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Abstract We present a new approach for the construction of stochastic subgrid scale parameterizations. Start-
ing from a high-resolution finite-difference discretization of some model equations, the new approach is based
on splitting the model variables into fast, small-scale and slow, large-scale modes by averaging the model
discretization over neighboring grid cells. After that, the fast modes are eliminated by applying a stochastic
mode reduction procedure. This procedure is a generalization of the mode reduction strategy proposed by
Majda, Timofeyev & Vanden-Eijnden, in that it allows for oscillations in the closure assumption. The new
parameterization is applied to the forced Burgers equation and is compared with a Smagorinsky-type subgrid
scale closure.

Keywords Subgrid scale modeling · Stochastic parameterization · Coarse-grained models ·
Large eddy simulation

1 Introduction

The construction of reduced models, describing only a small number of large-scale, low-frequency patterns
in the atmosphere–ocean system, is a topic of ongoing research. Such simplified models can provide a tool
for gaining insight into the comprehensive general circulation models (GCMs) with millions of degrees of
freedom. Reduced models can also be viewed as a numerically attractive alternative to GCMs for performing
paleoclimate or ensemble simulations. Such models can be formulated by projecting the governing equations
on some suitable basis functions, for example, empirical-orthogonal-functions (EOFs) [1,2,22,36] or principal
interaction patterns [4,21]. Alternative approaches in the construction of reduced models include the regres-
sion fitting of a linear operator [5,39] or the derivation of reduced model equations applying multiple scales
asymptotic techniques [12,23].
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A main issue in all strategies for the construction of reduced models is the parameterization of the unre-
solved scales or subgrid scales (SGS) (e.g., [3]). Such closure problems appear in a variety of atmosphere–
ocean applications, and recently, stochastic methods are successfully utilized for SGS parameterizations there
[6,11,18,31,32]. Stochastic parameterizations include stochastic differential equations (SDEs) (e.g., [9,15,
17]), Markov chains (e.g., [8,19,26]) and randomization of deterministic closure (e.g., [6,31]).

Majda, Timofeyev and Vanden-Eijnden proposed a systematic self-consistent mathematical framework
known as the MTV stochastic mode reduction strategy for parameterizing unresolved modes in climate mod-
els using SDEs [24,25,28]. The main assumptions in the general MTV procedure (see [24] for details) are: 1)
a scale separation in time between resolved/unresolved modes and 2) ergodicity and mixing in the underlying
system. Often the derivation of an explicit form of the SGS model can be considerably simplified by the ad hoc
approximation that the term describing fast self-interactions in the equation for the unresolved modes can be
modeled by a particular stochastic process, namely a stationary diagonal Ornstein–Uhlenbeck (OU) process.
The parameters of the OU process are estimated from data. With these parameters as input, the MTV procedure
systematically derives all deterministic and stochastic SGS correction terms in the equation for the resolved
modes. This semi-analytical approach differs from other studies [1,2,5,11,20] where an ad hoc approximation
is made in the equation for resolved variables. There, a certain type of model for the interactions between
resolved/unresolved modes is imposed and its coefficients are determined by some fitting procedure.

The assumption, made in the MTV, of a scale separation in time between the resolved and unresolved modes
has to be verified for the particular application in order to test the applicability of the theory. Indeed, there are
empirical approaches for SGS parameterization (e.g., [1,5,8]), which do not require a scale separation. How-
ever, such methods share the problem with the ad hoc assumption on the interactions discussed in the previous
paragraph. Further, the MTV stochastic mode reduction strategy has the advantage that it is rigorously valid in
the asymptotic limit of infinite scale separation. Moreover, a number of studies [14,15,25,28] demonstrated
that the MTV approach can be successfully applied in a variety of models ranging from simple to realistic
atmospheric models with more or less pronounced time scale separation.

In the MTV studies, we mentioned the resolved modes are defined by some leading global basis functions
such as Fourier harmonics or EOFs. These modes also evolve on the largest time scales. However, the explicit
formulation of the model equations using global basis functions effectively limits the number of large-scale
modes one can consider in atmospheric applications.

The main motivation for the current approach is the necessity to develop efficient numerical methods
for long-term integration of coupled atmosphere–ocean models. Ocean models are often discretized using
finite-difference or finite-volume schemes due to complex boundaries (e.g., [16]). Recently, finite-difference
discretizations are becoming more popular for global models of the atmosphere as well [29,33,34], while they
have traditionally been in use for regional atmospheric modeling. When considering the coupled system, one
has to develop reduced, coarse-grained models for computing the locally averaged wind stress in the atmo-
spheric boundary layer, which acts as a primary forcing mechanism the atmosphere exhibits on the ocean.
Therefore, the technique developed in this paper can be utilized to derive the effective coarse-grained model
for the local averages of various atmospheric quantities which will considerably accelerate the numerical
simulations of the coupled model.

In the current approach, the resolved and unresolved modes are defined locally (rather than using some
global basis functions) by utilizing a standard averaging method from large eddy simulation (LES). After that,
terms involving only SGS modes in the equation for the unresolved modes are parameterized by a stationary
and homogeneous in space OU process. The coefficients of this process are estimated from data. Next, all SGS
modes are eliminated by applying a stochastic mode reduction procedure. This procedure is a generalization
of the MTV mode reduction strategy, because it allows for oscillations in the closure assumption. The new
approach provides a framework for constructing SGS parameterizations consistent with the spatial discreti-
zation of the model. It also bears the potential for application in scenarios, like LES, where even the number
of resolved degrees of freedom is large. The new method is studied by applying it to the stochastically forced
Burgers equation.

The outline of this paper is as follows: in Sect. 2, we introduce the discrete version of the forced Burgers
model. In Sect. 3, we discuss the stochastic mode reduction procedure and present a reduced model with a
stochastic SGS closure. The performance of this model is assessed in Sect. 4, where it is compared with two
other reduced models. A summary and a conclusion are presented in the last section.
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2 The forced Burgers equation

2.1 Model formulation

The Burgers equation shows a lot of properties in common with the Navier–Stokes equations, for example,
quadratic nonlinearities, conservation and invariance properties. A stochastically forced Burgers equation
provides thus a test model for developing techniques for turbulence parameterization. We consider here the
one-dimensional Burgers equation with dissipation and random forcing (e.g., [7])

∂u

∂t
+ ∂

∂x

(
u2

2
− ν

∂u

∂x

)
= f (x, t) (1)

over a periodic domain of size L and with a constant diffusion coefficient ν. The function f (x, t) represents
a random forcing within some wavenumber range and will be specified later on. Discretizing Eq. (1) in space,
one can write

d

dt
ui +

Fi+ 1
2

− Fi− 1
2

Δx
= fi . (2)

Where ui and fi denote the values of the functions u and f at the center of the discrete cell i (i ∈ s =
{0, . . . , N − 1}) of width Δx = L

N ; Fi+ 1
2

and Fi− 1
2

denote the fluxes at the boundaries of cell i . These fluxes
have to be approximated using values from neighboring cells; here, we apply the discretization of [40] for the
quadratic nonlinearities and the standard three-point discretization for the diffusion term

Fi+ 1
2

= 1

6

(
u2

i+1 + ui ui+1 + u2
i

)− ν
ui+1 − ui

Δx
, (3)

Fi− 1
2

= 1

6

(
u2

i + ui ui−1 + u2
i−1

)− ν
ui − ui−1

Δx
. (4)

The above discretization conserves total momentum and total energy (in the absence of forcing and dissi-
pation). An analysis of its mathematical properties, as well as numerical simulations of different regimes in
the inviscid Burgers equation, can be found in [27].

The resolution scale Δx in the discrete model (2) has to be sufficiently small in order to resolve the dissi-
pation scale. In LES, the model equations are solved on some much coarser grid, so all effects of SGS have
to be parameterized. The discrete model has to be reformulated in terms of resolved and unresolved scales,
and this is done by averaging the equations. Following the volume-balance procedure of [35], we average
over neighboring, fixed in space, “fine” grid cells of the original width Δx . We define a “coarse” grid with a
spacing of nΔx and cell index set sx = {0, . . . , Nx − 1}, where Nx = N

n is the total number of coarse cells
(N multiple of n). Let xi , i ∈ sx denote the averaged values of ui , i ∈ s on the “coarse” grid, and xi is
computed by applying a top-hat filter to ui . This filtering can be written simply as the arithmetic mean over n
neighboring grid cells

xi = 1

n

n(i+1)−1∑
k=ni

uk . (5)

Next, we split ui into a mean xî and a deviation yi

ui = xî + yi , (6)

where the index î denotes the coarse cell in which the fine cell i is located. We will refer to xî , yi as resolved
and unresolved mode. Applying the averaging operator (5) to the discretized Burgers equation, Eq. (2) can be
written in terms of xî and yi

d

dt
xî +

Fn(î+1)− 1
2

− Fnî− 1
2

nΔx
= F x

î
, (7)

d

dt
yi +

Fi+ 1
2

− Fi− 1
2

Δx
−

Fn(î+1)− 1
2

− Fnî− 1
2

nΔx
= F y

i . (8)
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Here, F x , F y represent the projections of the forcing on the x, y-modes. We apply a forcing function
that projects only on the resolved modes. Such large-scale forcing is motivated by forcing mechanisms in the
atmosphere, for example, baroclinic instability, planetary scale orography and land–ocean thermal contrast.
The current approach is applicable to situations where the unresolved modes are forced as well, if the forcing
can be modeled as a stochastic process of linear Langevin type. The particular forcing function considered
here reads

F x
î

=
ke∑

k=kb

αk A√
kΔt

cos

(
2π

(
kînΔx

L
+ φk

))
, F y

i = 0, (9)

with αk, φk random numbers chosen from a normal distribution at each time step Δt of integration; kb and
ke define the wavenumber range of the forcing, and A is a constant. In the model presented here, kb, ke are
always set to some low wavenumber (either 1, 3 or 4, 7). As we will discuss later, the coarse grid width nΔx
is sufficiently small to resolve these wavenumber. Thus, the forcing (9) has the effect, as if the model is forced
in the same wavenumber range with a random forcing function f on the fine grid: the projection of f on the
unresolved modes is negligible. After testing this in numerical simulations, we consider here the forcing (9).
In this way, the model is accelerated, since the forcing has to be determined only over the coarse grid.

The flux terms in (7) and (8) contain both resolved and unresolved modes. We split these terms depending
on the modes involved and obtain the following system of ODEs for the discretized model equations

ẋi = F x
i +

∑
j∈sx

Lxx
i j x j +

∑
j∈sx

∑
k∈sx

Bxxx
i jk x j xk +

∑
j∈sx

∑
k∈s

Bxxy
i jk x j yk

+
∑
j∈s

∑
k∈s

Bxyy
i jk y j yk +

∑
j∈s

Lxy
i j y j , i ∈ sx , (10)

ẏi =
∑
j∈sx

L yx
i j x j +

∑
j∈sx

∑
k∈sx

B yxx
i jk x j xk +

∑
j∈sx

∑
k∈s

B yxy
i jk x j yk

+
∑
j∈s

∑
k∈s

B yyy
i jk y j yk +

∑
j∈s

L yy
i j y j , i ∈ s. (11)

Here, we have introduced the MTV notation for the interaction terms; the explicit form of the different
terms in the equations above is given in Appendix A. The terms denoted with Bαβγ arise from the quadratic
nonlinearities; the first superscript α indicates the modes on which they project, the second two, β and γ , the
two modes involved. The terms of the form Lαβ result from the dissipation term; again, the first superscript
denotes the modes on which it projects, and the second indicates the mode involved. In (10) and (11), the
indices of the summation signs go over s or sx , but one has to keep in mind that due to the local form of the dis-
cretization, only ‘neighboring’ indices are involved, implying that the tensors with the interaction coefficients
are sparse.

2.2 Model setup

Equations (10) and (11) represent another form of the discretized model (2), and we will refer to this model as
the full model and to its integration as direct numerical simulation (DNS). We integrate the full model in time
using a third-order Runge-Kutta method with the following choice of parameters: Δt = 10−2, ν = 0.02, L =
100, N = 512, A = √

210−2, kb = 1, ke = 3. We will refer to this setup as our reference setup. Model output
is written every 40 time steps, and we generate a time series with 1.5 × 106 entries. Most of the time, the
solution is characterized by up to three shocks that propagate in the domain and merge (e.g., see the figures in
[10]).

The power spectrum of u from DNS is shown in Fig. 1. Overall, three regions are visible in the spectrum:
an energy containing range for wave numbers k ≤ 3, an inertial range with a k−2 slope and a dissipation range.
Our goal is to derive from (10) and (11) a reduced model for the x-modes only and parameterize the effects
from the y-modes. The separation of u in x- and y-modes depends on the choice of the averaging interval
n in (5). The averaging interval defines a characteristic length scale for the x variables. This scale should be
on the one hand far from the dissipation scale and on the other hand small enough to resolve the large-scale
forcing in the model. We set the parameter n to 16; in the setup described above, it corresponds to resolving
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Fig. 1 Power spectrum of u from DNS with the reference setup, a line with a k−2 slope is also drawn
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Fig. 2 Spatially averaged time autocorrelation function (ACF) for the x- and y-modes from DNS with the reference setup

the x variables up to wave number kmax = N/(2n) = 16 (32 coarse grid cells). In this way, we can resolve
the energy containing range and only a part of the inertial range; the effects from the remaining scales have to
be modeled.

The MTV stochastic mode reduction procedure requires a scale separation in time between the x- and the
y-modes. The spatially averaged time autocorrelation functions (ACFs) of these modes are presented in Fig. 2.
Because of the spatial homogeneity of the model, all statistical moments for x we present in the paper are
computed by averaging over coarse grid cells (the statistics of the y-modes show some inhomogeneity inside
each coarse cell, but this is not crucial here). The different decay time scales (computed by evaluating the
area under the curves in Fig. 2) indicate that the x-modes are about five times slower than the y-modes. In
general, the autocorrelation time scales of x and y will depend on n and on the time scales set by the forcing
and dissipation.

In order to exclude bifurcation behavior in the Burgers model like the one reported for the Lorenz-96 model
[30], we performed a series of experiments by varying separately the control parameters of the system: the
magnitude of the forcing and the diffusion coefficient. Runs were performed with A = 0.1, 0.25, 0.3, 0.4 and
ν = 0.01, 0.015, 0.025, 0.03, 0.04. The various simulations did not show any qualitative difference from the
statistical behavior of the solution in the reference setup with A = 0.2, ν = 0.02.
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3 Stochastic mode reduction

3.1 Closure assumptions

In this section, we discuss the assumptions made in order to carry out the stochastic mode reduction procedure.
First, we observe that the variables y inside each coarse cell are subject to a constraint: they have to sum to zero,
and thus, only n − 1 y-modes are independent inside a coarse cell. As a consequence instead of N y-modes
in the whole domain, we have only Nz = N − Nx independent modes, which we denote with ŷ. These modes
are found by a Fourier transformation of the y-variables inside each coarse cell into wavenumber space and
dropping the zero mode. The transformation can be written in a formal way as

ŷk = T̂k j y j , (12)

y j = R̂ jk ŷk, (13)

with T̂ ∈ R
Nz ,N , R̂ ∈ R

N ,Nz , see Appendix B for details. Here, and in the following paragraphs, we make
use of Einstein’s summation convention. Next, we assume that in Fourier space the term L yy y + B yyy yy from
(11) can be modeled as an OU process in ŷ with drift and diffusion matrices Γ and Σ

T̂i j

(
L yy

jk yk + B yyy
jkl yk yl

)
= Γi j ŷ j + Σi j Ẇ j , (14)

where W j denotes a Wiener process. Further, we assume that the OU process couples only ŷ-modes corre-
sponding to the same coarse cell. Due to the spatial homogeneity of the model, we will have the same OU
parameters in each coarse cell. Thus, Γ, Σ can be represented as block-diagonal matrices, built from Nx blocks
of matrices g, s ∈ R

(n−1),(n−1)

Γ =

⎛
⎜⎜⎝

g . . . 0
... g

...

0
. . .

⎞
⎟⎟⎠ , Σ =

⎛
⎜⎜⎝

s . . . 0
... s

...

0
. . .

⎞
⎟⎟⎠ . (15)

Using standard techniques from time series analysis, the matrices Γ and Σ can be estimated from data.
This is done in the following way: we compute from the reference simulations a time series of y and of the
term L yy y + B yyy yy. These time series are transformed into Fourier space according to (12). From the new
time series we estimate the parameters of the OU process applying a standard maximum-likelihood-approach
[38].

For all estimates of Γ reported here, the eigenvalue analysis revealed a stable drift matrix. In general, Γ has
complex eigenvalues: the negative real parts assure the stability, and the imaginary parts describe an oscilla-
tion. If Γ can be diagonalized, then real matrices Λ, U, U−1 ∈ R

Nz ,Nz can be found, such that Γ = UΛU−1,
where Λ has a real block-diagonal form with the real parts of the eigenvalues of Γ on the main diagonal and
the imaginary parts on the upper/lower diagonal, see Appendix C for details. We introduce a new variable
zi (i ∈ sz = {0, . . . , Nz − 1}), defined by the transformation matrices T and R in the following way

zi = Tik yk = U−1
i j T̂ jk yk, (16)

yi = Rik zk = R̂i jU jk zk . (17)

Applying T to (11), making use of (14) and expressing the y-variables in terms of z, we obtain from (10)
and (11) the following system of SDEs

dxi =
(

F x
i + Lxx

i j x j + Bxxx
i jk x j xk + Bxxy

i jk x j Rkl zl + Bxyy
i jk R jl zl Rkm zm + Lxy

i j R jl zl

)
dt, (18)

dzi =
(

Ti j L yx
jk xk + Ti j B yxx

jkl xk xl + Ti j B yxy
jkl xk Rlm zm + Λi j z j

)
dt + Σ̂i j dW j . (19)

Here, we have introduced Σ̂ = U−1Σ . The classical MTV procedure for mode elimination [24] assumes
a diagonal diffusion coefficient in the noise term from (19). This assumption is also made in the current

approach, and Σ̂ is approximated by an effective diagonal matrix with diagonal elements σi =
(∑

j Σ̂2
i j

)1/2
.
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This approximation was verified in numerical simulations of the model (18) and (19) with full and approxi-
mated diffusion coefficient that showed no significant differences in the statistical behavior. Finally, Eqs. (18)
and (19) can be formally written in a more compact form as

dxi =
(

F x
i + Lxx

i j x j + Bxxx
i jk x j xk + 1

ε
Bxxz

i jk x j zk + 1

ε
Bxzz

i jk z j zk + 1

ε
Lxz

i j z j

)
dt, (20)

dzi =
(

1

ε
Lzx

ik xk + 1

ε
Bzxx

ikl xk xl + 1

ε
Bzxz

ikl xk zl + 1

ε2 Λi j z j

)
dt + 1

ε
σi dWi . (21)

Here, we have introduced a small parameter ε � 1, which is a measure of the scale separation in time
between the x and z (or y) modes. Introducing ε is a technical step in order to carry out the stochastic mode
reduction strategy, and ε is set to one in all final results. The different ε factors in front of the terms in (20) and
(21) indicate the different time scales of these terms. It was shown that the stochastic mode reduction strategy
can be applied for a wide range of models, where ε ranges from quite small up to order one [14,15,25,28].
Equations (20) and (21) represent the full model with Ornstein–Uhlenbeck closure, and we will refer to its
integrations as OU-DNS. The DNS and OU-DNS are compared in the next section.

3.2 Numerical tests of the asymptotic limit

The reduced stochastic model, introduced in Sect.3.3, represents the asymptotic limit ε → 0 of the OU-DNS.
Such limit corresponds to infinitely large time scale separation between the x and z (or y) modes. This moti-
vated us to study the limit ε → 0 by systematically decreasing the value of ε in (20), (21) and running the
resulting model.

Figure 3a–c and Table 1 show that for ε = 1, the OU closure reasonably approximates the power spectrum,
ACF and the kurtosis of x from the full model. As ε gets smaller, we observe that the overestimation of the
power at higher wavenumbers in the energy spectrum of the OU-DNS is slightly reduced, but there is tendency
of small overestimation at small wavenumbers. In the ACF (kurtosis), there is a small tendency to overestimate
(underestimate) the moments as ε → 0. However, we can conclude that the asymptotic limit of the OU-DNS
is close to the case ε = 1, and we can apply the stochastic mode reduction strategy. The results from the mode
elimination are summarized in the next section.

3.3 The reduced stochastic model with subgrid scale closure

The stochastic mode reduction is carried out by performing an asymptotic expansion in the Kolmogorov back-
ward equation corresponding to the SDEs (20), (21). For the detailed discussion of the procedure, we refer
to [24]; the generalization for an oscillating OU process is summarized in Appendix C. After eliminating the
SGS modes, we obtain the following effective stochastic differential equation for x

dxi (t) =
i+1∑

j,k=i−1

Bxxx
i jk x j xkdt +

i+1∑
j=i−1

Lxx
i j x j dt + F x

i dt

+
i+2∑

j=i−2

Mi j x j dt +
i+2∑

j,k=i−2

Qi jk x j xkdt +
i+2∑

j,k,l=i−2

Ci jkl x j xk xldt

+ σ (1)dW (1)
i + σ

(2)
i (x)dW (2)

i , (22)

where W (1), W (2) denote vectors with Nx entries of independent Wiener processes. We will refer to (22) as the
reduced stochastic model (RSM). The first three terms on the rhs. of (22) result from the full model when all
SGS modes are neglected. The other terms in (22) arise from the SGS model, they represent: linear, quadratic
and cubic corrections, additive noise and correlated additive and multiplicative noise. In order to stress the local
form of the SGS model, we explicitly give here the intervals for the summation signs. The explicit form of the
SGS parameterization is given in Appendix D. The RSM conserves total momentum, as the full model does.
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Fig. 3 Energy spectra, autocorrelation function (ACF) and kurtosis (KUR) of x for DNS and OU-DNS with different values of
ε. Reference setup. In the energy spectra, all curves nearly overlap for small wave numbers. The kurtosis for lag s is given by

K (s) = 〈x(t + s)2x2(t)
〉 {〈

x2(t)
〉2 + 2 〈x(t + s)x(t)〉2

}−1
, where 〈·〉 denotes a time average

Table 1 Variance (VAR) and integrated absolute value of the ACF (Int. ACF) of x from DNS and from OU-DNS with different
values of ε

DNS ε = 1 ε = 0.5 ε = 0.1

VAR 0.0247 0.0260 (0.05) 0.0269 (0.09) 0.0268 (0.09)
Int. ACF 141.2 133.8 (0.05) 139.8 (0.01) 151.4 (0.07)

The relative error of the OU-DNS with respect to the DNS value is given in brackets

4 Results for the reduced stochastic model

In the following section, we study the performance of the RSM by comparing its statistics with those from the
full model (DNS) and from two other reduced models. These two models are: the bare truncation model and a
model with Smagorinsky SGS parameterization. We will refer to these models as BRT and SMG, respectively.
The BRT is the RSM model with no SGS correction terms, and the SMG incorporates a purely diffusive-type
parameterization and is a benchmark model in LES. Details of the SMG can be found in the Appendix E.
Unless otherwise stated, the simulations presented here have the reference setup. Although the RSM allows a
larger time step than the DNS (because of the coarser resolution), the time step was not changed.

It is important to note that the BRT differs from the SMG with switched off SGS model (SMG-no-SGS).
In particular, the last model would be unstable for the present resolution. The difference between the two
models is in the dissipation term, which is proportional to ν/(nΔ2x) in BRT (see Eq. (31)) and to ν/(nΔx)2,
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Fig. 4 Energy spectra, autocorrelation function (ACF) and kurtosis (KUR) of x for DNS, bare truncation model (BRT), Smago-
rinsky SGS model (SMG) and reduced stochastic model (RSM). Reference setup

in SMG-no-SGS. Thus, the BRT can be considered as a SMG-no-SGS running with an increased value of the
diffusion coefficient νe f f = nν. This effective diffusion is sufficiently large for the model to be stable.

4.1 The reference setup

The spectra of the different models for the reference setup are shown in Fig. 4a. From all three reduced models
the spectrum of the RSM is the closest one to the DNS spectrum. Comparing the RSM with the BRT, it can be
stated that the inclusion of the SGS correction terms improves significantly the representation of the energy
cascade in the inertial range. These corrections describe a considerable backscatter of energy, because the BRT
is far more dissipative. At lower wavenumbers, the RSM slightly overestimates the energy compared with
SMG, but in the inertial range it is the only model that can produce a continuous power-law slope not far from
the one of the DNS.

From Fig. 4b, it is visible that all three models can capture the decay in the ACF from the DNS. The SMG
is here the model that produces the best match, and the RSM slightly overestimates the time scale (see also
Table 2). We also computed some higher order statistical moments for x . The lagged third-order moments
in the reduced models are vanishing, which is consistent with the DNS. The normalized lagged fourth-order
moments (kurtosis) of the reduced models are displayed in Fig. 4c. The kurtosis is a measure for deviations
from Gaussianity, since for a Gaussian distribution, it is equal to one. Figure 4c shows small departures from
Gaussianity in the DNS at all lags. All reduced models can to some extent reproduce the structure of the
kurtosis. The largest differences are visible at lag zero, where the RSM underestimates and the SMG and BRT
overestimate the kurtosis.
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Table 2 Variance (VAR) and integrated absolute value of the ACF (Int. ACF) for various models and different averaging
intervals n

DNS BTR SMG RSM

VAR
n = 8 0.0254 0.0231 (0.09) 0.0255 (0.01) 0.0266 (0.05)
n = 16 0.0247 0.0206 (0.17) 0.0256 (0.04) 0.0272 (0.10)
n = 32 0.0230 0.0166 (0.28) 0.0247 (0.07) 0.0268 (0.17)

Int. ACF
n = 8 138.2 146.5 (0.06) 135.4 (0.02) 140.7 (0.02)
n = 16 141.2 155.0 (0.10) 145.7 (0.03) 159.7 (0.13)
n = 32 147.5 162.3 (0.10) 151.6 (0.03) 177.9 (0.21)

The relative error with respect to the DNS value is given in brackets

4.2 Resolution tests

In order to assess the new SGS parameterization, we performed simulations by changing some of the param-
eters in the reference setup. The RSM was derived in a systematic way for a particular choice of the OU
parameters and one important question arising is how universal these parameters are. The OU closure models
a term involving only SGS modes. From a turbulence viewpoint, the behavior of the SGS motion remains
qualitatively similar for different large-scale regimes, i.e., it extracts energy from the large-scale flow, so one
might expect that the OU parameters will also be valid for different regimes in the Burgers model.

We performed simulations with the reduced models for different numbers of coarse cells, but running the
RSM with the SGS parameterization for the reference setup. For a particular resolution on the fine grid, increas-
ing (lowering) the number of coarse cells in the DNS corresponds to lowering (increasing) the number of SGS
modes, which have to be parameterized in the reduced model. The number of coarse cells Nx is controlled by
the averaging interval n, and we have performed simulations with n = 8, 32 corresponding to Nx = 64, 16
(where n = 16 and Nx = 32 are the values from the reference setup).

The results from these runs are depicted in Figs. 5 and 6. The RSM model performs reasonably well in
reproducing the spectrum of the full model, although the SGS model was not recomputed for the new setups.
The RSM captures considerably better the inertial range than the other two reduced models do. All three
models can mimic the decay of the ACF in the DNS, but for n = 32, the BRT and RSM overestimate the decay
time scale. The large-scale structure of the kurtosis is captured by the models; however, for small lags, they
are showing deviations qualitatively similar to those from the reference setup simulation.

In Table 2, we have summarized the results for the variance and ACF from the different simulations. As a
measure for the quality of describing the ACF, we considered the integrated absolute value of the ACF. From
the table, it is seen that the RSM and SMG models overestimate the variance; however, the SMG is more
accurate. Both models are considerably better than the BTR, which is too dissipative. From the values of the
integrated ACF, we can confirm the observations from the figures: all models can capture the ACF and there
is a tendency for RSM and BRT to overestimate the ACF for increasing n.

In Table 3, the relative errors for fourth- and sixth-order statistical moments at lag zero are presented; the
odd moments nearly vanish and are not shown. Overall, it can be stated that the RSM captures higher moments
much more accurately than the SMG and BRT.

By inspecting the ACF of the x- and y-modes from the DNS, we found that the scale separation between
the resolved and the SGS modes decreases for increasing n. This can explain the diminishing accuracy of the
RSM for larger n (see Tables 2, 3), since the RSM is rigorously valid in the asymptotic limit for infinitely large
scale separation. We refitted the OU closure parameters for the simulations with n = 8, 32 and recomputed
the SGS parameterization terms in the RSM. The new correction terms improve the performance of the RSM
by reducing the relative error by approximately 20 % of the original value (not shown).

4.3 Forcing in the intermediate range

We addressed the question how sensitive the results presented above are with respect to the scales forced in
the model. For that purpose, we excited in the random forcing function (9) modes within an intermediate
wavenumber range k = 4 − 7 (instead of k = 1 − 3 from the reference setup). Some of the results are depicted
in Fig. 7. In the new regime, the BRT completely fails to capture the statistics of the full model, whereas the
RSM and SMG have still some skill. The RSM systematically overestimates the power at all scales; however,
in the inertial range, it is closer to the DNS than the SMG (the latter model showing deviations of more than one
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Fig. 5 As in Fig. 4 but for an averaging interval n = 8

order magnitude). The performance of the RSM and SMG reproducing the lagged second- and fourth-order
moments is qualitatively similar to the one from the resolution tests discussed above. We have to stress that
for the regime presented here, the SGS parameterization in the RSM was not recomputed again.

4.4 Budget analysis

One advantage of the SGS parameterization derived by stochastic mode reduction is that the different SGS
corrections can be attributed to different physical processes [24,25,28]. Performing a budget analysis for the
different SGS correction terms, the importance of different physical interactions can be assessed in a systematic
way [14,15]. In order to evaluate the contributions of various SGS corrections, we regroup these terms as

dxi (t) =
i+1∑

j,k=i−1

Bxxx
i jk x j xkdt +

i+1∑
j=i−1

Lxx
i j x j dt + F x

i dt + λa

⎛
⎝ i+2∑

j=i−2

Ma
i j x j dt + σ (1)dW (1)

i

⎞
⎠

+ λm

⎛
⎝ i+2∑

j=i−2

Mm
i j x j dt +

i+2∑
j,k,l=i−2

Ci jkl x j xk xldt

⎞
⎠+ λl

i+2∑
j=i−2

Ml
i j x j dt

+ λlλm

i+2∑
j,k=i−2

Qi jk x j xkdt + σ
(2)
i (x, λm, λl)dW (2)

i , (23)
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Fig. 6 As in Fig. 4 but for an averaging interval n = 32

where λa = λm = λl = 1 corresponds to the complete reduced stochastic model. Interactions between the
terms Bxyy and B yxy in the full model are called additive triad interactions. They give rise to linear corrections
and additive noise in the SGS parameterization. We will refer to these SGS terms as additive corrections, and
we place λa in front of them to denote their origin. Multiplicative SGS correction terms, indicated by λm ,
include linear and cubic terms, as well as multiplicative noise. These terms are produced by the multiplicative
triad interactions between Bxxy and B yxx . Linear correction terms and additive noise in SGS terms, which arise
from interactions between L yx and Lxy , are called augmented linearity and are denoted with λl . Interactions
between L yx and Bxxy , as well as between Lxy and B yxx , create quadratic correction terms in the reduced
model. We indicate these terms by the factors λl and λm in front of them, because they can arise only when
both augmented linearity and multiplicative corrections are included. The explicit form of the SGS correction
terms described above is given in Appendix D.

It was already shown that for the reference setup, the BRT model (λa = λm = λl = 0) can capture
the ACF and to some extent also the variance of the DNS. This motivated us to perform a number of runs
by systematically adding one type or a combination of two types of SGS correction terms to the BRT. All
parameters in these runs were chosen as in the reference setup.

Looking at the ACFs, presented in Fig. 8a, one can say that the additive and multiplicative corrections
alone can describe the decay time scale. However, the inclusion of the augmented linearity in a model with
additive corrections spoils the performance, see Fig. 8b. Only models that include either multiplicative and
additive corrections or multiplicative corrections and augmented linearity can still capture the ACF. Figure 9
demonstrates that the multiplicative corrections and augmented linearity are the most dominant terms in SGS
parameterization. The model containing these corrections is able perfectly to match the spectrum of the full
RSM, and the error in the variance is only about 1 %.
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Table 3 Relative error in the 4th and 6th statistical moments for various reduced models when compared with DNS

BTR SMG RSM

Error 4th moment
n = 8 0.14 0.06 0.04
n = 16 0.27 0.16 0.09
n = 32 0.44 0.28 0.20

Error 6th moment
n = 8 0.16 0.22 0.01
n = 16 0.31 0.41 0.02
n = 32 0.52 0.61 0.14

Shown are the results for different averaging intervals n
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Fig. 7 As in Fig. 4 but for a forcing at modes k = 4 − 7

5 Summary and conclusions

In the present paper, we presented an approach for the construction of a stochastic SGS parameterization
inferred from the finite-difference discretization of the model equations. The SGS model includes linear and
nonlinear deterministic corrections, as well as additive and multiplicative noise terms. The particular form of
the SGS correction terms is derived in a systematic way from the discretized model by applying a stochastic
mode reduction. This procedure is a generalization of the MTV mode reduction strategy [24,25,28], in that it
allows for oscillations in the closure assumptions. The SGS parameterization is rigorously valid in the limit
of infinite scale separation between resolved and unresolved modes. The SGS model does not require any
regression fitting of the resolved modes; it is based on the assumption that the terms involving only SGS
modes in the equations for the SGS modes can be modeled as a low-dimensional, stationary and homogeneous
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Fig. 8 Autocorrelation function of x computed with the reduced stochastic model including different correction terms: bare
truncation (BRT), additive triads (ADD), multiplicative triads (MUL), augmented linearity (AUL) and full reduced stochastic
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Fig. 9 Spectra of x computed with the reduced stochastic model including different correction terms: bare truncation (BRT),
additive triads (ADD), multiplicative triads (MUL), augmented linearity (AUL) and full reduced stochastic model (RSM). The
curves for the BRT+MUL+AUL model and RSM overlap

in space Ornstein–Unlenbeck (OU) process. The parameters of this process were estimated from a time series
of the SGS modes.

The new method was applied for the construction of a reduced stochastic model (RSM) with SGS clo-
sure for the forced Burgers equation. The performance of the RSM was assessed by comparing its statistics
with those from two other reduced models: a reduced model without a SGS parameterization (BRT) and a
model with Smagorinsky SGS closure (SMG) (the BRT differs from the SMG with switched off SGS closure).
Inspecting the energy spectra of the models, we found that the RSM is the only model that can produce a
continuous power-law slope in the inertial range, close to the DNS spectrum. All reduced models are able to
capture the structure of the autocorrelation function (ACF) and lagged kurtosis. The SMG is performing best in
simulating the variance and the decay time scale of the ACF; however, the difference to the RSM is moderate.
For the reference setup, the relative errors in the variance/ACF are as follows: 4/3 % for SMG and 10/13 %
for RSM, respectively. The RSM shows the lowest errors in the simulation of the fourth/sixth moments: 9/2 %
for RSM and 16/41 % for SMG, respectively.

The parameters of the low-dimensional OU process entering in the SGS parameterization for the RSM were
estimated from data for a particular model setup. In practical applications when different model regimes are
considered, it is desirable to have a universal SGS model and to avoid the necessity of recomputing new SGS
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correction terms. This motivated us to perform simulations with the RSM by varying separately the number of
resolved modes and the forcing range, but using the SGS model from the standard setup. The RSM was still
able to capture main statistical properties of the DNS. Its performance and the performance of the other two
reduced models were qualitatively similar to the results from the reference setup.

We performed a budget analysis for the RSM. This analysis suggests that the dominant SGS terms are
the augmented linearity and multiplicative corrections. It was shown further that a RSM without the additive
SGS corrections is almost perfectly able to reproduce the behavior of the full RSM. A study with the inviscid
Burgers equation, which will be presented somewhere else [13], shows that there the additive SGS corrections
are the most important. These corrections result from nonlinear interactions between SGS modes. Interactions
of this type are the most numerous, which explains the dominance of the additive corrections in the inviscid
model. However, in the dissipative case, considered here, the magnitude of the SGS modes is considerably
smaller than the one of the resolved modes. Thus, terms linear in the SGS modes become important; such
terms describe linear interactions with SGS modes or interactions between resolved and SGS modes. They
give rise to multiplicative corrections and augmented linearity in the RSM. These terms were also found to be
the dominant corrections in a EOF-based reduced quasigeostrophic model [14].

One possible further extension of the current approach is to incorporate additional information on the SGS
self-interactions in the closure assumption: for example, by increasing the dimensionality of the OU process. In
the present model, the OU process couples only SGS modes inside a particular coarse cell, but it can be easily
modified to take into account interactions between SGS modes in neighboring coarse cells. Some preliminary
work in this direction gave promising results. In the future, the authors plan to apply the present approach to
a simplified atmospheric model. The application to turbulence parameterization might be another interesting
line of research to follow.
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Appendix A: Tensor notation

The quadratic interaction terms from (10) and (11) are given by

∑
j∈sx

∑
k∈sx

Bxxx
i jk x j xk = − 1

6nΔx

(
x2

i+1 + xi xi+1 − xi xi−1 − x2
i−1

)
, (24)

∑
j∈s

∑
k∈s

Bxyy
i jk y j yk = − 1

6nΔx

(
y2

ir + yir yir+1 + y2
ir+1 − y2

il − yil yil−1 − y2
il−1

)
, (25)

∑
j∈sx

∑
k∈s

Bxxy
i jk x j yk = − 1

6nΔx
(2xi yir + xi yir+1 + xi+1 yir + 2xi+1 yir+1

−2xi yil − xi yil−1 − xi−1 yil − 2xi−1 yil−1), (26)∑
j∈sx

∑
k∈s

B yxy
i jk x j yk = − 1

6Δx

(
2x[ i+1

n ]yi+1 + x[ i+1
n ]yi + x[ i

n ]yi+1

−2x[ i−1
n ]yi−1 − x[ i−1

n ]yi − x[ i
n ]yi−1

)

+ 1

6nΔx
(2x[ i

n ]yir + x[ i
n ]yir+1 + x[ i

n ]+1 yir + 2x[ i
n ]+1 yir+1

−2x[ i
n ]−1 yil−1 − x[ i

n ]yil−1 − x[ i
n ]−1 yil − 2x[ i

n ]yil), (27)

∑
j∈sx

∑
k∈sx

B yxx
i jk x j xk = − 1

6Δx

(
x2
[ i+1

n ] + x[ i
n ]x[ i+1

n ] − x2
[ i−1

n ] − x[ i
n ]x[ i−1

n ]
)

+ 1

6nΔx

(
x2
[ i

n ]+1
+ x[ i

n ]x[ i
n ]+1 − x2

[ i
n ]−1

− x[ i
n ]x[ i

n ]−1

)
. (28)



S. I. Dolaptchiev et al.

In the equations above, the index [i/n] denotes the coarse cell corresponding to the fine cell i and the index
ir(il) marks the fine cell at the right (left) boundary of a coarse cell

ir =
{

([ i
n ] + 1)n − 1 if i ∈ s

(i + 1)n − 1 if i ∈ sx
, (29)

il =
{

([ i
n ])n − 1 if i ∈ s

in − 1 if i ∈ sx
. (30)

The linear interaction terms from (10) and (11) are given by

∑
j∈sx

Lxx
i j x j = ν

nΔx2 (xi+1 − 2xi + xi−1), (31)

∑
j∈s

Lxy
i j y j = ν

nΔx2 (yir+1 − yir − yil + yil−1), (32)

∑
j∈sx

L yx
i j x j = ν

Δx2 (x[ i+1
n ] + x[ i−1

n ] − 2x[ i
n ]) − ν

nΔx2 (x[ i
n ]+1 − 2x[ i

n ] + x[ i
n ]−1), (33)

∑
j∈s

L yx
i j y j = ν

Δx2 (yi+1 − 2yi + yi−1) − ν

nΔx2 (yir+1 − yir + yil − yil−1). (34)

Appendix B: Fourier transformation

We introduce the following notation for the y-modes

yi → yî
j , (35)

where to each fine cell index i (i ∈ s), we can assign a corresponding coarse cell î and an index j ∈
{0, . . . , n − 1}, denoting the position of the fine cell inside cell î . The Fourier transformation of the modes
inside a coarse grid cell can be written as

ỹî
k = 1

n

n−1∑
j=0

e−ı 2π
n jk yî

j , (36)

yî
j =

n−1∑
k=1

eı 2π
n jk ỹî

k . (37)

Here, ı = √−1 and k in (37) take values only between 1 and n − 1, because we skip the mode ỹî
0, which

is always zero due to the definition of the y-variables. Thus, by transforming yî
j , j = 0, . . . , n − 1 according

to (36) and (37), we end with a complex sequence of n − 1 elements: ỹî
k, k = 1, . . . , n − 1. Since yî

j is real,

only n − 1 real numbers, which we denote with ŷî
j , are required to represent the complex sequence ỹî

k (instead

of 2(n − 1)). From (36) and (37), we can determine real matrices T̄ , R̄ (T̄ ∈ R
n−1,n, R̄∈

R
n,n−1) satisfying

ŷî
k = T̄k j yî

j , (38)

yî
j = R̄ jk ŷî

k . (39)

Finally, the matrix T̂ (R̂) from (12) and (13) is constructed by replicating Nx times T̄ (R̄) on the diagonal
of a Nz × N (N × Nz) zero matrix.
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Appendix C: Stochastic mode reduction for an oscillating Ornstein–Uhlenbeck process

The drift matrix Γ in the Ornstein–Uhlenbeck process (14) has eigenvalues λ j = −γ̂ j ± ıω̂ j (γ̂ j , ω̂ j ∈ R+),
with γ̂ j > 0 for a stable OU process. The complex eigenvalues (ω̂ j 	= 0) form complex-conjugate pairs
λ j , λk(k 	= j) such that λ∗

j = λk . If Γ can be diagonalized, we can find a real Jordan canonical form

Γ = UΛU−1: here Λ, U, U−1 ∈ R
Nz ,Nz and Λ has a block-diagonal structure with either blocks of 2 × 2

matrices (−γ̂ j ω̂ j
−ω̂ j −γ̂ j

)
(40)

or with the scalar −γ̂ j on the main diagonal and zero everywhere else. The classical MTV strategy [24] for
mode elimination can be applied to the OU-DNS model (20) and (21) if Λ in (21) is a real diagonal matrix.
This corresponds to the case when the drift matrix Γ in the Ornstein–Uhlenbeck closure has real eigenvalues
only. However, our estimate for Γ has complex eigenvalues (we did not succeed in finding a matrix Γ with
real eigenvalues only such that the corresponding OU-DNS model performs well). This requires an extension
of the mode reduction strategy for matrices Λ with the block structure as in (40).

Next, we introduce a vector γ containing the absolute values of the real parts of the eigenvalues of Γ , the
i th component (i ∈ sz) is defined by

γi = |Λi i |. (41)

In addition, we introduce a vector ω with the imaginary parts of the eigenvalues as components

ωi =
⎧⎨
⎩

Λi i+1, if Λi i+1 	= 0
Λi i−1, if Λi i−1 	= 0
0, else

. (42)

Later on, we will make use of a vector σ that has as i th component σi from (21).
The Kolmogorov backward equation corresponding to the stochastic differential equations (20), (21) can

be written as

∂ρ

∂t
= 1

ε2 L1ρ + 1

ε
L2ρ + L3ρ, (43)

where we have adopted the notation from [24] (see Eq. (4.23) there) but with the modified operator L1

L1 = −
⎛
⎝∑

i, j

Λi j z j
∂

∂zi
+ σ 2

i

2

∂2

∂z2
i

⎞
⎠ . (44)

The order ε−2 equation from (43) defines an auxiliary stochastic process with an invariant probability
distribution π given by

π(z) = C0 exp

{
−1

2
zT D−1z

}
. (45)

Here, z is a vector with zi as i th component, C0 is a normalization constant, and the matrix D is given by

Di j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2
i

2γ 2
i +ω2

i
4γi (γ

2
i +ω2

i )
+ σ 2

i−1
ω2

i
4γi (γ

2
i +ω2

i )
, j = i, ωi > 0

σ 2
i

2γ 2
i +ω2

i
4γi (γ

2
i +ω2

i )
+ σ 2

i+1
ω2

i
4γi (γ

2
i +ω2

i )
, j = i, ωi < 0

σ 2
i

2γi
, j = i, ωi = 0

(σ 2
i − σ 2

i−1)
ω2

i
4(γ 2

i +ω2
i )

, j = i + 1, ωi > 0

(σ 2
i+1 − σ 2

i )
ω2

i
4(γ 2

i +ω2
i )

, j = i − 1, ωi < 0

0, else

. (46)
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However, in order to satisfy the solvability condition (see [24] and (4.29) there), we require for the com-
ponents in σ

σi = σi−1 = 1

2
(σi + σi−1), if ωi > 0. (47)

Thus, (46) reduces to

Di j =
{

σ 2
i

2γi
, j = i

0, else
. (48)

The stochastic mode reduction procedure requires the computation of the inverse operator L−1
1 . In partic-

ular, it could be shown that

L−1
1 zi =

∞∫
0

dτ zi (τ ) = Li j z j , (49)

L−1
1 zi z j =

∞∫
0

dτ zi (τ )z j (τ ) = Pi jkl zk zl , (50)

where

Li j =

⎧⎪⎨
⎪⎩

γi

γ 2
i +ω2

i
, j = i

ωi
γ 2

i +ω2
i
, j = i + sgn(ωi ), ωi 	= 0

0, else

, (51)

Pi jkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

κi j (γi + γ j )
(
(γi + γ j )

2 + ω2
i + ω2

j

)
, k = i, l = j

κi jωi

(
(γi + γ j )

2 + ω2
i − ω2

j

)
, k = i + sgn(ωi ), l = j, ωi 	= 0

κi jω j

(
(γi + γ j )

2 + ω2
j − ω2

i

)
, k = i, l = j + sgn(ω j ), ω j 	= 0

2κi jωiω j (γi + γ j ), k = i + sgn(ωi ), l = j + sgn(ω j ), ωi, j 	= 0
0, else

, (52)

κi j = {((γi + γ j )
2 + (ωi − ω j )

2) ((γi + γ j )
2 + (ωi + ω j )

2)}−1
, (53)

and we have used the sign function

sgn(x) =
{

1 x ≥ 0
−1 x < 0 . (54)

With the expressions from (48), (49) and (50), it is straightforward to carry out the mode reduction proce-
dure. The explicit form of the SGS correction terms is given in the next section.

Appendix D: Coefficients in the reduced stochastic model

As discussed in Sect. 4.4, the different SGS correction terms in the RSM can be regrouped depending on their
origin. The resulting deterministic terms are given by

i+2∑
j=i−2

Ma
i j x j =

∑
j

∑
m,n,p,q

2Bxzz
imn Bzxz

pjq Pmnpq Dqq x j , (55)

i+2∑
j=i−2

Mm
i j x j =

∑
j

∑
k,l,n

Bxxz
iln Bxxz

l jk x j Lnk Dkk, (56)
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i+2∑
j,k,l=i−2

Ci jkl x j xk xl =
∑
j,k,l

∑
p,q

Bxxz
ilp Bzxx

q jk L pq x j xk xl , (57)

i+2∑
j=i−2

Ml
i j x j =

∑
j

∑
l,m

Lxz
im Lzx

l j x j Lml , (58)

i+2∑
j,k=i−2

Qi jk x j xk =
∑
j,k

∑
l,n

(
Bxxz

ikn Lzx
l j Lnl x j xk + Lxz

in Bzxx
l jk Lnl x j xk

)
. (59)

For the construction of the stochastic correction terms, we neglected the correlations of noise terms in dif-
ferent cells, that is, we assume a diagonal diffusion matrix. The resulting noise terms in the RSM are given by

σ (1) = 2
√ ∑

j,k,m,n

Bxzz
i jk Bxzz

imn Pmnjk D j j Dkk, (60)

σ
(2)
i (x, λm, λl) =

√√√√√2
(i+2)n−1∑
k=(i−1)n

⎛
⎝λl

∑
p

Lxz
ip L̂ pk + λm

i+1∑
j=i−1

∑
p

Bxxz
i j p x j L̂ pk

⎞
⎠

2

. (61)

Here, the matrix L̂ is defined by the decomposition

Ls = L̂ L̂T , (62)

where Ls is the symmetric part of the matrix L̄ = L D : Ls = 1
2

(
L̄ + L̄T

)
.

For the explicit computation of the SGS correction terms we utilized the MATLAB symbolic toolbox. We
obtain the following expressions (rounded to three decimal places)

i+2∑
j=i−2

Ma
i j x j = a2

n

(
.203 · 10−5xi−2 + .854 · 10−4xi−1 − .183 · 10−3xi

+.939 · 10−4xi+1 + .180 · 10−5xi+2

)
(63)

i+2∑
j=i−2

Mm
i j x j = a2

n2

(−.108 · 10−3xi−2 − .149 · 10−3xi−1 + .596 · 10−3xi

−.230 · 10−3xi+1 − .108 · 10−3xi+2
)

(64)
i+2∑

j,k,l=i−2

Ci jkl x j xk xl = a2

n

(−.404x2
i−2xi−1 − .404xi−2x2

i−1 + 5.23x3
i−1 + 3.46xi x

2
i−1 − 2.66x2

i xi−1

+.407xi+1xi xi−1 + .205x2
i+1xi−1 − .202x2

i−2xi − .202xi−1xi−2xi − 10.5x3
i

−2.64xi+1x2
i + 3.47x2

i+1xi − .205xi+2xi+1xi − .205x2
i+2xi + .202x2

i−1xi+1

+5.23x3
i+1 − .409xi+2x2

i+1 − .409x2
i+2xi+1

)
i+2∑

j=i−2

Ml
i j x j = b2

n
(−.202xi−2 − 1.36xi−1 + 3.13xi − 1.36xi+1 − .205xi+2) (65)

i+2∑
j=i−2

Qi jk x j xk = ab

n

(
.404xi−2xi−1 + .480x2

i−1 − 2.58xi xi−1 + .253 · 10−2xi+1xi−1 (66)

+.202xi−2xi − .697 · 10−2x2
i + 2.58xi+1xi − .205xi+2xi − .473x2

i+1

−.409xi+2xi+1 + .202x2
i−2 + .202xi−2xi−1 − 1.49x2

i−1 + 1.56xi xi−1

−.313 · 10−2x2
i − 1.56xi+1xi + 1.50x2

i+1 − .205xi+2xi+1 − .205x2
i+2

)
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σ (1)dW (1)
i = a

n
1.208 · 10−4dW (1)

i (67)

In the equations above, a = −1/(6Δx) and b = ν/Δx2.

Appendix E: Smagorinsky SGS model

After applying a spatial filter of width Δ f , the Burgers equation can be written as

∂u

∂t
+ ∂

∂x

(
u2

2
− ν

∂u

∂x

)
= f (x, t) − 1

2

∂τ

∂x
, (68)

where τ denotes the SGS stress resulting from the filtering procedure. The Smagorinsky SGS model [37]
relates the SGS stress to the deformation of the filtered variable u in the following way

τ = −2CsΔ
2
f

∣∣∣∣∂u

∂x

∣∣∣∣ ∂u

∂x
. (69)

Here, Cs denotes the Smagorinsky constant; a typical value from the literature is Cs = 0.2. In the numerical
simulations, we choose for the filter width Δ f = Δx .
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