether a given ∆ defines an empirically adequate
sub-sampling rate. In this context, understanding how sub-sampling affects
the bias terms is the key for constructing accurate and efficient estimators
using only approximate data.

12 Appendix: Moments of SOU process

We outline briefly the explicit computation of moments in (27) for the SOU-
process Y ε

t given by (26). The mean of Y ε
t is obviously 0, and the covariance

function of Y ε
t at time lag h is given by,

Kε(h) =
1

ε

(

∫ t+h

t+h−ε

E[XsY
ε
t ]ds

)

, (51)

Using the stationary covariances of Xt, given by (4), for each s ∈ [t + h −
ε, t + h], where h ≥ ε we obtain,

E[XsY
ε
t ] = σ2e−γs

(

eγt − eγ(t−ε)
)

/(2γ2ε). (52)

Using (51) and (52) the covariance function Kε(h), for h ≥ ε is given by,

Kε(h) =
(

σ2e−γh(e−γε + eγε − 2)
)

/(2γ3ε2).

For the case when 0 ≤ h < ε, using (51) we have

Kε(h) =
1

ε

(

∫ t

t+h−ε

E[XsY
ε
t ]ds +

∫ t+h

t

E[XsY
ε
t ]ds

)

,

where E[XsY
ε
t ] can be computed using the stationary covariances of Xt to

give,

Kε(h) = σ2e−γh
{

2γ(ε − h)eγ∆ + e−γε(e2γh + 1) − 2
}

/(2γ3ε2).
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Fig. 1 Relative (%) Errors in MLEs for γ and σ2 based on observations from the
SOU process and sub-sampled with three different strategies. Left part - Relative
errors for γ, Right part - Relative errors in σ2. Top part - Sub-sampling with
∆ = ε0.5: The errors converge to 0 with speed of convergence proportional to ε0.5.
Middle part - Sub-sampling with ∆ = ε: The errors converge to a constant (≈
33%) with speeds of convergence proportional to ε. Bottom part - Sub-sampling
with ∆ = ε2: The errors increase to 100%.
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Fig. 2 Relative (%) Errors in MLEs for γ and σ2 based on observations from
the Additive triad model and sub-sampled with three different strategies. Left
part - Relative errors for γ, Right part - Relative errors in σ2. Top part - Sub-
sampling with ∆ = ε0.5: The errors converge to 0. Middle part - Sub-sampling
with ∆ = 4ε2: The errors converge to a constant. Bottom part - Sub-sampling
with ∆ = ε3: The errors increase to 100%.


