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APPLICATION OF THE STOCHASTIC MODE-REDUCTION

STRATEGY AND A PRIORI PREDICTION OF SYMMETRY
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Abstract. We consider application of the stochastic mode-reduction strategy to a particular
class of coupled models where a part of self-interactions of the slow variables is given by a rotationally
invariant gradient system. The stochastic mode-reduction strategy is utilized to derive stochastic
reduced models which yield a simple description of the phenomena resulting from breaking the
original rotational symmetry. It is demonstrated that the direction of the symmetry breaking can
be predicted a priori without any knowledge of the statistical behavior of the fast modes.
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1. Introduction

Recently, stochastic differential equations have been receiving an increasing
amount of attention in the mathematical, atmosphere-ocean, and other scientific com-
munities. One important area which emerged from these studies is stochastic modeling
and approximation of unresolved degrees of freedom by stochastic dynamics. Straight-
forward numerical discretizations of complex nonlinear systems often lead to infeasible
numerical problems. The vast difference between time scales in the problem is often
the main factor which prohibits performing well-resolved numerical simulations. Re-
duction of the problem’s dimensionality, where the non-essential degrees of freedom
are represented stochastically, provides one possible computational alternative.

Another area of research in atmosphere-ocean modeling, turbulence, and other
areas of nonlinear science is the importance of low-dimensional coherent structures. In
particular, the dynamical systems approach has been utilized with some success in low-
dimensional truncations of complex models to explain complicated PDE phenomena.
In atmosphere-ocean applications, stable low-dimensional structures such as multiple
equilibria, periodic orbits, and homoclinic/heteroclinic connections in the phase space
of low-dimensional projections have been utilized to explain physical phenomena in
observational or numerical data [4, 12, 16, 20, 5, 6, 28]. Parametric changes in the
behavior of realistic atmosphere-ocean models have also been attributed to bifurcation
diagrams of corresponding low-dimensional truncations [25, 29, 3]. Also, effects of
random noise are sometimes introduced to model interactions with neglected variables
[7, 14, 2].

The coupled systems analyzed here are designed to address the paradigm of the
interaction between coherent structures and noise. In particular, the systems consid-
ered here address the effect of coupling and/or perturbations in systems with stable
periodic orbits and heteroclinic attractors. A four-dimensional system with stable
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heteroclinic orbits and its random perturbations were considered in detail in [1, 14].
Deterministic systems of this type are not generally chaotic. Instead, under suitable
conditions on the eigenvalues of the saddle points, heteroclinic cycles are asymptot-
ically stable and all orbits in their neighborhood spend increasing amount of time
near the equilibria and heteroclinic transitions become less frequent. Small random
perturbations alter this behavior drastically. Under small random perturbations, the
mean exit time from a neighborhood of a saddle point is finite and trajectories undergo
heteroclinic transitions with an approximately constant frequency. Coupled systems
considered here mimic this situation in a deterministic fashion. In addition, examples
presented in this paper elucidate several important properties of a recently developed
mode-elimination strategy [22, 23] for the high-dimensional dynamical systems with
separation of time scales. The stochastic mode-elimination strategy was designed to
reduce the dimension of the problem by systematically eliminating fast variables from
the equation and replacing them by appropriate stochastic terms. This methodology
was successfully applied to small prototype models [24, 21], as well as to larger more
realistic atmosphere-ocean systems [10, 9].

In this paper we consider low-dimensional models coupled with additional degrees
of freedom in an “additive” fashion, i.e., coupling terms can be replaced by damping
and additive noise using the stochastic mode-reduction strategy. It is not surprising
that coupling with additional degrees of freedom destroys the original symmetry of the
truncated low-dimensional system. In this paper, we explore the importance of the
underlying deterministic dynamics to demonstrate that the direction of the symmetry
breaking can be predicted a priori without any knowledge of the statistical behavior of
the fast modes. The “additive” symmetry breaking mechanism described here mani-
fests itself in the statistical description of the slow dynamics. First, we elucidate the
symmetry breaking mechanism for gradient systems coupled with additional degrees
of freedom. In this case a straightforward analysis yields a simple explanation for the
occurrence of the maxima in the joint probability density of the variables of interest.
Next, we consider a two-dimensional system with a stable circle of equilibria coupled
with two additional variables. Although this system cannot be recast as a gradient
system and the signature of the periodic orbit is strong in the coupled model, two
peaks occur in the joint density of the slow variables. We demonstrate that the same
mechanism is responsible for occurrence of these peaks. In particular, only two points
on the stable periodic orbit “survive” the perturbation and these two points can be
predicted a priori from the structure of the effective damping.

In the third example we consider a weakly coupled heteroclinic system and its
stochastic analog. In particular, we couple the four-dimensional dynamical system
with a heteroclinic attractor [1] to the Truncated Burgers-Hopf (TBH) bath. The
coupled system mimics the behavior of a randomly perturbed four-dimensional hete-
roclinic system [14] in a deterministic fashion.

The coupled heteroclinic-TBH model was considered previously in [21] and it
was demonstrated that the statistical agreement between the coupled system and
the reduced model is nearly perfect for a wide range of parameters. Moreover, it
is no surprise that the resulting dynamics has a strong signature of the underlying
heteroclinic attractor of the original four-dimensional system. Nevertheless, several
phenomena arise as the result of interactions of this four-dimensional system with the
TBH bath. In particular, it is demonstrated here that the particular form of coupling
can have a profound effect on the statistical description of the coupled dynamics.
Statistical features of the coupled model cannot be predicted from the knowledge
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of the heteroclinic dynamics alone, but some of them can be easily explained from
the point of view of the stochastic reduced model. Effective stochastic perturbations
break the original O(2) symmetry of the heteroclinic system. To explain the symmetry
breaking mechanism we utilize the fact that the original four-dimensional system
restricted to an invariant plane can be represented as a gradient system. Therefore,
the symmetry breaking mechanism is similar to the case of the gradient system and
eigenvectors of the effective damping matrix play a crucial role in explaining the
statistical distribution of the dynamic variables.

The rest of the paper is organized as follows. In section 2 we utilize a simple
gradient system to elucidate the mechanism of symmetry breaking. In section 3 we
discuss the symmetry breaking mechanism for the two-dimensional system with a
stable periodic orbit. Although this system cannot be recast as a gradient system,
it closely resembles the features of the prototype system discussed in section 2. In
section 4 we consider a four-dimensional heteroclinic system coupled with Truncated
Burgers-Hopf bath. Detailed derivation of reduced systems is omitted for the brevity
of presentation. Details on stochastic mode-reduction can be found in [22, 23] and
also in [11] and [27].

2. The gradient system

To illustrate the symmetry breaking phenomena, we consider a class of stochastic
models arising from application of the stochastic mode-reduction strategy to systems
where the self-interactions of the slow variables are given by a rotationally-invariant
gradient system. Such systems give rise to a stable circle of equilibria in the phase
space of the bare projection onto the slow dynamics. In particular, we consider
coupled models in which the projection onto the slow variables can be represented as
a gradient system

d

dt
x=−∇V, (2.1)

with

x=

(

x1

x2

)

, V =V (|x|2). (2.2)

Here for simplicity we discuss the two-dimensional case, but this approach can be
generalized to higher dimensions as well. We consider the potential

V (x1,x2)=−1

2
µ

(

1− α0

2
|x|2

)

|x|2, (2.3)

so that the system of equations in (2.1) becomes

ẋ1 =µ(1−α0|x|2)x1,

ẋ2 =µ(1−α0|x|2)x2,

where x2
1 +x2

2 =α−1
0 is a stable circle of equilibria for this system for µ>0.

We utilize fast variables u1 and u2 to break the original symmetry of the system

ẋ1 =(−∇V )
1
+λA1u1u2,

ẋ2 =(−∇V )
2
+λB1u1u2, (2.4)

u̇1 =λA2x1u2 +λB2x2u2−γ1u1 +σ1Ẇ1,

u̇2 =λA3x1u1 +λB3x2u1−γ2u2 +σ2Ẇ2,
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where W1, W2 are independent Wiener processes, Aj and Bj , j=1,2,3 denote known
interaction coefficients, and λ is introduced explicitly to control the strength of cou-
pling. Here we consider the energy-conserving interactions between the slow variables,
x, and the fast variables, u1,2. This property can be recast through the interaction
coefficients as follows

A1 +A2 +A3 =0, B1 +B2 +B3 =0.

Under the assumption that the variables x1, x2 decorrelate much more slowly
than the fast modes, the stochastic mode-reduction strategy can be applied to the
system in (2.4) and the reduced model for (x1,x2) is a stochastic differential equation

dx=−∇V dt−Axdt+ΣdW, (2.5)

where W=(W1,W2)
T is a vector of independent Wiener processes, A and Σ are 2×2

damping and diffusion matrices, respectively. To simplify the presentation we con-
sider the case γ1 =γ2 =γ and σ1 =σ2 =σ, but the argument explaining the symmetry
breaking mechanism can be extended when damping and diffusion are not identical.
With this simplification the damping and diffusion matrices are given by

A=
λ2σ2

4γ2

(

A2
1 A1B1

A1B1 B2
1

)

,

Σ=
λσ2

2γ3/2

1
√

A2
1 +B2

1

(

A2
1 A1B1

B1A1 B2
1

)

.

Stochastic mode-reduction strategy [23, 24, 21] (same as adiabatic elimination of
fast variables in [11]) allows for systematic dimension-reduction in systems with sep-
aration of time-scales. This approach borrows ideas from earlier works on stochastic
differential equations [18, 17, 19, 19, 26, 8] and utilized asymptotic analysis of the
backward (or forward) operator corresponding to the stochastic differential equation
in (2.4). In particular, we assume that the Ornstein-Uhlenbeck terms in the equations
for u1 and u2 dominate and consider asymptotic analysis of the backward equation
for (2.4) with γi =γi/ε, σi =σi/

√
ε. Details of the derivation for various systems are

given in [22, 23, 21].

2.1. Symmetry breaking. It can be shown in general that due to the
energy-conserving nature of interactions,

AT =A, ΣT =Σ, (2.6)

with the property

Σ2 =const A. (2.7)

Moreover, the damping and diffusion matrices have several additional properties.
Firstly, each matrix has only one non-zero eigenvalue. This is the direct consequence
of the energy-conserving coupling between the slow and fast variables. It also can
be shown that the other eigenvalue of A is positive. Secondly, damping and diffu-
sion matrices have the same eigenvectors, and thus have the same diagonalization



N. BARLAS AND I. TIMOFEYEV 397

decomposition which follows from property (2.7). Therefore, matrices A and Σ can
be diagonalized as follows:

A=R−1ÃR, Σ=R−1Σ̃R, Σ̃2 = cÃ, (2.8)

where Ã and Σ̃ are diagonal matrices of eigenvalues andR is the matrix of eigenvectors.
Moreover, R is unitary due to the property (2.6), which implies that the eigenvectors
are perpendicular and R can be recast as a rotation matrix, i.e.,

R=

(

cosψ sinψ
−sinψ cosψ

)

. (2.9)

A particular value of ψ depends only on the choice of interaction coefficients Aj and
Bj , j=1,2,3, and can be computed a priori without any knowledge about the behavior
of the fast variables. As shown in (2.6), leading order statistics of the fast variables
(i.e., γi and σi, i=1,2) enter as a constant in front of matrices composed of interaction
coefficients in the expressions for A and Σ. Therefore, statistical behavior of the fast
variables affects only the magnitude of eigenvalues. We would like to emphasize that
properties in (2.7), (2.8), and (2.9) are general; they follow from the properties of the
mode-reduction strategy and energy-conserving choice of coupling.

To explain the symmetry breaking we consider a change of variables

y=Rx,

where R is the rotation given in (2.8). This allows the system in (2.5) to be rewritten
in a simple form with diagonal damping and forcing

dy=µ
(

1−α0|y|2
)

ydt−λ2Ãydt+λΣ̃dW̃, (2.10)

where Ã and Σ̃ are diagonal matrices from (2.8) and W̃=RW is a two-dimensional
vector of independent Wiener processes (see [11] for justification). Simultaneous di-
agonalization of both the damping term and the diffusion term is possible due to the
properties of A and Σ in (2.8). Furthermore, taking into account the above mentioned
fact that one eigenvalue of both Ã and Σ̃ is zero, the system in (2.10) can be rewritten
to emphasize the one-dimensional structure of the stochastic perturbation

dy1 =µ
(

1−α0|y|2
)

y1,

dy2 =µ
(

1−α0|y|2
)

y2−λ2ãy2 +λσ̃dW̃2,
(2.11)

where ã and σ̃ are the non-zero eigenvalues of A and Σ, respectively.
The system in (2.11) can be recast as a stochastic perturbation of a gradient

system with a potential which is no longer rotation invariant. The system in (2.5)
can also be recast as a stochastic perturbation of a gradient system

dx=−∇Udt+λΣdW, (2.12)

with

U =−1

2
µ

(

1− α0

2
|x|2

)

|x|2 +
A11

2
x2

1 +
A22

2
x2

2 +A12x1x2, (2.13)

where Aij are the entries of the damping matrix A. The minima of the potential in
(2.13) coincide with the intersection of the circle |x|2 =α−1

0 and the neutral direction of
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Fig. 2.1. Contour plot of the joint probability density function of x1, x2 for the coupled system
in (2.4) (left) and the reduced model in (2.5) (right) with parameters in (2.14). The eigenvectors of
the matrix A in (2.6) are shown in blue dashed (zero eigenvector) and red solid (non-zero eigenvector)
lines. The circle x2

1 +x2
2 =α−1

0 is plotted as dotted line.

the damping matrix, A. The direction for the zero eigenvalue is, in turn, perpendicular
to the direction of the damping. Therefore, coupling induces a symmetry breaking and
a single preferred direction emerges from the interaction between the deterministic
dynamics and stochastic terms.

We illustrate symmetry breaking in system (2.4) by plotting the joint probability
density function for x1, x2 for the coupled and reduced systems. Initial conditions
in both simulations were chosen above the eigendirection corresponding to the non-
zero eigenvalue. We would like to comment that the reduced system is not ergodic
since trajectories cannot cross the line corresponding to the non-zero eigenvector.
Therefore, a symmetric part with respect to the direction of the non-zero eigenvalue
would also emerge in the joint distribution of x1, x2 for generic ensemble simulations
of both systems. Parameters in the simulations are

µ=0.1, α0 =0.8, λ=0.5,
A1,2,3 =−2, −2.5, 4.5, B1,2,3 =−0.5, −0.5, 1,

γ=5, σ=3.1622.
(2.14)

The peak in the joint probability density function corresponds to the minimum of the
potential in (2.13). Therefore, the position of the peak can be predicted a priori as
the point of intersection of the stable circle of equilibria with the eigendirection of the
zero eigenvalue.

3. Low-dimensional system with stable periodic orbit

Although systems with stable periodic orbits cannot be recast as gradient sys-
tems, the argument from section 2 regarding the modification of the potential can be
extended to this case as well. To illustrate the symmetry breaking of systems with



N. BARLAS AND I. TIMOFEYEV 399

stable periodic orbits, we consider the following system

ẋ1 =µ(1−α0|x|2)x1−(α+β|x|2)x2 +λA1u1u2,

ẋ2 =µ(1−α0|x|2)x2 +(α+β|x|2)x1 +λB1u1u2,

u̇1 =λA2x1u2 +λB2x2u2−γ1u1 +σ1Ẇ1,

u̇2 =λA3x1u1 +λB3x2u1−γ2u2 +σ2Ẇ2. (3.1)

It is easy to show that the system in (3.1) projected onto x1, x2,

ẋ1 =µ(1−α0|x|2)x1−(α+β|x|2)x2,

ẋ2 =µ(1−α0|x|2)x2 +(α+β|x|2)x1, (3.2)

possesses a stable periodic orbit

x(t)=α
−1/2

0 (cosωt,sinωt) , with ω=α+βα−1
0 . (3.3)

Derivation of the reduced system is similar to the case of the gradient system in
section 3. The reduced system for (3.1) is given by

ẋ1 =µ(1−α0|x|2)x1−(α+β|x|2)x2−A11x1−A12x2 +Σ1Ẇ1,

ẋ2 =µ(1−α0|x|2)x2 +(α+β|x|2)x1−A12x1−A22x2 +Σ2Ẇ2, (3.4)

where Aij are entries of the damping matrix in (2.6). Therefore, the effective damping
is identical to the case of the gradient system and can be diagonalized by a rotation
transformation in (2.9). Similar to the example discussed in the previous section, the
diffusion matrix can also be diagonalized by the same transformation.

Although the system in (3.2) cannot be recast as a gradient system, parts of
the right-hand side of the coupled system and the reduced equations are identical
to the gradient system in (2.4) and (2.5), respectively. Therefore, we expect that
the peaks in the joint density of x1, x2 will occur near the intersection of the circle
x2

1 +x2
2 =α−1

0 and the eigenvector corresponding to the zero eigenvalue of the damping
matrix. This is confirmed by the numerical simulations with surprising accuracy. The
joint probability density for the coupled system and the reduced system is depicted in
figure 3.1. Parameters in the simulation were chosen to be similar to the parameters
in section 2

µ=0.1, α0 =0.8, λ=0.5, α=0.06, β=0.05,
A1,2,3 =−2, −1.5, 3.5, B1,2,3 =−1.25, −1.2, 2.45,

γ=5, σ=3.1622.
(3.5)

The stochastic mode-reduction was designed to reproduce the statistical features of
complex models with separation of time-scales. For the coupling strength λ=0.5 the
stochastic mode-reduction strategy is utilized in the correct regime and reproduces
statistical features of x1 and x2 extremely well. Normalized correlation functions of
x1,2 and u1,2 depicted in left part of figure 3.2 demonstrate that the time-scale of
x1,2 is much slower than for u1,2. Statistical agreement of the coupled and reduced
models is presented in Table 3.1 and correlation function of x1 for two models is de-
picted in the right part of figure 3.2. Agreement for the correlation function of x2 is
not presented here only for the brevity of the presentation. Normalized correlation
functions were computed as time-averages; correlation function of f(t) is given by
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Fig. 3.1. Joint probability density of x1, x2 for the coupled system in (3.1) (left) and the
reduced model in (3.4) (right) with parameters in (3.5). The eigenvectors of the matrix A in (2.6)
are shown in blue dashed (zero eigenvector) and red solid (non-zero eigenvector) lines.

E{x1} E{x2} V ar{x1} V ar{x2} K{x1} K{x2}
Coupled Model -0.00224 0.00339 0.57894 0.63812 2.1703 2.0556
Effective Model -0.00482 0.01155 0.58613 0.65066 2.2636 2.1143

Table 3.1. One-point statistics of x1 and x2 for the coupled system in (3.1) and reduced system
in (3.4) in the regime with λ=0.5; K{y}= 〈(y− ȳ)4〉/〈(y− ȳ)2〉2.

CF (τ)= 〈(f(t)− f̄))(f(t+τ)− f̄)〉t, where f̄ is the mean of f and 〈·〉t denotes tempo-
ral average. Correlation functions are normalized by the variance so that CF (0)=1.

For the coupling strength λ=10 there is no scale separation between x1,2 and u1,2

and the stochastic mode-reduction strategy is not supposed to be utilized to explain
the statistical behavior of x1 and x2. In particular, correlation functions of x1,2 and
u1,2 are depicted in the left part of figure 3.3. This figure demonstrates that x1 and
x2 cannot be treated as slow variables since initial decay rates of correlation functions
for x1 and u1 are comparable. This is confirmed by a large discrepancy between
the correlation functions of x1 and x2 in the coupled and reduced models. Only
comparison for the correlation function of x1 is presented in the right part of figure
3.3 for the brevity of presentation. The correlation function of x2 exhibits a similar
trend. Therefore, λ=10 is the regime which is not appropriate for the application of
the stochastic mode-reduction strategy. Nevertheless, the reduced model in (3.4) can
still be utilized to explain the symmetry breaking phenomena qualitatively. The joint
probability density for x1 and x2 is presented in figure 3.4. Clearly, there is a large
discrepancy between the joint distribution of these variables, but the stochastic mode-
reduction predicts the location of the peaks in the joint distribution with surprising
accuracy. This example demonstrates that in some cases the predictive power of the
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Fig. 3.2. Left: comparison of normalized correlation functions of x1 (solid line), x2 (dashed
line) with correlation functions of u1, u2 (dashed line) for simulations of the coupled system in
(3.1) with parameters in (3.5); Right: comparison of normalized correlation functions of x1 in the
simulations of the full coupled system in (3.1) (solid line) in the regime (3.5) and the corresponding
reduced equation in (3.4) (dashed line).
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Fig. 3.3. Left: comparison of correlation functions of x1 (solid line), x2 (dashed line) with
correlation functions of u1, u2 (dashed line) for simulations of the coupled system in (3.1) with
parameters in (3.5), except for the coupling strength λ=10; Right: comparison of the correlation
function of x1 in the simulations of the full coupled system in (3.1) (solid line) in the regime (3.5)
and the corresponding reduced equation in (3.4) (dashed line).

stochastic mode-reduction extends beyond regimes with scale-separation.

4. Coupled Heteroclinic system

Recently in [21] a four-dimensional system of ordinary differential equations cou-
pled to the Truncated Burgers-Hopf heat bath was utilized to investigate the interplay
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Fig. 3.4. Joint probability density of x1, x2 for the coupled system in (3.1) (left) and the
reduced model in (3.4) (right) with parameters in (3.5), except for the coupling strength λ=10. The
eigenvectors of the matrix A in (2.6) are shown in blue dashed (zero eigenvector) and red solid
(non-zero eigenvector) lines.

between low-dimensional heteroclinic attractor and intrinsic noise. In particular, it
was demonstrated that the stochastic mode-reduction performs extremely well in the
presence of the underlying heteroclinic attractor in a wide regime of parameters and in
various coupling regimes. Here we concentrate on the symmetry breaking mechanism
for this model.

The following deterministic four-dimensional system is known to exhibit a wide
variety of dynamical properties, including stable heteroclinic cycles, and was utilized
as a backbone of the coupled model

ż1 =z∗1z2 +
(

µ1 +e11|z1|2 +e12|z2|2
)

z1,

ż2 =−z2
1 +

(

µ2 +e21|z1|2 +e22|z2|2
)

z2. (4.1)

This system was considered in detail in [1]. Stochastic perturbations of this model
with emphasis on passage times near equilibria were also considered in [14, 15].

Here we give a brief summary of relevant analytical properties of the model in
(4.1). One of the general properties of the system in (4.1) is the O(2) symmetry,
i.e., the equations are invariant under the reflection (z1,z2)→ (z∗1 ,z

∗
2) and rotation

(z1,z2)→ (z1e
iθ,z2e

2iθ), for any θ. We are mostly interested in the part of the param-
eter space where there exists a family of stable heteroclinic orbits connecting opposite
points on the circle of equilibria z1 =0, |z2|=

√

−µ2/e22. For detailed discussion of
this and other regimes see [1, 13]. We consider here the following parameter regime

µ1 =0.05, µ2 =0.2, e11 =−4, e12 =−1, e21 =e22 =−2. (4.2)

The key properties of the system in (4.1) under this choice of parameters are

• The plane z1 =0 is invariant.

• z1 =0, |z2|=
√

−µ2/e22 is a circle of equilibria lying in this plane.
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• Every pair of diametrically opposite points on this circle is connected by a
heteroclinic cycle.

• Heteroclinic cycles are stable if µ1−µ2e12/e22<0 and µ2>0, which is satis-
fied by the above choice of parameters.

The phase of the two points connected by a heteroclinic cycle is a free parameter,
which is determined by the initial conditions in each particular realization.

The system in (4.1) is coupled to the spectrally Truncated Burgers-Hopf (TBH)
model

v̇k =−Re
ik

2

∑

p+q+k=0

û∗pû
∗
q , |p|,|q|,|k|≤Λ,

ẇk =−Im
ik

2

∑

p+q+k=0

û∗pû
∗
q , |p|,|q|,|k|≤Λ,

(4.3)

where ûk =vk + iwk. Coupling is selected to mimic possible energy exchange scenarios
in fluid dynamics; the interaction with the bath is constructed in an energy-preserving
fashion, but it breaks the original O(2) symmetry of the heteroclinic ODE.

In [21] different types of couplings were considered corresponding to different
stochastic perturbations of the model. In the course of those studies various stochastic
extensions of the deterministic heteroclinic ODE in (4.1) were derived by the means
of the stochastic mode-elimination strategy. Here we consider the additive coupled
system

ż1 =z∗1z2 +
(

µ1 +e11|z1|2 +e12|z2|2
)

z1 +λ
(

bx1|v1w1 + iby1|v1w1

)

v1w1,

ż2 =−z2
1 +

(

µ2 +e21|z1|2 +e22|z2|2
)

z2 +λ
(

bx2|v2w2 + ibx2|v2w2

)

v2w2,

u̇1 ={TBH}+λ
(

bv1|x1w1x1w1 +bv1|y1w1y1w1

)

+

iλ
(

bw1|x1v1x1v1 +bw1|y1v1y1v1

)

, (4.4)

u̇2 ={TBH}+λ
(

bv2|x2w2x2w2 +bv2|y2w2y2w2

)

+

iλ
(

bw2|x2v2x2v2 +bw2|y2v2y2v2

)

,

u̇k ={TBH}=− ik
2

∑

p+q+k=0

û∗pû
∗
q , 3≤k≤Λ,

where {TBH} denotes the Truncated Burgers-Hopf terms introduced in (4.3). The
coupling is selected in such a way that the mode z1 is coupled only to u1 and mode
z2 is coupled to u2; the interaction considered in (4.5) produces corrections of the
Ornstein-Uhlenbeck type for the reduced variables. A particular choice of interaction
coefficients is presented in Table 4.1 and the parameter λ is introduced explicitly to
control the strength of interaction between z1, z2 and the unresolved modes, uk.

The main emphasis of the results presented in [21] was on the performance of
the stochastic mode-reduction strategy in the presence of deterministic heteroclinic
structures in the low-dimensional truncation. It was demonstrated that, overall,
mode-elimination strategy is more robust in the presence of underlying determin-
istic dynamics. The reduced equation is given by the heteroclinic system in (4.1) plus
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bx1|v1w1 =1 bv1|x1w1 =−0.75 bw1|x1v1 =−0.25
by1|v1w1 =−0.7 bv1|y1w1 =1 bw1|y1v1 =−0.3
bx2|v2w2 =1 bv2|x2w2 =−0.6 bw2|x2v2 =−0.4
by2|v2w2 =−0.55 bv2|y2w2 =1 bw2|y2v2 =−0.45

Table 4.1. Interaction coefficients for the “additive” model in (4.5). Superscripts are explicitly
included to describe particular quadratic interactions between slow and fast variables in the model;
the first index is the variable on the left-hand side of the equation in (4.5), the second and third
indexes describe the quadratic nonlinearity on the right-hand side of (4.5).

terms of the Ornstein-Uhlenbeck type

d

dt





x1

y1



=





x1x2 +y1y2 +x1(µ1 +e11r
2
1 +e12r

2
2)

x1y2−y1x2 +y1(µ1 +e11r
2
1 +e12r

2
2)



−

λ2A1(x1,y1)
T +λΣ1(Ẇ1,Ẇ2)

T ,

d

dt





x2

y2



=





−(x2
1−y2

1)+x2(µ2 +e21r
2
1 +e22r

2
2)

−2x1y1 +y2(µ2 +e21r
2
1 +e22r

2
2)



−

λ2A2(x2,y2)
T +λΣ2(Ẇ3,Ẇ4)

T , (4.5)

where z1 =x1 + iy1 and z2 =x2 + iy2. A1,2 are damping matrices with non-positive
eigenvalues, Σ1,2 are diffusion matrices, and Wi, i=1..4, are independent Wiener pro-
cesses. Strength of coupling is explicitly emphasized through the parameter λ. Here
we are mostly interested in the relationship between the statistical behavior of the
stochastic model in (4.5) and various properties of A1,2 and Σ1,2. In [21] the stochas-
tic extension in (4.5) is systematically derived from the coupled heteroclinic–TBH
model by the means of the stochastic mode-elimination strategy. To demonstrate
the predictive power of the stochastic mode-elimination strategy we compare statis-
tical behavior of the stochastic equation (4.5) with the behavior of the full coupled
heteroclinic–TBH model. Certain statistics of the TBH bath are utilized in deriving
the reduced stochastic model. In particular, variance and correlation time of the fast
modes are necessary to estimate the bulk statistical influence of the fast modes and
approximate the nonlinear interaction by terms of the Ornstein-Uhlenbeck type. The
procedure is described in detail in [21] and references therein.

The resulting expressions for damping and diffusion in the stochastic model are

A1 =
λ2σ2

1

4γ2
1

(

1 −0.7
−0.7 0.49

)

, Σ1 =
λσ2

1

2γ1

√
γ1

(

0.819 −0.574
−0.574 0.401

)

, (4.6)

A2 =
λ2σ2

2

4γ2
2

(

1 −0.55
−0.55 0.3025

)

, Σ2 =
λσ2

2

2γ2

√
γ2

(

0.876 −0.482
−0.482 0.265

)

, (4.7)

with the property

Σ2
1 =

σ2
1

γ1

A1, Σ2
2 =

σ2
2

γ2

A2. (4.8)
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Parameters γ1,2 and σ1,2 are related to the statistical properties of the fast modes u1,
u2 and need to be estimated from a single realization of the full coupled system in
(4.5).

Parameters γk are determined crudely as the inverse of the area under the graph
of the modulus of the correlation function for uk (see [23, 24, 21]). The heat bath, uk,
achieves an equipartition of energy with mean zero and 〈Re u2

k〉≈〈Im u2
k〉≈0.005 and

the parameters σk are determined from the relationship σ2
k/γk =Var{ûk}. Estimates

for these parameters are

γ1 =0.4189, γ2 =0.881, σ1 =0.0639, σ2 =0.0925. (4.9)

Statistical behavior of the TBH bath is weakly affected by the coupling for λ≤1, and
it was demonstrated in [21] that the above estimates are applicable for a range of cou-
pling strengths. The weak strength of the stochastic terms in (4.5) is misleading, since
equation (4.5) represents a dimensional form of the reduced model. Normalization of
the dynamic variables by their variances provides an insight into the non-dimensional
form of this system. It was demonstrated that for λ≈1...2 the stochastic terms are
approximately equal to the magnitude of the cubic terms in (4.5). We use λ=0.2 in
the simulations described in this paper.

It was demonstrated in [21] that the reduced stochastic system in (4.5) approxi-
mates the statistical behavior of x1 and x2 in the full coupled system in (4.5) extremely
well for a range of coupling strengths, λ. In contrast with the results presented in [21],
here we concentrate on the predictive features of the stochastic mode-elimination ap-
proach and explore the connection between the symmetry breaking in reduced models
and full systems in more detail.

In particular, we concentrate here on the statistical features of the joint probabil-
ity density function of x2, y2 depicted in figure 4.1. A direction-neutral perturbation
of the heteroclinic system in (4.1) would lead to a uniform distribution of the an-
gle inside the circle x2

2 +y2
2 =−µ2/e22, since heteroclinic orbits with different angles

would be equally represented in the joint probability density function of x2, y2. On
the other hand, a preferred direction is clearly visible in figure 4.1. This phenomena
is better elucidated in the probability density function of the angle φ=atan(y2/x2)
depicted in figure 4.2.

Symmetry breaking in this system can be explained if we consider dynamics in
(4.1) and (4.5) restricted to the plane z1 =0. Recall that this plane is an invariant
subspace for the deterministic system in (4.1). For the parameter regime (4.2) un-
der consideration, the system in (4.1) restricted to z1 =0 possesses a stable circle of
equilibria at x2

2 +y2
2 =−µ2/e22. Moreover, the vector field is invariant under rotation.

The circle of equilibria z1 =0, |z2|2 =−µ2/e22 is unstable in the full four-dimensional
heteroclinic system with unstable directions perpendicular to the plane z1 =0.

Following this intuition, we consider the projection of the stochastic system (4.5)
onto the plane z1 =0

dx=
(

µ2 +e22|x|2
)

xdt−λ2A2xdt+λΣ2dW, (4.10)

where x=(x2,y2) and W is a two-dimensional vector of independent Wiener processes.
The system in (4.10) is exactly of the same type as the stochastic perturbation of the
gradient system considered in section 2. Therefore, coupling induces a symmetry
breaking and a single preferred direction emerges from the interaction between the
deterministic dynamics and terms derived from the coupling with the TBH bath. This
is illustrated in figures 4.1 and 4.2.
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Fig. 4.1. Joint probability density function of x2,y2; left column: simulations of the full model
in (4.5); right column: simulations of the stochastic system in (4.5); black line: eigenvector corre-
sponding to the non-zero eigenvalue of the damping matrix A2.
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Fig. 4.2. PDF of the phase of z2; solid line: full model in (4.5); dashed line: stochastic system
in (4.5); vertical dotted line: eigenvector corresponding to the non-zero eigenvalue of the damping
matrix A2.

5. Conclusions

Several coupled systems are presented here as prototype examples elucidating
interactions between various deterministic coherent structures and noise. Coupled
systems are constructed by coupling a low-dimensional dynamical system with a par-
ticular structure with additional variables. It is demonstrated that the coupling breaks
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the original symmetry of the underlying dynamics and a preferred direction emerges.
Although not all low-dimensional projections considered here can be recast as gradi-
ent systems, O(2) symmetry of the gradient part of the right-hand side plays a crucial
role in describing this symmetry breaking mechanism. Furthermore, it is demon-
strated that coupling terms can be successfully replaced by stochastic terms utilizing
the stochastic mode-reduction technique.

Symmetry breaking can be explained easily in the context of stochastic reduced
models since the preferred direction is directly linked to the eigenvectors of the stochas-
tic perturbation. Moreover, these eigenvectors can be computed a priori, without
running any computer simulations, thus giving a powerful insight into the statistical
behavior of the coupled problem. In addition, it is also demonstrated that the stochas-
tic mode-reduction strategy can predict the preferred direction for systems without
scale separation and, thus, far outside regimes of the intended applicability of this
technique. Therefore, the stochastic mode-reduction acts as an effective lineariza-
tion of the full coupled dynamics. We expect that the applicability of the stochastic
mode-reduction strategy to problems with symmetry breaking can be extended to
more complex systems without scale separation.
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