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We implement two different algorithms for computing numerically the direct
Zakharov—Shabat eigenvalue problem on the infinite line. The first algorithm replaces
the potential in the eigenvalue problem by a piecewise-constant approximation, which
allows one to solve analytically the corresponding ordinary differential equation.
The resulting algorithm is of second order in the step size. The second algorithm
uses the fourth-order Runge—Kutta method. We test and compare the performance of
these two algorithms on three exactly solvable potentials. We find that even though
the Runge—Kutta method is of higher order, this extra accuracy can be lost because
of the additional dependence of its numerical error on the eigenvalue. This limits the
usefulness of the Runge—Kutta algorithm to a region inside the unit circle around the
origin in the complex plane of the eigenvalues. For the computation of the continu-
ous spectrum density, this limitation is particularly severe, as revealed by the spectral
decomposition of thé.2-norm of a solution to the nonlinear Sdidiinger equation.

We show that no such limitations exist for the piecewise-constant algorithm. In par-
ticular, this scheme converges uniformly for both continuous and discrete spectrum
components. @ 1998 Academic Press

Key Words:nonlinear Schodinger equation; Zakharov—Shabat eigenvalue prob-
lem; nonlinear optics.

1. INTRODUCTION

The discovery and development of the soliton theory [1, 2] has had deep repercus:
in physics and applied mathematics. This theory has made possible the explicit integr:
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of several partial differential equations (PDEs) with universal applicability. In particul
these equations were linearized via an associated linear system, the Lax pair, and exp
integrated in the following sense: First, rich classes of exact solutions, infinite hierarc
of conservation laws, and infinite-dimensional analogs of the action-angle variables \
derived. Second, the solution of the Cauchy problem on the infinite line was recast ir
form of a solvable linear integral equation, and the asymptotic nature of its solutions
determined explicitly.

Two main ingredients in the solution of the Cauchy problem for integrable nonlin
partial differential equations are the direct spectral transform and its inverse counter
These are nonlinear analogs of the direct and inverse Fourier transforms, respectively.
both involve a single linear system of ordinary differential equations with a free (spect
parameter and, in general, are not tractable analytically. Hence, in order to solve them
has to resort to numerical solvers.

Simple and effective PDE-solvers, developed in recent years, have made the num
study of nonlinear wave phenomena in one spatial dimension relatively straightforw
Nevertheless, “raw” numerical modeling is still prohibitively time-consuming when o
has to map out multidimensional parameter spaces. Moreover, even an accurate and
prehensive numerical simulation stops short of providing a fundamental understandir
any nonlinear wave phenomenon.

In the special case of near-integrable partial differential equations, fundamental ur
standing can be provided by decomposing the wave field into “normal” coordinates,
the soliton and nonsoliton components, also termed as the nonlinear spectral data.
a decomposition can be readily achieved by inserting the numerical solution of a g
near-integrable partial differential equation into a direct spectral transform solver. Ay
from its intrinsic value, this decomposition can be useful for verifying and complement
perturbation calculations that describe the “flow” of the spectral data. To do this one he
analyze snapshots of the potential for different times. These and other reasons (see [3
cessitate the development of efficient high-quality numerical solvers for the direct spe
transform.

In this paper we concentrate on the nonlinear 8dimger (NLS) equation

. 1
19z + eqt +q*q® = P, 1)

which describes propagation of light pulses in an optical fiber with the anomajousp-
velocity dispersion [4, 5]. Here, we prefer to use the optical notation in which the normali
time t plays the role of a spatial coordinate and the normalized distaptays the role
of a time-like coordinate, whilg(t, z) is the complex envelope of the electric field. The
perturbationP is specified by the particular physical problem at hand. WRea0, the
NLS system is integrable. The linearization of the NLS system is achieved by recasting
system as the Zakharov—Shabat spectral problem [6], which is a system of two ODE

1 The case of normal group-velocity dispersion leads to a similar equation with only a change of the rel;
signs of the terms on the left-hand side of (1). In this case the associated spectral problem is self-adjoin
hence, somewhat simpler to treat.
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the scalar wave functiorgs, andg,,
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% = Qg —i¢¢n. ”
d .

% A o

where¢ is an eigenvalue parameter. By using the Zakharov—Shabat spectral probler
combination with the appropriately chosen linear ODEs which defing-gwlution ofg;
andg,, one can also solve analytically several other important nonlinear partial differen
equations. Besides the nonlinear Sxtinger equation, which is currently receiving a gres
deal of attention due to its technological applications in fiber optics, these partial differer
equations include the Maxwell-Bloch system, the sine—Gordon equation, the usual an
modified Korteveg—de Vries equations, etc.

In this paper, we present an efficient numerical algorithm for solving the direct Zakhar
Shabat spectral problem. We have incorporated this numerical algorithm in a code
computes the flow of the spectral data and in particular eigenvalues, for the perturbed
equation (1). For this application, we optimize the performance of the eigenvalue-se
algorithm by using our knowledge of the history of the spectral data. Our code is abl
speed up the search for each eigenvalue in subsequent snapshots of the perturbe
solution by a factor of 5, provided that the number of eigenvalues does not change fror
snapshot of the solution to another.

The main focus of this work is to describe and compare two different algorithms
solving Zakharov—Shabat spectral problem, which differ by how one solves the systel
ordinary differential equations (2) with as a parameter. The first approach [3] replace
the potentialg with its piecewise-constant approximation. This allows us to solve t
corresponding ODE analytically. The second approach [7] proposes using a high-c
ODE integrator, such as a fourth-order Runge—Kutta scheme. Both algorithms use a
search approach to find the eigenvalues. We have tested both methods on a varie
explicitly solvable potentials: soliton, oversoliton, and a rectangular potential. One of
most important findings that emerges from our study is that only the piecewise-cons
algorithm is effective computing the continuous spectrum contribution tb thgorm (the
conserved “number of particles” functional) of solutions of the unperturbed NLS equati

The numerical error in the Runge—Kutta approach cannot be controlled uniformly ¢
the spectrum. Specifically, the Runge—Kutta’s local truncation error depends on the ei
value asz#, which limits its applicability to the unit circle region around the origin of the
complex¢ plane. This limitation is dramatically revealed by the spectral decomposition
the L2-norm of solutions of the NLS equation. Our tests show that for a given discreti
tion step the error in computing the continuous spectrum contribution th therm by
the Runge—Kutta method can be over an order of magnitude larger than the error o
piecewise-constant method.

The layout of this paper is the following. In Section 2, we recall a few basics of the soli
theory. The properties of the spectral problem depend heavily on the type of boun
conditions, i.e., an infinite-line problem with the potentigt) decaying at infinity or a
t-periodic problem for the potentigl(t). In this paper we only investigate the infinite line
problem. In Section 3, we introduce both solvers: Runge—Kutta and piecewise-cons
and describe our implementation of the eigenvalue-search algorithm. In Section 4



DIRECT SPECTRAL TRANSFORM 169

present the results of the error analysis. The test results are given in Section 5. Final
Section 6, we illustrate the performance of the eigenvalue solver, based on a piece:
constant approximation and the eigenvalue search algorithm by applying it to a real
fiber-optic problemNon-return-to-zerdo soliton data conversion in the optical line with
sliding frequency guiding filters [8, 9].

2. THE DIRECT AND INVERSE SPECTRAL TRANSFORMS

When the perturbatioR is absent, Eq. (1) is equivalent to the overdetermined linear s\
tem for a vector-valued wave functi@d = (¢1, ¢2)" (with (-, -)T denoting the transpose),

& +UP =0, (3
®,+ VP =0, 4)

where 2x 2 matrix functiondJ andV and the two-dimensional (column) vector functior
& depend on the timé, the coordinate, and the spectral parametgiin the following
fashion:

U =i§'0'3~|-u,
V =it%o3+cu+v—ic?l.

o5 2= (39
0 -1/’ 0 1)
0 —q P —lal® —a
u_<¢ 0)’v_2(—$ mF)

The functionq(t, z) is the wave field of the unperturbed NLS equation, and the system
is nothing but the scalar system (2) rewritten in a vector form. The compatibility condit
U, — Vi +VU—-UV =0 between Egs. (3) and (4) is exactly the unperturbed NLS syste

Let us recall a few properties of the system pair (3) and (4). Equation (3) has the struc
of an eigenvalue problem with the complex parame{géine Zakharov—Shabat spectral prob
lem [6]). This problem can be thought of as a nonlinear analog of the Fourier transforn
linear problems. Generically, an initial conditiqut, 0) gives rise to a continuous spectrum
represented by a functian(¢), with each real-valued being the analog of the frequency
of a dispersive wave component. In addition to the continuous spectrum, the Zakha
Shabat spectral problem supports a discrete spectrum, whose corresponding mode:
no counterpart in the Fourier transform. This discrete spectrum consists of complex |
{ck=E& +inx, ok}, k=1,..., N, whereN is the number of solitons which will emerge
from the initial data for sufficiently large. The properties of these solitons are determine
by ¢k andpy as follows: for eaclk, the real part of the complex eigenvalgie & = Re(Zk)
equals one half of the corresponding soliton frequency, and the imaginanypahn(¢y)
equals one half of the soliton amplitude; the complex coeffigigmarameterizes the soli-
ton’s initial position and its complex phase. In the limit of infinitely snglithe discrete

spectrum is absent and the continuous spectrum coincides with the spectral density of |
Fourier harmonics.

Here,
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To present th&pectral Data={r (¢), ¢ € R; &, px, k=1, N} in greater detail, we need
to recall a few extra elements of the Zakharov—Shabat spectral problem. We begin witl
continuous spectrum, represented by the functi@) when the eigenvalue is located
on the real axis. First, we introduce the vector solutidsand®, (the Jost functions) of
systems (3) and (4),

P, = (é) exp(—i¢tH)[1l +0o(1)], t > —oo,
0 )
P, = (_1> expict)[1 +0o(1)], t —> —o0,

fixed by their asymptotics at the left eheé> — oo. Hence, for each poirtof the continuous
spectrum one finds two independent soluti@ng. We also need the solutios; and ¥,
fixed by their asymptotics at the right end,

v, = (é) exp(—i¢t)[1+0(1)], t — oo,
0 (6)
v, = (1) expi¢ct)[L +0(1)], t— oo.

Out of these vector solutiorB; » and¥; », one can construct two different fundamenta
matrix solutions® = (®,, ®,) and ¥ = (¥, ¥,) which are related to each other via a
scattering matrixs

a b
®=wS sz(b _a*). )

The functionr (¢) is the ratio of the elements of the scattering ma8ix(¢) =b(¢)/a(?).
By using the relation (7), one derives useful formulas which are valid for real values of
spectral parameter,

a(g) = lim ¢a(t, &) explict),

. : 8)
b(¢) = lim ¢2(t, ¢) exp—ict),

where the scalar functions , are the components of the vector-valued Jost funclign
Due to the fact that the Zakharov—Shabat spectral problem is not self-adjoint, the cc

sponding eigenvalugg are complex-valued. Each eigenvalue is located in the upper h

¢-plane, and its corresponding Jost function is fixed by its asymptotics at the left end,

Py = <é> exp(—igt)[1+0(D)], t— —oc.

The asymptotics of the Jost functidny on the right end is parameterized by normalizatio
constanby,

Dy = bk<2> exp(igt)[1 + o(D)], t— oo.
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The coefficienpy is expressed in terms bf andz -derivativea, of the spectral coefficierst
atthe position of the eigenvalyg px = bk /a,. We assume that a potentiglt) is sufficiently
smooth and that it vanishes Jat— oo fast enough so that the discrete spectrum contai
a finite number of eigenvalues. We also assume that each zeresa simple one. The
mappingq(t) — Spectral Datamakes up the direct spectral problem. The solution of tf
inverse mapping may be reduced to a linear integral equation of \Volterra type (Gelfa
Levitan—Marchenko system) [1, 2].

For the unperturbed NLS equation the evolution of the spectral datzsin be computed
using Eq. (4). By substituting the evolved spectral data into the Gelfand—Levitan—Marche
system one can determine the solutggi, z) at anyz > 0. The essential point that makes
this procedure possible is that the spectral data evolgénm trivial manner for any initial
functionq(t, 0):

d¢c/dz=0,
dox/dz = 2i g2 pk.
dr(¢,2)/dz=2i¢?.
For instance, in the case of an initial condition with discrete spectrum oy £ 0), one

can write down an explicit solution that describldsinteracting solitons. In the simplest
case of a single solitoly =1, we have a familiar sech-shaped pulse:

2ne?
qS = 7’
cosh2n0)
O =t+25z2—t, (9)

¢ = —26(t + 2£2) + 21 (? + EDZ + ¢,
2nto=In[lp(z=0)I/(2n)], ¢o = — arglp(z= 0)]. (10)

Conservation laws for the NLS system can be expressed either in terms of the pote
q(t, 2) or in terms of the spectral data. The simplest of the conserved quantities is
L2-norm ofq, the so-called “number of particles.” This norm can be written as

N

/ lq(t. 2)]*dt = —;/ Inja€)[? dg + > 20 (g5 — (11)
- - k=1

[e¢]

which shows explicitly how the continuous and discrete spectra contribute tc*therm

of the potentialg. In the following we will often refer to this norm simply as the energ
of q, and to the first term on the right-hand side of (11) as the continuous spectrum
dispersive waves) energy.

In the presence of a general perturbatiyrit is not known how to introduce an evolution
equation (4) so that the perturbed NLS again arises as the compatibility condition betv
two linear systems, analogous to equations (3) and (4). Thus, the evolution equation ¢
spectral data irz cannot be derived, and hence, the solution cannot be reconstructec
z> 0. If the perturbatiorP is small enough, one can find approximate evolution equatio
for the spectral data via asymptotic expansions. However, these equations will bec
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invalid after some distancg typically corresponding to a drastic change in the discre
spectrum when a soliton component vanishes or a new one is generated.

The decomposition into soliton and dispersive components, given by the spectral prol
(3), is a valuable alternative to the Fourier transform, because this decomposition pros
an efficient way of storing information about the solution. For instance, in the unperturl
case, one soliton mode can replace an infinite number of Fourier components. Moreove
small perturbations, we can use the decomposition into soliton and dispersive compol
of the initial conditionq(t, 0) and the unperturbed equation to predict the dynamics of t
perturbed solution on finite-intervals. Of course, this is only true for small perturbation
P; for large P’s there is no a priori argument why the nonlinear Fourier transform shot
be superior to the linear Fourier transform.

3. NUMERICAL DISCRETIZATION

In this section, we introduce two distinct algorithms for solving the direct Zakharo
Shabat spectral problem. Even though the Zakharov—Shabat spectral problem is defin
the infinitet-line, we have to truncate the potential outside a sufficiently large interval 1
both algorithms, in order to make its numerical solution possible. As a result, the infin
line spectral problem is reduced to a problem with a compactly supported potential, an
corresponding boundary conditions can be moved fromttbe to the boundaries of the
truncated potential.

The solution of the spectral problem begins by integrating the system of ordinary dif
ential equations (3) witlh as a complex parameter. The major difference between the t
algorithms lies in the way they solve this ODE system. The piecewise-constant appl
mation utilizes the fact that we can solve the linear ODE system (3) analytically whene
the potentia(t, z) is constant. Since the potenttis discretized on the grid with a time
stepAt, one possible approach is to assume that the potential is constant on each suk
val (t, — At/2, t, + At/2) and solve the direct Zakharov—Shabat problem exactly on e
subinterval using matrix exponentials.

It is possible to improve the piecewise-constant algorithm by assuming a higher o
approximation for the potentiag (i.e., piecewise-linear). In this case one still can solve tf
ODE system (3) analytically. The disadvantage of this approach is caused by the nece
to use Airy functions in order to express the solution of the ODE system, which leads
dramatic increase in the computational cost.

High-order numerical integration of the ODE system (3) presents an alternative to
approximate analytical solution. We choose to use the fourth-order Runge—Kutta me
[10] as the simplest representative of the high-order ODE solvers.

3.1. Piecewise-Constant Approximation

In this subsection we recall the fundamentals of the piecewise-constant approxime
for the Zakharov—Shabat spectral problem [3]. The potentit)l is truncated outside a
sufficiently large interval€L, L). Inside thisintervak)(t) is chosento be equal to a constan
0n =q(tn) on each elementary subintervgl € At /2, t, + At/2), where the poirt, equals
—L 4+ nAt. Here, thetime stept equalsAt = L /M, with the 2Vl +1 being the total number
of discretization points of the interval-(, L). As a result, the corresponding ODE (3)
can be solved exactly inside each elementary subinterval for any value of the spe
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parametet . The corresponding solution readigt,+ At /2, £) =T (On, §) P(th—AL/2, ©),
where®(t, — At/2, ¢) is the “initial” condition on the left end of the elementary subinterve
and the transfer matriX (g, ¢) is the exponential of the matrld (gn, ¢):

T(Oh, ¢) = exp[-AtU(gn, $)] = EXp[At < —i¢ qn)]

-0y ¢
coshk At) — ik~ tsinh(x At) Onk ~tsinh(x At)
- ( —qxc ~sinh(k At) coshk At) + ik~ Isinh(k At) )
The paramete, given by the equation? = —|q, |2 —¢?, is constant inside each intervat.

In order to solve the scattering problem we have to “propagate” the solution using
transfer matrixT (qn, ¢) from —L to L. The final result is

®(L — At/2,¢) = I®(—L — At/2,0), (12)
where
2M
@ =[]T@ 0 (13)
n=1

is obtained by the ordered multiplication of all transfer matrices. The unknown spec
coefficientsa(¢) andb(¢) can be explicitly expressed in terms of the values of the Jc
function®; on the “right” end ag — oo from (8). By taking the initial condition

B(—L - At/2,¢) = (é) géLray2) (14)

in Eg. (12), we express the value of the Jost functisnon the “right” end in terms of
the matrix functionl1. On the other hand, we know a priori that this value generates 1
coefficientsa andb,

i{(—L+At/2)
&1L — At/2,¢) = (a@)é >

b(;)ei{(LfAI/Z)
and, therefore,

a(r) = My (¢)e?st,

b(¢) = M (¢)esAt.

To obtain the normalization coefficientg, we also have to be able to compute the
derivative ofa(¢) with respect ta; . Differentiation of the expression (15) faf¢) leads to

(15)

g? =2iLa() + é‘“i(nu(;)). (16)
The last term in this expression contains the derivative with respectofoll;;(¢), the
first entry in the matrix from the ordered product (13). Differentiation yields a sum o\
the partial products that forfi (¢) times¢-derivatives of the matriX (g, ¢). This sum
can be computed within the same iteration loop that produces the ordered prhduitih
minimal extra cost.
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3.2. Fourth-Order Runge—Kutta Method

We have also implemented a fourth-order Runge—Kutta algorithm as an alternativ
the piecewise-constant approximation. In this case, the mdltfiy ¢) serves the role of
a known variable coefficient. By switching from the wave funct®e= (¢1, ¢»)' to its

envelopex = (x1. x2)",
®=(p1=x16"" o= x2 em)T, (17)

we eliminate the fast oscillations which arise wheng}ég large and obtain the following
equations for the slowly varying functiong »:

d !
qit= ax2e™,

18
E)(2 = —q*xe 24" e
dt '

The computation of the coefficieniisandb via the Runge—Kutta approach is analogou
to the same computation via the piecewise-constant approximation. As a result, we ne
take special initial conditions &t= —L for (x1, x2)" = (1, 0)". Finally, by calculating the
value of the vector functio on the “right” end, we obtain the coefficierasandb as

a@)\ _ (xak, 0
b(¢) x2(L,¢) |-

To compute the derivative af(¢) obtained with the Runge—Kutta algorithm, we found tha
an efficient and accurate method is provided by the Romberg algorithm [12].

3.3. Search for Eigenvalues

Once we know how to solve the ODE system (3) for any value of the spectral
rameters, we can proceed to the solution of the Zakharov—Shabat spectral problem.
numerical computation of the continuous spectrum, defined by the reflection coeffic
r(¢) =a(¢)/b(¢) with ¢ on the real axis, follows from Eq. (15) or (3.2) in a straightforwar
fashion. The localization of the discrete eigenvalggdocated in the upper half of the
complex¢-plane, is not trivial. To find them, we use the facts that the coeffigient can
be analytically continued into the upper hatplane from the real axis and that the discret
eigenvalues coincide with the complex zerosf) which we assumed to be simple.

First, following [3], we observe that the total numb¢iof eigenvalues may be computed
by calculating the total phase shift atz) on the real axis from the “left” end af-axis
to the “right”: N =arg(a(¢))|*,,/(2iw). Being one-dimensional, this calculation can b
performed using a fing grid for maximum accuracy. Second, we implement the gri
search for the eigenvaluggsby computing the values of/a(¢) on a sufficiently large grid
with preassigned grid size. The grid points at which the value/atl) exceeds a certain
practical limit serve as candidates for the eigenvalues. These candidates are tested by
to further approximate them by using the secant method. Knowledge of the total nNmb:
of the discrete eigenvalues indicates whether we have found all of them or not. If we r
some of the eigenvalues, we repeat the search on a refined grid.
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We notice that the problem of finding the eigenvalues with small imaginary parts requ
special care. This problem is important from a practical point of view because these s
eigenvalues may naturally appear during the “birth” or “death” of a soliton. We paid spe
attention to this problem while implementing the search algorithm.

Another possible approach to the eigenvalue search is to compute a contour integral «
function ofa’/a over some closed path in the compleplane. Since(¢) is analytic, this
integral will give the number of eigenvalues inside the contour. This technigue can be 1
for both the calculation of the total number of eigenvalues and their localization. We h
encountered significant problems during the numerical implementation of this appro
The first problemis caused by the necessity to compute the derivatiye)fThis increases
the computation time, in fact drastically so in the case of the Runge—Kutta algorit|
Another, and more serious, limitation of this contour-integral approach is generated by
sensitivity of the above formula when the eigenvalue is located too close to the contot
integration, which requires a rather complicated adaptive algorithm for selecting the |
of integration.

4. ERROR ESTIMATES

4.1. Error for Piecewise-Constant Approximation

To estimate the numerical error for the piecewise-constant approximation, one car
perturbation results obtained for the Zakharov—Shabat spectral problem (see, e.g.,
According to this approach, the piecewise-constant approximate potggiials noth-
ing but the perturbed exact potentigh.. =0+ 8q. The error in the coefficierd(¢) is
expressed in terms of an integral over the perturbatipof the potential, and the functions
¢1.2 andyry » which are components of the corresponding unperturbed Jost vector funct
P, (5) and¥, (6):

sa— / dt(Sadyn + 56 bavr2). (19)

For the purposes of the error analysis it is sufficient to consider only the first term in
expression (19). The second term can be estimated in a similar fashion. Using the shor
notation f = ¢,v1, we can rewrite the error caused by the first terr(f% sqfdt.

To estimate the error contributioha = _Ai{fz 3gf dt added on the elementary subin-
terval (—At/2, At/2), we representq aségq =q(t) — q(0) and expandf andq in Taylor

series. As a result, we obtain

3
Aa= <%> %[fQ”+2f’q’] +0(Aabh, (20)

where’ =d/dt. The fact that we choose the grid point in the middle of the elemente
subintervalis essential for obtainiagt)>—dependence for the local errda. By summing
up the local errorg\a over the whole intervalL, L) we obtain that the global error in
a(¢) is proportional to( At)2.

The complex spectral parameterso far has been hidden in the error estimateafor
which is valid for any value of . To analyze th&-dependence of the erréa, we need to
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look at the expression (20) more closely. By using the asymptotic expression for the ve
Jost functions at large,

P, ~ <é> exp(—i¢tH)[1 +0(1)], ¢— oo, (22)
U, ~ <2> expi¢t)[l+oD)], ¢ — o0, (22)
we obtainf, df/dt ~ ¢ 1. Thus, at large values gf

fda~ —.

Therefore, the global numerical error in the coefficiatt) decreases witlh which is in
contrast with the case for the Runge-Kutta case presented below, where the correspo
error increases beyond all boundszas oco.

The second-order global numerical error for the coefficé#np) translates into an error
of the same order for the eigenvalugsAn additional source of error during the numerica
computation of the eigenvaluggis created by the iteration process in the secant methc
This additional error is controlled by finding the zerosaafith high precision. Therefore,
the total error in the eigenvalues is kept at second ordatin

The numerical error for the coefficiebis estimated in a similar way. It is also of seconc
order inAt.

4.2. Error for Runge—Kutta Method

An estimate of the local truncation error for the Runge—Kutta method can be found
standard fashion [10, 11]. The exact solutr= (¢1, ¢,)" satisfies system (2).
The approximate solutio®® =(¢§f), ¢§f))T, n=0,1,?2, ..., satisfies the difference

equation (DE)
e =2 + AG(2(Y. a: 7). (23)

with the functionG(®®, q; ¢) given by

1
G(®P.q;¢) = é(kl + 2kz + 2k3 + Ka),

where thek’s are given by the usual Runge—Kutta iterations of the (linear) functic
F(®, q; ¢) at the right-hand side of system (2), starting with=F(®, g; ¢). The local
truncation error,

P (to + At) — P(tp)

7(to) = Al — G(®(to), q(to); ¢)

on the elementary subintervia (o, to + At), has a standard representation

d4
r=CF™ . (ap?, F!V)' = —F , 0<6 <1 (24)
dt t=to+62At
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From Eq. (23) (see [11]) it follows that the global discretization efdt,) — 2| ~ .
Also, by differentiating the functioR as in formula (24) four times, we derive that the loca
truncation error has a fifth-order dependence on~ ¢° due to the presence of the terms
iZ¢ andiz ¢, in F. Moreover, this fifth-order dependence accumulates even in regic
where the potentia] is identically zero.

To improve the accuracy of the Runge—Kutta approach, we make the change of vari
(17) by switching from the wave function itself to its envelgpe\s a result, the transformed
right-hand side of Eq. (18) no longer has aterm linegr, end the oscillatory term expi ¢ t)
is restricted to the support of the potentigiTherefore, the local truncation errofor the
Runge—Kutta discretization of Eq. (18) is proportional to the fourth power bforeover,
the proportionality coefficient is nonzero only on the suppouq.of

Note that the local truncation errercauses corresponding errors for all the compute
spectral characteristics, such as the discrete eigenvalues and the continuous spectru
Fig. 1 and the tables in Section 5).

We will test these error estimates in the next section. For noncompact support potgnti
we always use a sufficiently large intervall(, L), so that the error generated by neglectin
the potential outside this finite domain is negligible, compared with the local error of
of the two integration methods.

5. TESTS

We have implemented both the piecewise-constant approximation and the fourth-c
Runge—Kutta algorithms in Fortran 77. We have performed a series of tests on a Sil
Graphics workstation under the operating system IR1X64 release 6.1 withthe R8000 75|
processor. All computations were done in double precision. To illustrate the performanc
the program we present the CPU time for the one-soliton potential. The CPU time dep
on a variety of parameters: on the number of points used for the discretization, on
number of discrete eigenvalues, and their position in the conplgane.

5.1. One-Soliton Potential

First, we consider the simplest possible case, namely, a one-soliton potential (10), w
spectrum is known exactly. We have chosen the soliton parameters so that the correspc
eigenvalug equals%(l + i) and the normalization coefficiebfa’ equals—i. As a result,
the one-soliton potential equaist) = exp(—it)/cosht). For the “pure” soliton potential,
there is no continuous spectrum.

The numerical results for this soliton potential, presented in Tables | and Il, demonst
that for this particular case all the spectral data (the discrete eigenvalue, the normaliz
coefficient, and the continuous spectrum) are found with good accuracy. The “Cont.
En.” column in Table | denotes the numerical value of the continuous spectrum (dispel
waves) contribution to the?-norm ofq, calculated from formula (11). Figure 1 shows tha
our implementations of the Runge—Kutta and piecewise-constant approximation met
are of fourth order and second order in time step, respectively. This result agrees witl
analytical error estimates derived in Section 4.

Note that Table Il, unlike Table I, does not have the “Continuous Spectrum Ener
column. The reason for this is that the Runge—Kutta method produces an error of orde
when it calculates this parameter.
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TABLE |
The Spectrum of a One-Soliton Potential Obtained by Using
the Piecewise-Constant Algorithm

Points At Discr. Eigenvalue Cont. Sp. En. Norm. Coeff.
128 0.3125 0.49725 i0.49460 1.7E-02 1.2E-04i0.98927
256  0.1562 0.4993% i0.49864 3.3E-03 5.4E-06i0.99728
512  0.0781  0.49983 i0.49966 1.2E-07 1.9E-06i0.99931

1024  0.0391 0.4999% i0.49991 7.9E-09 —5.6E-07—i0.99982
2048 0.0195  0.49998 i0.49997 4.9E-10 —3.9E-06—-10.99994

Exact 0.5+i0.5 0 —i

We also provide a comparison of the CPU time that each algorithm takes to comf
the task of finding the one-soliton spectrum of Tables | and Il. The Runge—Kutta-ba
algorithm is roughly 20-30% faster than the piecewise-constant method for this partic
task. In general, over all the tests we have conducted, the two algorithms’ speeds
roughly the same. Of course, the running time for both algorithms is architecture-depen
and the CPU times we present (obtained on the IRIX workstation) are meant to give
reader an idea about the cost of the computations in this particular case (see Table III)
two algorithms share the same routines for the eigenvalue search in the complex plane
in both cases most of the CPU time is spent by the procedure which locates the dis
eigenvalues in the complexplane. In particular, in the test for one-soliton potential bot
algorithms spend over 80% of their time searching for the zem@(f. The majority of
time during the search is spent on computing the valuegofon the grid.

We stress that the time for locating the eigenvalues depends considerably on their
tion in the complex plane. We implemented an algorithm which starts the search for t
eigenvalues from the imaginary axis and then propagates to the left and to the right sim
neously. Therefore, the time spent for locating the eigenvalues is proportional to amplitt
of their real parts. The coefficient of proportionality depends on the grid spacing and
number of nodes in the grid.

5.2. Oversoliton

Our next test aims at checking how accurately both the piecewise-constant and Ru
Kutta approaches calculate a nonzero continuous spectrum. As a test potential we

TABLE Il
The Spectrum of a One-Soliton Potential, Obtained by Using the
Fourth-Order Runge—Kutta Approach

Points At Discr. Eigenvalue Norm. Coeff.

128 0.3125 0.4999999900.499270300 7.60E-08i0.99746220
256 0.1562 0.499999990 i 0.499949000 8.32E-0810.99984100
512 0.0781 0.4999999900.499996700 8.38E-0810.99999000
1024 0.0391 0.49999999010.499999790 8.39E-0810.99999930
2048 0.0195 0.4999999970.499999987 8.39E-0810.99999996

Exact 0.5+i0.5 —i
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Piecewise Constant Method

Error in the eigenvalue
0

Runge-Kutta Method 4

Number of points

FIG. 1. Error in the eigenvalue; versus the number of discretization points for one-soliton potential (s
Tables | and II).

q(t) = 2Aexp(—0.3t)/cosh2t) (so-called oversoliton) where the parameienust be cho-
sen to be 1 for a “pure” soliton, but in our ca8emay have any positive value. For such ¢
potential, the Zakharov—Shabat scattering problem can be solved analytically for any v
of A[14]. In general, both the discrete and continuous spectra are present in the proble
the case whe\ = 1.4, there is a single eigenvalye= 0.15+ 1.8i, plus a certain amount
of nonzero continuous spectrum. We choose not to present the lengthy expressions f
coefficientsa(¢) andb(¢) (see [14]). Out of the total pulse enery, = 4A% =7.84, the
soliton part isEgq = 4n = 7.2, while the rest of the energy is contained in the nonsolitc
componentEcontspectr = 0.64.

Tables IV and V contain the numerical results on the discrete spectrum plus the
energy due to the nonsoliton component and illustrate that, with respect to the calculati
the continuous spectrum, the piecewise-constant approach is by far superior to the Rt
Kutta method.

TABLE IlI
CPU Time of Computations

Points  Piecewise-constant  Runge—Kutta

128 67s 51s
256 135s 102 s
512 275s 205s
1024 573s 409 s

2048 1236's 816s
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TABLE IV
Spectrum of the Oversoliton Potential:q(t) = 2A exp(—0.3t)/cosh(2) with
A =14, Obtained by Using a Piecewise-Constant Approximation

Points At Discr. eigenvalue Cont. Sp. En.
128 0.3125 0.146174 i1.778069 0.7126577
256 0.1562 0.14908+ i1.794385 0.6536514
512 0.0781 0.149774 i11.798589 0.6399762

1024 0.0391 0.149943 11.799647 0.6399930

2048 0.0195 0.14998%11.799911 0.6399987

Exact 0.15+i1.8 0.64

In Table V we do not present data on the continuous spectrum energy because in all ¢

except the case of 2048 pointst(= 0.0195), the Runge—Kutta method produces errors «
order 1.

5.3. Rectangular Potential

In the final test, we analyze the integrators’ performance in the case of discontint
potentials. We consider the rectangular potergial) = qo, |X| < L. For such a potential,
explicit formulas exist for the coefficienssandb, which are

a(¢) = €' | cogavl) — %sin(ZvL) . b)) = —% sinvL),

where the parameteris expressed in terms of the spectral parametand the potential
amplitudeqy in the formv2 = ¢2 + ¢2. In our test, we have chosen the following values fo
the potential amplitudeg and the potential width.: g = —7 /2, L = 1. The total energy
in this case ist?/2. To determine the eigenvalues, one has to look for the zeros of
coefficienta(z). As a result, one determines that the rectangular potential with the gi\
choice of parameters leads to a single purely imaginary discrete eigepyaiue 062572.
Hence, the energy of the continuous spectruBcigspec ~ 0.6845133. The main differ-
ence between this and the previous tests is that the potential is not smooth, which |
to larger errors for both the piecewise-constant and Runge—Kutta methods. Notice
in the case of the piecewise-constant method this error is caused solely by the ne

TABLE V
Spectrum of the oversoliton potential: q(t) = 2A exp(—0.3t)/
cosh(2) with A=1.4, Obtained by Using the Fourth-Order
Runge—Kutta Approach

Points At Discr. eigenvalue
256 0.1562 0.14999998 i1.790426
512 0.0781 0.14999998 i1.799356

1024 0.0391 0.1499999¥ i1.799959

2048 0.0195 0.1499999¥ 11.799997

Exact 0.15+i1.8
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TABLE VI
Comparative Performance of Both the Piecewise-Constant Approximation
and the Fourth-Order Runge—Kutta Method

Points At Piecewise-Const. method Runge—Kutta method
128 0.3125 0.12205 0.46012
256 0.1562 0.01897 0.19840
512 0.0781 0.02746 0.20978

1024 0.0391 0.00467 0.04209

2048 0.0195 0.00707 0.01101

Note.The maximum error in the energy density of the continuous spectrum for the rectangular
potential.

evaluate the potential at the middle of the discretization step; with the proper discre
tion the piecewise-constant algorithm naturally yields an exact solution for the rectang
potential.

The continuous spectrum energy is nonzero for the rectangular potential. In this tes
analyze not only the numerical errors incurred in the calculation of the integral chal
teristic, such as the total energy input by the continuous spectrum, but also the nur
cal errors in the local characteristic—a measure of the intensity of the dispersive we
sup |(2/m)logla(¢)|], whereg is on the real axis.

As expected, we can see that the piecewise-constant approximation performs much t
compared with the results of the fourth-order Runge-Kutta method (Table VI).

Finally, we present the numerical results for the full spectral data of the rectang
potential (Tables VIl and VIII).

The Runge—Kutta method computes the continuous radiation correctly onlytfer
0.01953125 (2048 points). In all other cases, this method produces an error of order
Moreover, the Runge—Kutta method completely failsAdr= 0.3125—the method in this
case gives the wrong number of eigenvalues.

Our numerical results demonstrate that in the case of a rectangular potential, the co
gence of all the spectral parameters is much slower, compared with the two previous
This is due to the discontinuity of the rectangular potential, which results in the fact that
error estimates involving the derivatives of the potential, which we derived in the previ
section, are not quite valid.

TABLE VII
Spectrum of the Rectangular Potential Obtained by Using the
Piecewise-Constant Approximation

Points At Discr. eigenvalue Cont. Sp. En. Norm. Coeff.
128 0.3125 2.1E-09-i11.13409 0.836357 2.7E-08i2.85167
256 0.1562 2.4E-09-11.07568 0.684812 2.1E-08i2.39278
512 0.0781 1.6E-09-i1.04187 0.627221 1.1E-08i2.23392

1024 0.0391 5.8E-09-11.05920 0.653978 4.5E-0812.27612

2048 0.0195 1.2E-09-11.06755 0.668988 1.0E-08i2.30095

Exact 11.062572 0.6845133 i2.283050
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TABLE VIII
Spectrum of the Rectangular Potential Obtained by Using
the Fourth-Order Runge—Kutta Approach

Points At Discr. eigenvalue Norm. Coeff.
128 0.3125
256 0.1562 4.68E-09-11.055425 3.57E-08-12.266125
512 0.0781 5.37E-1@-11.030430 3.75E-09-12.186588
1024 0.0391 1.02E-09 i11.064940 8.11E-09-12.291327
2048 0.0195 1.62E-09 i11.070325 1.32E-08-12.309555
Exact 11.062572 i2.283050

We also remark that in our tests for the one-soliton potential and oversoliton, the Rur
Kutta algorithm finds the discrete spectrum eigenvalues with higher accuracy than
piecewise-constant approximation. This is in accordance with our error analysis, since
tests’ eigenvalues are within or close to the unit circle (cf. Tables | and IlI, IV and \
Because of the discontinuity in the potential, this advantage of the Runge—Kutta meth
lost in the case of the rectangular potential (cf. Tables VII and VIII).

The results obtained in this section prove that, overall, the piecewise-constant approx
tion is superior to the fourth-order Runge—Kutta method as a tool for finding the Zakhar
Shabat spectrum of the solutions to the NLS equation.

6. NON-RETURN-TO-ZERO TO SOLITON DATA CONVERSION PROBLEM

In this section, we illustrate the performance of our code utilizing the piecewise-cons
approximation on a light pulse propagation problem in nonlinear optical fibers.

A very simple and effective source of solution-like pulses in optical soliton transmiss
experiments was proposed and implemented recently [8]. The basic idea is to genel
soliton signal starting from a Non-return-to-zero (NRZ) source and imposing a subseq
sinusoidal phase modulation of each NRZ bit, where the modulation frequency is chos
be equaltothe bitrate. If this signal is injected into a transmission line with sliding-frequel
guiding filters then, after a complicated transient evolution, localized soliton-like pul
emerge (see Fig. 2, where for simplicity we consider the case of one single bit). There!
this phenomenon can be used to implementa method of converting NRZ bit streams into
ton signals. We consider an optical transmission line with periodically spaced, lumped
plifiers, each followed by a Fabry—Perotfilter whose peak frequencies are shifting (“slidir
linearly with the distance along the line. When the dispersion length is much larger thar
amplifier spacing, a good model for signal transmission is the “averaged,” normalized,
(1)

[4, 15, 16] with the following perturbatioR:

P=(i/2)[aq - B3 —wi)?q]. (25)

This perturbation models the Fabry—Perot filter via the “Gaussian” approximation, wk
is defined by three main parametegss the filter strengthy is the excess gain, while’;
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FIG. 2. Conversion of a single NRZ-phase-modulated bit into a soliton in a transmission line with slidir
frequency guiding filters (numerical simulation).

parameterizes the sliding rate of the peak frequency of the filtgrswith the distance,
wf = wo + w/f Z, (26)

wherewg denotes the initial filter frequency offset from the carrier.
The initial condition for Egs. (1), (25), which we focus on, is the phase-modulated N
signal

do(t) = a(t) expfi u sin(Qt)], (27)

wherea(t) is the NRZ signal flipping between 0 ard We have used the following practical
normalized values of the system parameters for the present prabiedm, g = 0.4, o =
0.185 @ =27/8.82. The amplitudeA and the depth of phase modulatierthen can serve
as the optimization parameters for the converted soliton-like pulse.

By applying our code to the initial pulse with the amplituAeand the depth of phase
modulationu chosen equal to 1 and®@r, respectively, we can clearly see that it is equiv
alent to four soliton eigenvalueg; =0.57 + 0.79, {&,=—0.56 + 0.15, ;3=—0.36 +
0.55, ¢4=—0.1+ 0.54i, plus a small amount of dispersive waves (about 10% in terms
the total pulse energy). Thus, the initial pulse consists of the primary soliton eigenv:
£1=0.574+0.79 (the initial filter position coincides with the primary eigenvalue frequenc
&1 =Re(¢1)), which gives rise to the output soliton, plus extra modes which are suppres
by the in-line filtering. Notice that while they are present, these additional compone
act like noise in the system and can lead to signal corruption by an uncontrollable ¢
of the position of the primary soliton in its time slot. To provide an efficient conversi
of the phase-modulated NRZ signal into solitons, it is therefore important to suppress
noise as early as possible during the transmission. A hybrid numerical-analytical appr
was proposed in [9] to analyze the conversion of an NRZ input to a soliton output sign:
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FIG. 3. The trajectories of all eigenvalues detected in the initial condition (27) (based on the numer
simulation of the full equation processed by the nonlinear spectral transform) iHsteg eigenvalue frequency
with the sliding part being subtractefl= ¢ — o' z.

an optical line with sliding frequency guiding filters. The numerical part consists of app
ing the nonlinear spectral transform solver to the input signal. This allows us to identify
soliton modes in the signal and then to follow the evolution of each single soliton mode
applying the adiabatic approximation.

Another possible approach is to compute the solution of the perturbed nonlir
Schigdinger equation (1) numerically with the NRZ signal as an initial condition and th
to analyze snapshots of the solution using the spectral code to provide a clear pictu
how the spectral data evolves in time. We illustrate the application of this approach to
example above. Figure 3 presents the time evolution of the eigenvalues under the filt
perturbation (25). Only one (primary soliton) out of four survives. Hérés the eigen-
value frequency with the sliding part being subtractee: ¢ — o' z. Note that our code
is sensitive enough to catch the emergence of a transient soliton, which was absent .
beginning. In the unperturbed case, soliton and nonsoliton modes do not interact with:
other, but this is not so in the general perturbed case. When one of the secondary so
disappears, it leaves behind a packet of dispersive waves. This wave packet can in turt
to accumulate enough energy which it eventually “sheds” in the form of a small-amplitt
transient soliton.

Itis remarkable that, with the exception of these transient episodes, the results on the
evolution of the eigenvalues obtained numerically with the help of the nonlinear spec
transform are in good agreement with the the results predicted by the adiabatic app
mation. In fact, the availability of the nonlinear spectral code in this problem ultimate
verifies (and extensively complements) the adiabatic approximation. Such a code hel
answering basic questions, such as: “How close is the output pulse to a soliton of the ul
turbed NLS?” We calculate the amount of energy of the dispersive waves contained ir
output pulse by using our code and can definitely say that for the given practical parame
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the output pulse is an almost “pure” soliton. Only 2% of the total pulse energy is in
nonsoliton components when the conversion process is over.

7. CONCLUSIONS

In this work, we have implemented two different algorithms to compute numerically 1
direct spectral transform (the direct Zakharov—Shabat eigenvalue problem on the inf
line) which is used heavily in soliton theory and its applications in nonlinear fiber opti
The first algorithm uses a piecewise-constant approximation to the potential in orde
solve the corresponding ODE, and the second algorithm uses the fourth-order Runge—
method.

We have tested and compared the performance of these two algorithms on three e
solvable potentials. We find that, despite the fact that the truncation error of the Rur
Kutta method is of higher order, the additional dependence of this error on the eigenvalu
the Zakharov—Shabat spectral problem limits the usefulness of the Runge—Kutta appr
Ultimately, this method can be effective only within the unit disk around the origin
the complex plane of the eigenvalues. This is a critical limitation when computing
nonsoliton part of the nonlinear spectrum, which can receive significant contributions fi
intervals along the real axis far from the origin. Moreover, this additional depende
poses restrictions on the class of potentials for which the discrete soliton spectrum ce
computed accurately. One example, which is important for signal analysis via nonlir
Fourier transform, is that of a potentia(t) which varies slowly int (and so the length
2L for the ODE computation can be fairly large). From system (2), it is easy to sh
through a simple rescaling of time that this case is equivalent to one with a large ampli
potential and a (rescaled) large eigenvalue paranmgtefhus, based on our error analysis
the Runge—Kutta method can be expected to lose accuracy in this case.

The limitation suffered by the Runge—Kutta method can be expected to affect any h
order ODE integrator. It is directly caused by the fact that the numerical truncation e
of the nth order method is proportional to theh time derivative of the right-hand side
of the spectral ODEEF™ (At)", whereF is the right-hand side of the ODE (18), and
is the mesh size. Due to the presence of the spectral paraméiethe ODE, one has
[F™| ~ ¢ or¢™1, depending on which Eq. (18) or (3) is used. Therefore, any attemp
increase the accuracy of the numerical solution by using a higher order numerical integ
automatically fails as soon as| > 1. We have found that no such limitations exist fo
the piecewise-constant approximation, and in fact, the truncation error for this met
decreasesinstead of increasing, with large| as|¢|~1. Conversely, the truncation error
analysis for higher order methods points to the fact that an efficient search for eigenve
near the origin is most effectively carried out using a higher order method like Runge—K

In summary, our work shows that the piecewise-constant approximation algorithm is
better tool overall; it is the most robust and offers the same efficiency for the computa
of both discrete and continuous spectra.

We have illustrated the performance of a code based on this algorithm by applyir
to NRZ-to-soliton data conversion problem in a fiber-optical line with sliding frequenc
guiding filters. One of the important features of our algorithm is the optimization of t
search for eigenvalues in case of multiple snapshots of the potential. The NRZ-to-so
data conversion problem provides an example where the flow of the spectral data in pert
integrable systems needs to be analyzed. This problem can be divided into two indepe!
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tasks. First, the numerical solution of the perturbed equation is computed on a time
of stepsizest. Second, a spectral code is utilized to analyze snapshots of the nume
solution taken at time& apart. We make use of the fact that in most cases the spectral ¢
are orde#st close for two consecutive snapshots of the numerical solution, and therefo
is possible to use the spectral data computed for one snapshot of the potential as the
guess for the spectral data of the next snapshot. This optimization of the search algo
makes a tremendous difference when there are eigenvalues with large (in absolute v
real parts. For example, we found that if there are eigenvalues with real parts greater the
then the search is more than five times faster if the information from the previous snap
of the potential is used. The optimized code is therefore especially valuable for tracl
the eigenvalues of potentials obtained as numerical simulations of perturbed integi
equations.
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