
                     

JOURNAL OF COMPUTATIONAL PHYSICS147,166–186 (1998)
ARTICLE NO. CP986087

Numerical Algorithms for the Direct Spectral
Transform with Applications to Nonlinear

Schrödinger Type Systems

S. Burtsev,∗,1 R. Camassa,∗ and I. Timofeyev†,2
∗Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos,

New Mexico 87545;†Department of Mathematical Sciences, RPI, Troy, New York 12180-3590
E-mail: roberto@cnls.lanl.gov, timofi@rpi.edu

Received March 11, 1998; revised August 14, 1998

We implement two different algorithms for computing numerically the direct
Zakharov–Shabat eigenvalue problem on the infinite line. The first algorithm replaces
the potential in the eigenvalue problem by a piecewise-constant approximation, which
allows one to solve analytically the corresponding ordinary differential equation.
The resulting algorithm is of second order in the step size. The second algorithm
uses the fourth-order Runge–Kutta method. We test and compare the performance of
these two algorithms on three exactly solvable potentials. We find that even though
the Runge–Kutta method is of higher order, this extra accuracy can be lost because
of the additional dependence of its numerical error on the eigenvalue. This limits the
usefulness of the Runge–Kutta algorithm to a region inside the unit circle around the
origin in the complex plane of the eigenvalues. For the computation of the continu-
ous spectrum density, this limitation is particularly severe, as revealed by the spectral
decomposition of theL2-norm of a solution to the nonlinear Schr¨odinger equation.
We show that no such limitations exist for the piecewise-constant algorithm. In par-
ticular, this scheme converges uniformly for both continuous and discrete spectrum
components. c© 1998 Academic Press

Key Words:nonlinear Schr¨odinger equation; Zakharov–Shabat eigenvalue prob-
lem; nonlinear optics.

1. INTRODUCTION

The discovery and development of the soliton theory [1, 2] has had deep repercussions
in physics and applied mathematics. This theory has made possible the explicit integration
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of several partial differential equations (PDEs) with universal applicability. In particular,
these equations were linearized via an associated linear system, the Lax pair, and explicitly
integrated in the following sense: First, rich classes of exact solutions, infinite hierarchies
of conservation laws, and infinite-dimensional analogs of the action-angle variables were
derived. Second, the solution of the Cauchy problem on the infinite line was recast in the
form of a solvable linear integral equation, and the asymptotic nature of its solutions was
determined explicitly.

Two main ingredients in the solution of the Cauchy problem for integrable nonlinear
partial differential equations are the direct spectral transform and its inverse counterpart.
These are nonlinear analogs of the direct and inverse Fourier transforms, respectively. They
both involve a single linear system of ordinary differential equations with a free (spectral)
parameter and, in general, are not tractable analytically. Hence, in order to solve them, one
has to resort to numerical solvers.

Simple and effective PDE-solvers, developed in recent years, have made the numerical
study of nonlinear wave phenomena in one spatial dimension relatively straightforward.
Nevertheless, “raw” numerical modeling is still prohibitively time-consuming when one
has to map out multidimensional parameter spaces. Moreover, even an accurate and com-
prehensive numerical simulation stops short of providing a fundamental understanding of
any nonlinear wave phenomenon.

In the special case of near-integrable partial differential equations, fundamental under-
standing can be provided by decomposing the wave field into “normal” coordinates, i.e.,
the soliton and nonsoliton components, also termed as the nonlinear spectral data. Such
a decomposition can be readily achieved by inserting the numerical solution of a given
near-integrable partial differential equation into a direct spectral transform solver. Apart
from its intrinsic value, this decomposition can be useful for verifying and complementing
perturbation calculations that describe the “flow” of the spectral data. To do this one has to
analyze snapshots of the potential for different times. These and other reasons (see [3]) ne-
cessitate the development of efficient high-quality numerical solvers for the direct spectral
transform.

In this paper we concentrate on the nonlinear Schr¨odinger (NLS) equation

iqz + 1

2
qtt + q∗q2 = P, (1)

which describes propagation of light pulses in an optical fiber with the anomalous1 group-
velocity dispersion [4, 5]. Here, we prefer to use the optical notation in which the normalized
time t plays the role of a spatial coordinate and the normalized distancez plays the role
of a time-like coordinate, whileq(t, z) is the complex envelope of the electric field. The
perturbationP is specified by the particular physical problem at hand. WhenP = 0, the
NLS system is integrable. The linearization of the NLS system is achieved by recasting this
system as the Zakharov–Shabat spectral problem [6], which is a system of two ODEs for

1 The case of normal group-velocity dispersion leads to a similar equation with only a change of the relative
signs of the terms on the left-hand side of (1). In this case the associated spectral problem is self-adjoint and,
hence, somewhat simpler to treat.
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the scalar wave functionsφ1 andφ2,

dφ1

dt
= qφ2 − i ζφ1,

dφ2

dt
= −q∗φ1 + i ζφ2,

(2)

whereζ is an eigenvalue parameter. By using the Zakharov–Shabat spectral problem, in
combination with the appropriately chosen linear ODEs which define thez-evolution ofφ1

andφ2, one can also solve analytically several other important nonlinear partial differential
equations. Besides the nonlinear Schr¨odinger equation, which is currently receiving a great
deal of attention due to its technological applications in fiber optics, these partial differential
equations include the Maxwell–Bloch system, the sine–Gordon equation, the usual and the
modified Korteveg–de Vries equations, etc.

In this paper, we present an efficient numerical algorithm for solving the direct Zakharov–
Shabat spectral problem. We have incorporated this numerical algorithm in a code that
computes the flow of the spectral data and in particular eigenvalues, for the perturbed NLS
equation (1). For this application, we optimize the performance of the eigenvalue-search
algorithm by using our knowledge of the history of the spectral data. Our code is able to
speed up the search for each eigenvalue in subsequent snapshots of the perturbed NLS
solution by a factor of 5, provided that the number of eigenvalues does not change from one
snapshot of the solution to another.

The main focus of this work is to describe and compare two different algorithms for
solving Zakharov–Shabat spectral problem, which differ by how one solves the system of
ordinary differential equations (2) withζ as a parameter. The first approach [3] replaces
the potentialq with its piecewise-constant approximation. This allows us to solve the
corresponding ODE analytically. The second approach [7] proposes using a high-order
ODE integrator, such as a fourth-order Runge–Kutta scheme. Both algorithms use a grid-
search approach to find the eigenvalues. We have tested both methods on a variety of
explicitly solvable potentials: soliton, oversoliton, and a rectangular potential. One of the
most important findings that emerges from our study is that only the piecewise-constant
algorithm is effective computing the continuous spectrum contribution to theL2-norm (the
conserved “number of particles” functional) of solutions of the unperturbed NLS equation.

The numerical error in the Runge–Kutta approach cannot be controlled uniformly over
the spectrum. Specifically, the Runge–Kutta’s local truncation error depends on the eigen-
value asζ 4, which limits its applicability to the unit circle region around the origin of the
complexζ plane. This limitation is dramatically revealed by the spectral decomposition of
the L2-norm of solutions of the NLS equation. Our tests show that for a given discretiza-
tion step the error in computing the continuous spectrum contribution to theL2-norm by
the Runge–Kutta method can be over an order of magnitude larger than the error of the
piecewise-constant method.

The layout of this paper is the following. In Section 2, we recall a few basics of the soliton
theory. The properties of the spectral problem depend heavily on the type of boundary
conditions, i.e., an infinite-line problem with the potentialq(t) decaying at infinity or a
t-periodic problem for the potentialq(t). In this paper we only investigate the infinite line
problem. In Section 3, we introduce both solvers: Runge–Kutta and piecewise-constant,
and describe our implementation of the eigenvalue-search algorithm. In Section 4, we
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present the results of the error analysis. The test results are given in Section 5. Finally, in
Section 6, we illustrate the performance of the eigenvalue solver, based on a piecewise-
constant approximation and the eigenvalue search algorithm by applying it to a realistic
fiber-optic problem:Non-return-to-zeroto soliton data conversion in the optical line with
sliding frequency guiding filters [8, 9].

2. THE DIRECT AND INVERSE SPECTRAL TRANSFORMS

When the perturbationP is absent, Eq. (1) is equivalent to the overdetermined linear sys-
tem for a vector-valued wave functionΦ = (φ1, φ2)

T (with (·, ·)T denoting the transpose),

Φt + UΦ = 0, (3)

Φz + VΦ = 0, (4)

where 2× 2 matrix functionsU andV and the two-dimensional (column) vector function
Φ depend on the timet , the coordinatez, and the spectral parameterζ in the following
fashion:

U = i ζσ3 + u,

V = i ζ 2σ3 + ζu + v − i ζ 2I .

Here,

σ3 =
(

1 0
0 −1

)
, I =

(
1 0
0 1

)
,

u =
(

0 −q
q∗ 0

)
, v = i

2

(−|q|2 −qt

−q∗
t |q|2

)
.

The functionq(t, z) is the wave field of the unperturbed NLS equation, and the system (3)
is nothing but the scalar system (2) rewritten in a vector form. The compatibility condition
Uz − Vt + VU −U V = 0 between Eqs. (3) and (4) is exactly the unperturbed NLS system.

Let us recall a few properties of the system pair (3) and (4). Equation (3) has the structure
of an eigenvalue problem with the complex parameterζ (the Zakharov–Shabat spectral prob-
lem [6]). This problem can be thought of as a nonlinear analog of the Fourier transform for
linear problems. Generically, an initial conditionq(t, 0) gives rise to a continuous spectrum
represented by a functionr (ζ ), with each real-valuedζ being the analog of the frequency
of a dispersive wave component. In addition to the continuous spectrum, the Zakharov–
Shabat spectral problem supports a discrete spectrum, whose corresponding modes have
no counterpart in the Fourier transform. This discrete spectrum consists of complex pairs
{ζk = ξk + i ηk, ρk}, k = 1, . . . , N, whereN is the number of solitons which will emerge
from the initial data for sufficiently largez. The properties of these solitons are determined
by ζk andρk as follows: for eachk, the real part of the complex eigenvalueζk, ξk = Re(ζk)

equals one half of the corresponding soliton frequency, and the imaginary partηk = Im(ζk)

equals one half of the soliton amplitude; the complex coefficientρk parameterizes the soli-
ton’s initial position and its complex phase. In the limit of infinitely smallq, the discrete
spectrum is absent and the continuous spectrum coincides with the spectral density of linear
Fourier harmonics.
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To present theSpectral Data= {r (ζ ), ζ ∈ R; ζk, ρk, k = 1, N} in greater detail, we need
to recall a few extra elements of the Zakharov–Shabat spectral problem. We begin with the
continuous spectrum, represented by the functionr (ζ ) when the eigenvalueζ is located
on the real axis. First, we introduce the vector solutionsΦ1 andΦ2 (the Jost functions) of
systems (3) and (4),

Φ1 =
(

1
0

)
exp(−i ζ t)[1 + o(1)], t → −∞,

Φ2 =
(

0
−1

)
exp(i ζ t)[1 + o(1)], t → −∞,

(5)

fixed by their asymptotics at the left endt → −∞. Hence, for each pointζ of the continuous
spectrum one finds two independent solutionsΦ1,2. We also need the solutionsΨ1 andΨ2

fixed by their asymptotics at the right end,

Ψ1 =
(

1
0

)
exp(−i ζ t)[1 + o(1)], t → ∞,

Ψ2 =
(

0
1

)
exp(i ζ t)[1 + o(1)], t → ∞.

(6)

Out of these vector solutionsΦ1,2 andΨ1,2, one can construct two different fundamental
matrix solutions8 = (Φ1,Φ2) and9 = (Ψ1,Ψ2) which are related to each other via a
scattering matrixS

8 = 9S, S =
(

a b∗

b −a∗

)
. (7)

The functionr (ζ ) is the ratio of the elements of the scattering matrixS: r (ζ ) = b(ζ )/a(ζ ).
By using the relation (7), one derives useful formulas which are valid for real values of the
spectral parameterζ ,

a(ζ ) = lim
t→∞φ1(t, ζ ) exp(i ζ t),

b(ζ ) = lim
t→∞φ2(t, ζ ) exp(−i ζ t),

(8)

where the scalar functionsφ1,2 are the components of the vector-valued Jost functionΦ1.
Due to the fact that the Zakharov–Shabat spectral problem is not self-adjoint, the corre-

sponding eigenvaluesζk are complex-valued. Each eigenvalue is located in the upper half
ζ -plane, and its corresponding Jost function is fixed by its asymptotics at the left end,

Φ1k =
(

1
0

)
exp(−i ζkt)[1 + o(1)], t → −∞.

The asymptotics of the Jost functionΦ1k on the right end is parameterized by normalization
constantbk,

Φ1k = bk

(
0
1

)
exp(i ζkt)[1 + o(1)], t → ∞.
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The coefficientρk is expressed in terms ofbk andζ -derivativea′
k of the spectral coefficienta

at the position of the eigenvalueζk: ρk = bk/a′
k. We assume that a potentialq(t) is sufficiently

smooth and that it vanishes at|t | → ∞ fast enough so that the discrete spectrum contains
a finite number of eigenvalues. We also assume that each zero ofa is a simple one. The
mappingq(t) → Spectral Datamakes up the direct spectral problem. The solution of the
inverse mapping may be reduced to a linear integral equation of Volterra type (Gelfand–
Levitan–Marchenko system) [1, 2].

For the unperturbed NLS equation the evolution of the spectral data inzcan be computed
using Eq. (4). By substituting the evolved spectral data into the Gelfand–Levitan–Marchenko
system one can determine the solutionq(t, z) at anyz> 0. The essential point that makes
this procedure possible is that the spectral data evolve inz in a trivial manner for any initial
functionq(t, 0):

dζk/dz = 0,

dρk/dz = 2i ζ 2
k ρk,

dr(ζ, z)/dz = 2i ζ 2r.

For instance, in the case of an initial condition with discrete spectrum only (r (ζ ) = 0), one
can write down an explicit solution that describesN interacting solitons. In the simplest
case of a single soliton,N = 1, we have a familiar sech-shaped pulse:

qs = 2ηei φ

cosh(2ηθ)
,

θ = t + 2ξz − t0, (9)

φ = −2ξ(t + 2ξz) + 2i (η2 + ξ2)z + φ0,

2ηt0 = ln[|ρ(z = 0)|/(2η)], φ0 = π − arg[ρ(z = 0)]. (10)

Conservation laws for the NLS system can be expressed either in terms of the potential
q(t, z) or in terms of the spectral data. The simplest of the conserved quantities is the
L2-norm ofq, the so-called “number of particles.” This norm can be written as

∫ ∞

−∞
|q(t, z)|2 dt = − 1

π

∫ ∞

−∞
ln|a(ξ)|2 dξ +

N∑
k=1

2i (ζ ∗
k − ζk), (11)

which shows explicitly how the continuous and discrete spectra contribute to theL2-norm
of the potentialq. In the following we will often refer to this norm simply as the energy
of q, and to the first term on the right-hand side of (11) as the continuous spectrum (or
dispersive waves) energy.

In the presence of a general perturbationP, it is not known how to introduce an evolution
equation (4) so that the perturbed NLS again arises as the compatibility condition between
two linear systems, analogous to equations (3) and (4). Thus, the evolution equation of the
spectral data inz cannot be derived, and hence, the solution cannot be reconstructed for
z> 0. If the perturbationP is small enough, one can find approximate evolution equations
for the spectral data via asymptotic expansions. However, these equations will become
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invalid after some distancez, typically corresponding to a drastic change in the discrete
spectrum when a soliton component vanishes or a new one is generated.

The decomposition into soliton and dispersive components, given by the spectral problem
(3), is a valuable alternative to the Fourier transform, because this decomposition provides
an efficient way of storing information about the solution. For instance, in the unperturbed
case, one soliton mode can replace an infinite number of Fourier components. Moreover, for
small perturbations, we can use the decomposition into soliton and dispersive components
of the initial conditionq(t, 0) and the unperturbed equation to predict the dynamics of the
perturbed solution on finitez-intervals. Of course, this is only true for small perturbations
P; for largeP’s there is no a priori argument why the nonlinear Fourier transform should
be superior to the linear Fourier transform.

3. NUMERICAL DISCRETIZATION

In this section, we introduce two distinct algorithms for solving the direct Zakharov–
Shabat spectral problem. Even though the Zakharov–Shabat spectral problem is defined on
the infinitet-line, we have to truncate the potential outside a sufficiently large interval for
both algorithms, in order to make its numerical solution possible. As a result, the infinite-
line spectral problem is reduced to a problem with a compactly supported potential, and the
corresponding boundary conditions can be moved from the±∞ to the boundaries of the
truncated potential.

The solution of the spectral problem begins by integrating the system of ordinary differ-
ential equations (3) withζ as a complex parameter. The major difference between the two
algorithms lies in the way they solve this ODE system. The piecewise-constant approxi-
mation utilizes the fact that we can solve the linear ODE system (3) analytically whenever
the potentialq(t, z) is constant. Since the potentialq is discretized on the grid with a time
step1t , one possible approach is to assume that the potential is constant on each subinter-
val (tn − 1t/2, tn + 1t/2) and solve the direct Zakharov–Shabat problem exactly on each
subinterval using matrix exponentials.

It is possible to improve the piecewise-constant algorithm by assuming a higher order
approximation for the potentialq (i.e., piecewise-linear). In this case one still can solve the
ODE system (3) analytically. The disadvantage of this approach is caused by the necessity
to use Airy functions in order to express the solution of the ODE system, which leads to a
dramatic increase in the computational cost.

High-order numerical integration of the ODE system (3) presents an alternative to the
approximate analytical solution. We choose to use the fourth-order Runge–Kutta method
[10] as the simplest representative of the high-order ODE solvers.

3.1. Piecewise-Constant Approximation

In this subsection we recall the fundamentals of the piecewise-constant approximation
for the Zakharov–Shabat spectral problem [3]. The potentialq(t) is truncated outside a
sufficiently large interval (−L , L). Inside this interval,q(t) is chosen to be equal to a constant
qn = q(tn) on each elementary subinterval (tn −1t/2, tn +1t/2), where the pointtn equals
−L + n1t . Here, the time step1t equals1t = L/M , with the 2M+1 being the total number
of discretization points of the interval (−L , L). As a result, the corresponding ODE (3)
can be solved exactly inside each elementary subinterval for any value of the spectral
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parameterζ . The corresponding solution readsΦ(tn+1t/2, ζ )= T(qn, ζ )Φ(tn−1t/2, ζ ),
whereΦ(tn−1t/2, ζ ) is the “initial” condition on the left end of the elementary subinterval
and the transfer matrixT(qn, ζ ) is the exponential of the matrixU (qn, ζ ):

T(qn, ζ ) = exp[−1tU (qn, ζ )] = exp

[
1t

( −i ζ qn

−q∗
n i ζ

)]

=
(

cosh(κ1t) − i ζκ−1sinh(κ1t) qnκ
−1sinh(κ1t)

−q∗
nκ−1sinh(κ1t) cosh(κ1t) + i ζκ−1sinh(κ1t)

)
.

The parameterκ, given by the equationκ2 = −|qn|2−ζ 2, is constant inside each interval1t .
In order to solve the scattering problem we have to “propagate” the solution using the

transfer matrixT(qn, ζ ) from −L to L. The final result is

Φ(L − 1t/2, ζ ) = 5Φ(−L − 1t/2, ζ ), (12)

where

5(ζ) =
2M∏
n=1

T(qn, ζ ) (13)

is obtained by the ordered multiplication of all transfer matrices. The unknown spectral
coefficientsa(ζ ) andb(ζ ) can be explicitly expressed in terms of the values of the Jost
functionΦ1 on the “right” end ast → ∞ from (8). By taking the initial condition

Φ(−L − 1t/2, ζ ) =
(

1
0

)
ei ζ(L+1t/2) (14)

in Eq. (12), we express the value of the Jost functionΦ1 on the “right” end in terms of
the matrix function5. On the other hand, we know a priori that this value generates the
coefficientsa andb,

Φ1(L − 1t/2, ζ ) =
(

a(ζ )ei ζ(−L+1t/2)

b(ζ )ei ζ(L−1t/2)

)

and, therefore,

a(ζ ) = 511(ζ )e2i ζ L ,

b(ζ ) = 521(ζ )ei ζ1t .
(15)

To obtain the normalization coefficientsρk, we also have to be able to compute the
derivative ofa(ζ ) with respect toζ . Differentiation of the expression (15) fora(ζ ) leads to

da

dζ
= 2i La(ζ ) + e2i ζ L d

dζ

(
511(ζ )

)
. (16)

The last term in this expression contains the derivative with respect toζ of 511(ζ ), the
first entry in the matrix from the ordered product (13). Differentiation yields a sum over
the partial products that form5(ζ) timesζ -derivatives of the matrixT(qn, ζ ). This sum
can be computed within the same iteration loop that produces the ordered product5, with
minimal extra cost.
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3.2. Fourth-Order Runge–Kutta Method

We have also implemented a fourth-order Runge–Kutta algorithm as an alternative to
the piecewise-constant approximation. In this case, the matrixU (q, ζ ) serves the role of
a known variable coefficient. By switching from the wave functionΦ= (φ1, φ2)

T to its
envelopeχ= (χ1, χ2)

T,

Φ = (
φ1 = χ1 e−i ζ t , φ2 = χ2 ei ζ t

)T
, (17)

we eliminate the fast oscillations which arise when Re(ζ ) is large and obtain the following
equations for the slowly varying functionsχ1,2:

d

dt
χ1 = qχ2e2i ζ t ,

d

dt
χ2 = −q∗χ1e−2i ζ t .

(18)

The computation of the coefficientsa andb via the Runge–Kutta approach is analogous
to the same computation via the piecewise-constant approximation. As a result, we need to
take special initial conditions att = −L for (χ1, χ2)

T = (1, 0)T. Finally, by calculating the
value of the vector functionχ on the “right” end, we obtain the coefficientsa andb as(

a(ζ )

b(ζ )

)
=

(
χ1(L , ζ )

χ2(L , ζ )

)
.

To compute the derivative ofa(ζ ) obtained with the Runge–Kutta algorithm, we found that
an efficient and accurate method is provided by the Romberg algorithm [12].

3.3. Search for Eigenvalues

Once we know how to solve the ODE system (3) for any value of the spectral pa-
rameterζ , we can proceed to the solution of the Zakharov–Shabat spectral problem. The
numerical computation of the continuous spectrum, defined by the reflection coefficient
r (ζ ) = a(ζ )/b(ζ ) with ζ on the real axis, follows from Eq. (15) or (3.2) in a straightforward
fashion. The localization of the discrete eigenvaluesζk, located in the upper half of the
complexζ -plane, is not trivial. To find them, we use the facts that the coefficienta(ζ ) can
be analytically continued into the upper halfζ -plane from the real axis and that the discrete
eigenvalues coincide with the complex zeros ofa(ζ ) which we assumed to be simple.

First, following [3], we observe that the total numberN of eigenvalues may be computed
by calculating the total phase shift ofa(ζ ) on the real axis from the “left” end ofζ -axis
to the “right”: N = arg(a(ζ ))|∞−∞/(2i π). Being one-dimensional, this calculation can be
performed using a fineζ grid for maximum accuracy. Second, we implement the grid
search for the eigenvaluesζk by computing the values of 1/a(ζ ) on a sufficiently large grid
with preassigned grid size. The grid points at which the value of 1/a(ζ ) exceeds a certain
practical limit serve as candidates for the eigenvalues. These candidates are tested by trying
to further approximate them by using the secant method. Knowledge of the total numberN
of the discrete eigenvalues indicates whether we have found all of them or not. If we miss
some of the eigenvalues, we repeat the search on a refined grid.
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We notice that the problem of finding the eigenvalues with small imaginary parts requires
special care. This problem is important from a practical point of view because these small
eigenvalues may naturally appear during the “birth” or “death” of a soliton. We paid special
attention to this problem while implementing the search algorithm.

Another possible approach to the eigenvalue search is to compute a contour integral of the
function ofa′/a over some closed path in the complexζ plane. Sincea(ζ ) is analytic, this
integral will give the number of eigenvalues inside the contour. This technique can be used
for both the calculation of the total number of eigenvalues and their localization. We have
encountered significant problems during the numerical implementation of this approach.
The first problem is caused by the necessity to compute the derivative ofa(ζ ). This increases
the computation time, in fact drastically so in the case of the Runge–Kutta algorithm.
Another, and more serious, limitation of this contour-integral approach is generated by the
sensitivity of the above formula when the eigenvalue is located too close to the contour of
integration, which requires a rather complicated adaptive algorithm for selecting the path
of integration.

4. ERROR ESTIMATES

4.1. Error for Piecewise-Constant Approximation

To estimate the numerical error for the piecewise-constant approximation, one can use
perturbation results obtained for the Zakharov–Shabat spectral problem (see, e.g., [13]).
According to this approach, the piecewise-constant approximate potentialqpwc is noth-
ing but the perturbed exact potential:qpwc = q + δq. The error in the coefficienta(ζ ) is
expressed in terms of an integral over the perturbationδq of the potential, and the functions
φ1,2 andψ1,2 which are components of the corresponding unperturbed Jost vector functions
Φ1 (5) andΨ2 (6):

δa =
∞∫

−∞
dt(δqφ1ψ1 + δq∗φ2ψ2). (19)

For the purposes of the error analysis it is sufficient to consider only the first term in the
expression (19). The second term can be estimated in a similar fashion. Using the shorthand
notation f = φ1ψ1, we can rewrite the error caused by the first term as

∫ ∞
−∞ δq f dt.

To estimate the error contribution1a = ∫ 1t/2
−1t/2 δq f dt added on the elementary subin-

terval (−1t/2, 1t/2), we representδq asδq = q(t) − q(0) and expandf andq in Taylor
series. As a result, we obtain

1a =
(

1t

2

)3 1

3
[ f q′′ + 2 f ′q′] + O((1t)4), (20)

where ′ = d/dt. The fact that we choose the grid point in the middle of the elementary
subinterval is essential for obtaining(1t)3—dependence for the local error1a. By summing
up the local errors1a over the whole interval (−L , L) we obtain that the global error in
a(ζ ) is proportional to(1t)2.

The complex spectral parameterζ so far has been hidden in the error estimate fora,
which is valid for any value ofζ . To analyze theζ -dependence of the errorδa, we need to
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look at the expression (20) more closely. By using the asymptotic expression for the vector
Jost functions at largeζ ,

Φ1 ∼
(

1
0

)
exp(−i ζ t)[1 + o(1)], ζ → ∞, (21)

Ψ2 ∼
(

0
1

)
exp(i ζ t)[1 + o(1)], ζ → ∞, (22)

we obtain f, d f/dt ∼ ζ−1. Thus, at large values ofζ

δa ∼ 1t2

ζ
.

Therefore, the global numerical error in the coefficienta(ζ ) decreases withζ which is in
contrast with the case for the Runge-Kutta case presented below, where the corresponding
error increases beyond all bounds asζ → ∞.

The second-order global numerical error for the coefficienta(ζ ) translates into an error
of the same order for the eigenvaluesζk. An additional source of error during the numerical
computation of the eigenvaluesζk is created by the iteration process in the secant method.
This additional error is controlled by finding the zeros ofa with high precision. Therefore,
the total error in the eigenvalues is kept at second order in1t .

The numerical error for the coefficientb is estimated in a similar way. It is also of second
order in1t .

4.2. Error for Runge–Kutta Method

An estimate of the local truncation error for the Runge–Kutta method can be found in a
standard fashion [10, 11]. The exact solutionΦ= (φ1, φ2)

T satisfies system (2).
The approximate solutionΦ(a)

n = (φ
(a)
1n

, φ
(a)
2n

)T, n = 0, 1, 2, . . ., satisfies the difference
equation (DE)

Φ(a)
n+1 =Φ(a)

n + 1tG
(
Φ(a)

n , q; ζ
)
, (23)

with the functionG(Φ(a)
n , q; ζ ) given by

G
(
Φ(a)

n , q; ζ
) = 1

6
(k1 + 2k2 + 2k3 + k4),

where thek’s are given by the usual Runge–Kutta iterations of the (linear) function
F(Φ, q; ζ ) at the right-hand side of system (2), starting withk1 = F(Φ, q; ζ ). The local
truncation error,

τ (t0) ≡ Φ(t0 + 1t) − Φ(t0)

1t
− G(Φ(t0), q(t0); ζ )

on the elementary subintervalt ∈ (t0, t0 + 1t), has a standard representation

τ = CF(I V ) · (1t)4, F(I V ) = d4

dt4
F

∣∣∣∣
t=t0+θ21t

, 0 < θ < 1. (24)
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From Eq. (23) (see [11]) it follows that the global discretization error|Φ(tn)−Φ(a)
n | ∼ τ .

Also, by differentiating the functionF as in formula (24) four times, we derive that the local
truncation error has a fifth-order dependence onζ : τ ∼ ζ 5 due to the presence of the terms
i ζφ1 and i ζφ2 in F. Moreover, this fifth-order dependence accumulates even in regions
where the potentialq is identically zero.

To improve the accuracy of the Runge–Kutta approach, we make the change of variables
(17) by switching from the wave function itself to its envelopeχ . As a result, the transformed
right-hand side of Eq. (18) no longer has a term linear inζ , and the oscillatory term exp(2i ζ t)
is restricted to the support of the potentialq. Therefore, the local truncation errorτ for the
Runge–Kutta discretization of Eq. (18) is proportional to the fourth power ofζ . Moreover,
the proportionality coefficient is nonzero only on the support ofq.

Note that the local truncation errorτ causes corresponding errors for all the computed
spectral characteristics, such as the discrete eigenvalues and the continuous spectrum (see
Fig. 1 and the tables in Section 5).

We will test these error estimates in the next section. For noncompact support potentialsq
we always use a sufficiently large interval (−L , L), so that the error generated by neglecting
the potential outside this finite domain is negligible, compared with the local error of any
of the two integration methods.

5. TESTS

We have implemented both the piecewise-constant approximation and the fourth-order
Runge–Kutta algorithms in Fortran 77. We have performed a series of tests on a Silicon
Graphics workstation under the operating system IRIX64 release 6.1 with the R8000 75 MHz
processor. All computations were done in double precision. To illustrate the performance of
the program we present the CPU time for the one-soliton potential. The CPU time depends
on a variety of parameters: on the number of points used for the discretization, on the
number of discrete eigenvalues, and their position in the complexζ -plane.

5.1. One-Soliton Potential

First, we consider the simplest possible case, namely, a one-soliton potential (10), whose
spectrum is known exactly. We have chosen the soliton parameters so that the corresponding
eigenvalueζ equals1

2(1+ i ) and the normalization coefficientb/a′ equals−i . As a result,
the one-soliton potential equalsq(t) = exp(−i t )/cosh(t). For the “pure” soliton potential,
there is no continuous spectrum.

The numerical results for this soliton potential, presented in Tables I and II, demonstrate
that for this particular case all the spectral data (the discrete eigenvalue, the normalization
coefficient, and the continuous spectrum) are found with good accuracy. The “Cont. Sp.
En.” column in Table I denotes the numerical value of the continuous spectrum (dispersive
waves) contribution to theL2-norm ofq, calculated from formula (11). Figure 1 shows that
our implementations of the Runge–Kutta and piecewise-constant approximation methods
are of fourth order and second order in time step, respectively. This result agrees with the
analytical error estimates derived in Section 4.

Note that Table II, unlike Table I, does not have the “Continuous Spectrum Energy”
column. The reason for this is that the Runge–Kutta method produces an error of order one
when it calculates this parameter.
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TABLE I

The Spectrum of a One-Soliton Potential Obtained by Using

the Piecewise-Constant Algorithm

Points 1t Discr. Eigenvalue Cont. Sp. En. Norm. Coeff.

128 0.3125 0.49725+ i 0.49460 1.7E-02 1.2E-04− i 0.98927
256 0.1562 0.49931+ i 0.49864 3.3E-03 5.4E-06− i 0.99728
512 0.0781 0.49983+ i 0.49966 1.2E-07 1.9E-06− i 0.99931

1024 0.0391 0.49995+ i 0.49991 7.9E-09 −5.6E-07− i 0.99982
2048 0.0195 0.49998+ i 0.49997 4.9E-10 −3.9E-06− i 0.99994

Exact 0.5+ i 0.5 0 −i

We also provide a comparison of the CPU time that each algorithm takes to complete
the task of finding the one-soliton spectrum of Tables I and II. The Runge–Kutta-based
algorithm is roughly 20–30% faster than the piecewise-constant method for this particular
task. In general, over all the tests we have conducted, the two algorithms’ speeds were
roughly the same. Of course, the running time for both algorithms is architecture-dependent
and the CPU times we present (obtained on the IRIX workstation) are meant to give the
reader an idea about the cost of the computations in this particular case (see Table III). The
two algorithms share the same routines for the eigenvalue search in the complex plane, and
in both cases most of the CPU time is spent by the procedure which locates the discrete
eigenvalues in the complexζ plane. In particular, in the test for one-soliton potential both
algorithms spend over 80% of their time searching for the zero ofa(ζ ). The majority of
time during the search is spent on computing the values ofa(ζ ) on the grid.

We stress that the time for locating the eigenvalues depends considerably on their posi-
tion in the complexζ plane. We implemented an algorithm which starts the search for the
eigenvalues from the imaginary axis and then propagates to the left and to the right simulta-
neously. Therefore, the time spent for locating the eigenvalues is proportional to amplitudes
of their real parts. The coefficient of proportionality depends on the grid spacing and the
number of nodes in the grid.

5.2. Oversoliton

Our next test aims at checking how accurately both the piecewise-constant and Runge–
Kutta approaches calculate a nonzero continuous spectrum. As a test potential we take

TABLE II

The Spectrum of a One-Soliton Potential, Obtained by Using the

Fourth-Order Runge–Kutta Approach

Points 1t Discr. Eigenvalue Norm. Coeff.

128 0.3125 0.499999990+ i 0.499270300 7.60E-08− i 0.99746220
256 0.1562 0.499999990+ i 0.499949000 8.32E-08− i 0.99984100
512 0.0781 0.499999990+ i 0.499996700 8.38E-08− i 0.99999000

1024 0.0391 0.499999990+ i 0.499999790 8.39E-08− i 0.99999930
2048 0.0195 0.499999997+ i 0.499999987 8.39E-08− i 0.99999996

Exact 0.5+ i 0.5 −i
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FIG. 1. Error in the eigenvalueζ1 versus the number of discretization points for one-soliton potential (see
Tables I and II).

q(t) = 2Aexp(−0.3t)/cosh(2t) (so-called oversoliton) where the parameterA must be cho-
sen to be 1 for a “pure” soliton, but in our caseA may have any positive value. For such a
potential, the Zakharov–Shabat scattering problem can be solved analytically for any value
of A [14]. In general, both the discrete and continuous spectra are present in the problem. In
the case whenA= 1.4, there is a single eigenvalueζ1 = 0.15+ 1.8i , plus a certain amount
of nonzero continuous spectrum. We choose not to present the lengthy expressions for the
coefficientsa(ζ ) andb(ζ ) (see [14]). Out of the total pulse energyEtotal = 4A2 = 7.84, the
soliton part isEsol = 4η = 7.2, while the rest of the energy is contained in the nonsoliton
component:Econt.spectr. = 0.64.

Tables IV and V contain the numerical results on the discrete spectrum plus the pulse
energy due to the nonsoliton component and illustrate that, with respect to the calculation of
the continuous spectrum, the piecewise-constant approach is by far superior to the Runge–
Kutta method.

TABLE III

CPU Time of Computations

Points Piecewise-constant Runge–Kutta

128 67 s 51 s
256 135 s 102 s
512 275 s 205 s

1024 573 s 409 s
2048 1236 s 816 s
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TABLE IV

Spectrum of the Oversoliton Potential:q(t) = 2A exp(−0.3t)/cosh(2t) with

A = 1.4, Obtained by Using a Piecewise-Constant Approximation

Points 1t Discr. eigenvalue Cont. Sp. En.

128 0.3125 0.146174+ i 1.778069 0.7126577
256 0.1562 0.149087+ i 1.794385 0.6536514
512 0.0781 0.149774+ i 1.798589 0.6399762

1024 0.0391 0.149943+ i 1.799647 0.6399930
2048 0.0195 0.149985+ i 1.799911 0.6399987

Exact 0.15+ i 1.8 0.64

In Table V we do not present data on the continuous spectrum energy because in all cases,
except the case of 2048 points (1t = 0.0195), the Runge–Kutta method produces errors of
order 1.

5.3. Rectangular Potential

In the final test, we analyze the integrators’ performance in the case of discontinuous
potentials. We consider the rectangular potentialq(x) = q0, |x| < L. For such a potential,
explicit formulas exist for the coefficientsa andb, which are

a(ζ ) = e2i ζ L

[
cos(2νL) − i ζ

ν
sin(2νL)

]
, b(ζ ) = −q0

ν
sin(2νL),

where the parameterν is expressed in terms of the spectral parameterζ and the potential
amplitudeq0 in the formν2 = ζ 2 + q2

0. In our test, we have chosen the following values for
the potential amplitudeq0 and the potential widthL: q0 = −π/2, L = 1. The total energy
in this case isπ2/2. To determine the eigenvalues, one has to look for the zeros of the
coefficienta(ζ ). As a result, one determines that the rectangular potential with the given
choice of parameters leads to a single purely imaginary discrete eigenvalueζ1 ≈ 1.062572i .
Hence, the energy of the continuous spectrum isEcont.spec. ≈ 0.6845133. The main differ-
ence between this and the previous tests is that the potential is not smooth, which leads
to larger errors for both the piecewise-constant and Runge–Kutta methods. Notice that
in the case of the piecewise-constant method this error is caused solely by the need to

TABLE V

Spectrum of the oversoliton potential:q(t) = 2A exp(−0.3t)/

cosh(2t) with A = 1.4, Obtained by Using the Fourth-Order

Runge–Kutta Approach

Points 1t Discr. eigenvalue

256 0.1562 0.14999998+ i 1.790426
512 0.0781 0.14999998+ i 1.799356

1024 0.0391 0.14999997+ i 1.799959
2048 0.0195 0.14999997+ i 1.799997

Exact 0.15+ i 1.8
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TABLE VI

Comparative Performance of Both the Piecewise-Constant Approximation

and the Fourth-Order Runge–Kutta Method

Points 1t Piecewise-Const. method Runge–Kutta method

128 0.3125 0.12205 0.46012
256 0.1562 0.01897 0.19840
512 0.0781 0.02746 0.20978

1024 0.0391 0.00467 0.04209
2048 0.0195 0.00707 0.01101

Note.The maximum error in the energy density of the continuous spectrum for the rectangular
potential.

evaluate the potential at the middle of the discretization step; with the proper discretiza-
tion the piecewise-constant algorithm naturally yields an exact solution for the rectangular
potential.

The continuous spectrum energy is nonzero for the rectangular potential. In this test we
analyze not only the numerical errors incurred in the calculation of the integral charac-
teristic, such as the total energy input by the continuous spectrum, but also the numeri-
cal errors in the local characteristic—a measure of the intensity of the dispersive waves,
supζ |(2/π) log|a(ζ )||, whereζ is on the real axis.

As expected, we can see that the piecewise-constant approximation performs much better,
compared with the results of the fourth-order Runge-Kutta method (Table VI).

Finally, we present the numerical results for the full spectral data of the rectangular
potential (Tables VII and VIII).

The Runge–Kutta method computes the continuous radiation correctly only for1t =
0.01953125 (2048 points). In all other cases, this method produces an error of order one.
Moreover, the Runge–Kutta method completely fails for1t = 0.3125—the method in this
case gives the wrong number of eigenvalues.

Our numerical results demonstrate that in the case of a rectangular potential, the conver-
gence of all the spectral parameters is much slower, compared with the two previous tests.
This is due to the discontinuity of the rectangular potential, which results in the fact that the
error estimates involving the derivatives of the potential, which we derived in the previous
section, are not quite valid.

TABLE VII

Spectrum of the Rectangular Potential Obtained by Using the

Piecewise-Constant Approximation

Points 1t Discr. eigenvalue Cont. Sp. En. Norm. Coeff.

128 0.3125 2.1E-09+ i 1.13409 0.836357 2.7E-08+ i 2.85167
256 0.1562 2.4E-09+ i 1.07568 0.684812 2.1E-08+ i 2.39278
512 0.0781 1.6E-09+ i 1.04187 0.627221 1.1E-08+ i 2.23392

1024 0.0391 5.8E-09+ i 1.05920 0.653978 4.5E-08+ i 2.27612
2048 0.0195 1.2E-09+ i 1.06755 0.668988 1.0E-08+ i 2.30095

Exact i 1.062572 0.6845133 i 2.283050
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TABLE VIII

Spectrum of the Rectangular Potential Obtained by Using

the Fourth-Order Runge–Kutta Approach

Points 1t Discr. eigenvalue Norm. Coeff.

128 0.3125
256 0.1562 4.68E-09+ i 1.055425 3.57E-08+ i 2.266125
512 0.0781 5.37E-10+ i 1.030430 3.75E-09+ i 2.186588

1024 0.0391 1.02E-09+ i 1.064940 8.11E-09+ i 2.291327
2048 0.0195 1.62E-09+ i 1.070325 1.32E-08+ i 2.309555

Exact i 1.062572 i 2.283050

We also remark that in our tests for the one-soliton potential and oversoliton, the Runge–
Kutta algorithm finds the discrete spectrum eigenvalues with higher accuracy than the
piecewise-constant approximation. This is in accordance with our error analysis, since the
tests’ eigenvalues are within or close to the unit circle (cf. Tables I and II, IV and V).
Because of the discontinuity in the potential, this advantage of the Runge–Kutta method is
lost in the case of the rectangular potential (cf. Tables VII and VIII).

The results obtained in this section prove that, overall, the piecewise-constant approxima-
tion is superior to the fourth-order Runge–Kutta method as a tool for finding the Zakharov–
Shabat spectrum of the solutions to the NLS equation.

6. NON-RETURN-TO-ZERO TO SOLITON DATA CONVERSION PROBLEM

In this section, we illustrate the performance of our code utilizing the piecewise-constant
approximation on a light pulse propagation problem in nonlinear optical fibers.

A very simple and effective source of solution-like pulses in optical soliton transmission
experiments was proposed and implemented recently [8]. The basic idea is to generate a
soliton signal starting from a Non-return-to-zero (NRZ) source and imposing a subsequent
sinusoidal phase modulation of each NRZ bit, where the modulation frequency is chosen to
be equal to the bit rate. If this signal is injected into a transmission line with sliding-frequency
guiding filters then, after a complicated transient evolution, localized soliton-like pulses
emerge (see Fig. 2, where for simplicity we consider the case of one single bit). Therefore,
this phenomenon can be used to implement a method of converting NRZ bit streams into soli-
ton signals. We consider an optical transmission line with periodically spaced, lumped am-
plifiers, each followed by a Fabry–Perot filter whose peak frequencies are shifting (“sliding”)
linearly with the distance along the line. When the dispersion length is much larger than the
amplifier spacing, a good model for signal transmission is the “averaged,” normalized, NLS
(1)
[4, 15, 16] with the following perturbationP:

P = (i /2)
[
αq − β(i ∂t − ω f )

2q
]
. (25)

This perturbation models the Fabry–Perot filter via the “Gaussian” approximation, which
is defined by three main parameters:β is the filter strength,α is the excess gain, whileω′

f
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FIG. 2. Conversion of a single NRZ-phase-modulated bit into a soliton in a transmission line with sliding-
frequency guiding filters (numerical simulation).

parameterizes the sliding rate of the peak frequency of the filters,ω f , with the distance,

ω f = ω0 + ω′
f z, (26)

whereω0 denotes the initial filter frequency offset from the carrier.
The initial condition for Eqs. (1), (25), which we focus on, is the phase-modulated NRZ

signal

q0(t) = a(t) exp[i µ sin(Ät)], (27)

wherea(t) is the NRZ signal flipping between 0 andA. We have used the following practical
normalized values of the system parameters for the present problemα = 0.4, β = 0.4, ω′

f =
0.185, Ä= 2π/8.82. The amplitudeA and the depth of phase modulationµ then can serve
as the optimization parameters for the converted soliton-like pulse.

By applying our code to the initial pulse with the amplitudeA and the depth of phase
modulationµ chosen equal to 1 and 0.7π , respectively, we can clearly see that it is equiv-
alent to four soliton eigenvalues:ζ1 = 0.57 + 0.79i, ζ2 = −0.56 + 0.15i, ζ3 = −0.36 +
0.55i, ζ4 = −0.1 + 0.54i , plus a small amount of dispersive waves (about 10% in terms of
the total pulse energy). Thus, the initial pulse consists of the primary soliton eigenvalue
ζ1 = 0.57+0.79i (the initial filter position coincides with the primary eigenvalue frequency:
ξ1 = Re(ζ1)), which gives rise to the output soliton, plus extra modes which are suppressed
by the in-line filtering. Notice that while they are present, these additional components
act like noise in the system and can lead to signal corruption by an uncontrollable shift
of the position of the primary soliton in its time slot. To provide an efficient conversion
of the phase-modulated NRZ signal into solitons, it is therefore important to suppress this
noise as early as possible during the transmission. A hybrid numerical–analytical approach
was proposed in [9] to analyze the conversion of an NRZ input to a soliton output signal in
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FIG. 3. The trajectories of all eigenvalues detected in the initial condition (27) (based on the numerical
simulation of the full equation processed by the nonlinear spectral transform). Here,ξ̃ is the eigenvalue frequency
with the sliding part being subtracted:ξ̃ = ξ − ω′

f z.

an optical line with sliding frequency guiding filters. The numerical part consists of apply-
ing the nonlinear spectral transform solver to the input signal. This allows us to identify the
soliton modes in the signal and then to follow the evolution of each single soliton mode by
applying the adiabatic approximation.

Another possible approach is to compute the solution of the perturbed nonlinear
Schrödinger equation (1) numerically with the NRZ signal as an initial condition and then
to analyze snapshots of the solution using the spectral code to provide a clear picture of
how the spectral data evolves in time. We illustrate the application of this approach to the
example above. Figure 3 presents the time evolution of the eigenvalues under the filtering
perturbation (25). Only one (primary soliton) out of four survives. Here,ξ̃ is the eigen-
value frequency with the sliding part being subtracted:ξ̃ = ξ − ω′

f z. Note that our code
is sensitive enough to catch the emergence of a transient soliton, which was absent at the
beginning. In the unperturbed case, soliton and nonsoliton modes do not interact with each
other, but this is not so in the general perturbed case. When one of the secondary solitons
disappears, it leaves behind a packet of dispersive waves. This wave packet can in turn start
to accumulate enough energy which it eventually “sheds” in the form of a small-amplitude
transient soliton.

It is remarkable that, with the exception of these transient episodes, the results on the time
evolution of the eigenvalues obtained numerically with the help of the nonlinear spectral
transform are in good agreement with the the results predicted by the adiabatic approxi-
mation. In fact, the availability of the nonlinear spectral code in this problem ultimately
verifies (and extensively complements) the adiabatic approximation. Such a code helps in
answering basic questions, such as: “How close is the output pulse to a soliton of the unper-
turbed NLS?” We calculate the amount of energy of the dispersive waves contained in the
output pulse by using our code and can definitely say that for the given practical parameters,
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the output pulse is an almost “pure” soliton. Only 2% of the total pulse energy is in the
nonsoliton components when the conversion process is over.

7. CONCLUSIONS

In this work, we have implemented two different algorithms to compute numerically the
direct spectral transform (the direct Zakharov–Shabat eigenvalue problem on the infinite
line) which is used heavily in soliton theory and its applications in nonlinear fiber optics.
The first algorithm uses a piecewise-constant approximation to the potential in order to
solve the corresponding ODE, and the second algorithm uses the fourth-order Runge–Kutta
method.

We have tested and compared the performance of these two algorithms on three exactly
solvable potentials. We find that, despite the fact that the truncation error of the Runge–
Kutta method is of higher order, the additional dependence of this error on the eigenvalues of
the Zakharov–Shabat spectral problem limits the usefulness of the Runge–Kutta approach.
Ultimately, this method can be effective only within the unit disk around the origin of
the complex plane of the eigenvalues. This is a critical limitation when computing the
nonsoliton part of the nonlinear spectrum, which can receive significant contributions from
intervals along the real axis far from the origin. Moreover, this additional dependence
poses restrictions on the class of potentials for which the discrete soliton spectrum can be
computed accurately. One example, which is important for signal analysis via nonlinear
Fourier transform, is that of a potentialq(t) which varies slowly int (and so the length
2L for the ODE computation can be fairly large). From system (2), it is easy to show
through a simple rescaling of time that this case is equivalent to one with a large amplitude
potential and a (rescaled) large eigenvalue parameter|ζ |. Thus, based on our error analysis,
the Runge–Kutta method can be expected to lose accuracy in this case.

The limitation suffered by the Runge–Kutta method can be expected to affect any high-
order ODE integrator. It is directly caused by the fact that the numerical truncation error
of the nth order method is proportional to thenth time derivative of the right-hand side
of the spectral ODE,F(n)(1t)n, whereF is the right-hand side of the ODE (18), and1t
is the mesh size. Due to the presence of the spectral parameterζ in the ODE, one has
|F(n)| ∼ ζ n, or ζ n+1, depending on which Eq. (18) or (3) is used. Therefore, any attempt to
increase the accuracy of the numerical solution by using a higher order numerical integrator
automatically fails as soon as|ζ | À 1. We have found that no such limitations exist for
the piecewise-constant approximation, and in fact, the truncation error for this method
decreases, instead of increasing, with large|ζ | as |ζ |−1. Conversely, the truncation error
analysis for higher order methods points to the fact that an efficient search for eigenvalues
near the origin is most effectively carried out using a higher order method like Runge–Kutta.

In summary, our work shows that the piecewise-constant approximation algorithm is the
better tool overall; it is the most robust and offers the same efficiency for the computation
of both discrete and continuous spectra.

We have illustrated the performance of a code based on this algorithm by applying it
to NRZ-to-soliton data conversion problem in a fiber-optical line with sliding frequency-
guiding filters. One of the important features of our algorithm is the optimization of the
search for eigenvalues in case of multiple snapshots of the potential. The NRZ-to-soliton
data conversion problem provides an example where the flow of the spectral data in perturbed
integrable systems needs to be analyzed. This problem can be divided into two independent
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tasks. First, the numerical solution of the perturbed equation is computed on a time grid
of stepsizeδt . Second, a spectral code is utilized to analyze snapshots of the numerical
solution taken at timesδt apart. We make use of the fact that in most cases the spectral data
are orderδt close for two consecutive snapshots of the numerical solution, and therefore it
is possible to use the spectral data computed for one snapshot of the potential as the initial
guess for the spectral data of the next snapshot. This optimization of the search algorithm
makes a tremendous difference when there are eigenvalues with large (in absolute value)
real parts. For example, we found that if there are eigenvalues with real parts greater than 0.5
then the search is more than five times faster if the information from the previous snapshot
of the potential is used. The optimized code is therefore especially valuable for tracking
the eigenvalues of potentials obtained as numerical simulations of perturbed integrable
equations.
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