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In this paper, we introduce and study one-dimensional models for the behavior of pedes-

trians in a narrow street or corridor. We begin at the microscopic level by formulating a
stochastic cellular automata model with explicit rules for pedestrians moving in two op-

posite directions. Coarse-grained mesoscopic and macroscopic analogs are derived leading

to the coupled system of PDEs for the density of the pedestrian traffic. The obtained
first-order system of conservation laws is only conditionally hyperbolic. We also derive
higher-order nonlinear diffusive corrections resulting in a parabolic macroscopic PDE

model. Numerical experiments comparing and contrasting the behavior of the micro-
scopic stochastic model and the resulting coarse-grained PDEs for various parameter

settings and initial conditions are performed. These numerical experiments demonstrate

that the nonlinear diffusion is essential for reproducing the behavior of the stochastic
system in the nonhyperbolic regime.
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1. Introduction

In contrast with the considerable effort devoted to the modeling of vehicular traffic,

modeling of pedestrian traffic received little attention until fairly recently. In the

past two decades, a variety of pedestrian traffic and crowd dynamics models have

been proposed, ranging from agent-based microscopic to macroscopic PDE mod-

els describing various phenomena such as crowd behavior under panic, pedestrian

planning, structural design, etc., see Refs. 3, 14, 16 and the review papers Refs. 4,

15 for examples and references.

Cellular automata (CA) has a long history of applications in different areas of

science and engineering. In particular, the CA models have been applied to the

vehicular traffic to derive a coarse-grained PDE description with the look-ahead

dynamics for the density of the car traffic Ref. 25. Multilane and multiclass were

also considered as extensions of the original model Refs. 1, 9, 8, 26. CA microscopic

models with empirical rules have also been used to simulate pedestrian movement

Refs. 5, 7, 10, 12.

The main emphasis of the present work is on the connection between the micro-

scopic CA models for the bi-directional pedestrian traffic and its coarse-grained PDE

analogs. In particular, we utilize the CA approach to formulate a one-dimensional

(1-D) microscopic model for the pedestrian motion in a narrow street of corridor

and derive a corresponding PDE description for the density of the pedestrian flow.

The present work is motivated by the recent pedestrian experiments and model-

ing discussed in Refs. 2, 21, where the authors consider the pedestrian motion in

a circle and modeled the crowd movement using a system of 1-D PDEs. There-

fore, this paper illustrates how microscopic interaction rules can be coarse-grained

and are manifested in a macroscopic PDE model. In addition, we also derive a

nonlinear second-order diffusive correction of the obtained first-order PDE model.

These diffusive terms are derived systematically and can be used in other models of

pedestrian traffic instead of an approach where diffusive terms are often added to

the right-hand side in an ad-hoc fashion. Another mathematical question which is

addressed in this paper is the validity of the approximate independence assumption.

This assumption is commonly used in the derivation of various coarse-grained PDE

models from their microscopic CA formulation. We demonstrate that the strength

of interactions weakly affects the independence assumption and, ultimately, leads to

the break down of the coarse-grained derivation. Nevertheless, our simulations show

that the coarse-grained PDE model is valid for a wide range of parameters. More-

over, we also demonstrate that the nonlinear diffusion is essential for reproducing

the behavior of the microscopic model in some regimes.

Several other papers use similar approach for studying various coarse-grained

PDE models derivaed from a CA formulation for the microscopic agent behavior.

For instance, models of the the cell motility are explored in Refs. 19, 24 with par-

ticular emphasis on comparing the numerical simulations of the CA model and the

coarse-grained PDE, a detailed analysis of the macroscopic PDE describing the
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coarse-grained stochastic interaction of multispecies via an exclusion process was

carried out in Ref. 6, and an overview for the derivation of coarse-grained PDEs

from lattice models with exclusions was presented in Ref. 23. Nevertheless, this pa-

per emphasizes that the coarse-grained PDEs are usually conditionally hyperbolic

conservation laws to the leading order and the diffusive correction only appear as

the next-order effects. Moreover, derivation of the coarse-grained macroscopic PDE

models typically involves closure assumptions on the behavior of the stochastic ex-

clusion process. These two important points are explicitly illustrated in the present

paper through a detailed discussion on the derivation of the coarse-grained PDE

model and numerical simulations.

The major advantage of the CA formalism is that it allows for a systematic

derivation of the coarse-grained dynamics. The main assumptions about the traffic

flow (vehicular or pedestrian) are build into the microscopic model. The derivation

of the coarse-grained description typically requires some simplifying assumptions

about the statistical behavior of the microscopic model which can be numerically

verified.

The main conceptual difference between the CA models of the vehicular traf-

fic and the CA model studied in this paper is that the pedestrian motion is bi-

directional which leads to completely new paradigms. In particular, the coarse-

grained description of the pedestrian traffic becomes a system of conservation laws

which is only conditionally hyperbolic. We demonstrate that this system may ex-

hibit an unrealistic nonhyperbolic behavior, depending on the magnitude of the

density of the pedestrian traffic. To overcome this difficulty, we systematically de-

rive nonlinear diffusive corrections to the PDE model from the original microscopic

description.

The paper is organized as follows. In Section 2, we introduce the microscopic

CA model. In Sections 3 and 4, we discuss the derivation of the mesoscopic and

macroscopic analogs for the density of the pedestrian traffic, as well as derive the

next-order nonlinear diffusive corrections for the macroscopic PDE model. In Sec-

tion 5, we describe several sets of simulations, in which the microscopic and macro-

scopic PDE models are compared illustrating, in particular, the effect of diffusion

for the initial conditions leading to the regime of nonhyperbolicity of the inviscid

macroscopic PDE model. Finally, in Appendix A, we provide a brief description of

the numerical method used to solve the derived systems of PDEs.

2. Microscopic Pedestrian Model

To construct the microscopic model, we consider the time evolution of a 1-D lattice

L with pedestrians moving into two opposite directions. The process is schematically

illustrated in Figure 1.

The main difference with previous works on car traffic models (e.g., Ref. 25)

is that the pedestrians can move into opposite directions and we need to specify

explicit rules when two such pedestrians meet. We represent pedestrians moving to
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Fig. 1. Schematic pedestrian configuration: Filled and empty circles represent pedestrians moving to
the right and left, respectively. Arrows represent possible pedestrian movements in this configuration.

the right and to the left by the variables σ+
k (t) ≡ σ+(k, t) and σ−k (t) ≡ σ−(k, t),

respectively, where k is the position on the lattice and t denotes time:

σ±k (t) =


1, if at time t cell k is occupied by a pedestrian moving

to the right (left),

0, otherwise.

Moreover, we assume that pedestrians moving into two opposite directions can

occupy the same cell (i.e., it is possible to have σ+
k (t) = σ−k (t) = 1 for some k),

but their velocities are reduced in that case. This mimics the slowdown due to side-

stepping in more realistic CA models (REfs. 5, 10) when pedestrians are avoiding

the upcoming traffic. We also assume that pedestrians moving in the same direction

cannot occupy the same cell. For simplicity of the presentation, we omit the notation

for the time-dependence of σ+
k and σ−k for the rest of the paper.

To complete the construction of the microscopic CA model, we consider explicit

rules for the slowdown interaction which describe how the velocity changes when

pedestrians moving in opposite directions come in contact (i.e., occupy the same

cell or two neighboring cells). In particular, we explicitly prescribe velocities for

four different pedestrian configurations in the cells neighboring to the right-moving

pedestrian with σ+
k = 1 (assuming that σ+

k+1 = 0):


c0, if σ−k = σ−k+1 = 0 (no left-moving pedestrians in cells k or k + 1),

c1, if σ−k = 1, σ−k+1 = 0 (a left-moving pedestrian is in cell k),

c2, if σ−k = 0, σ−k+1 = 1 (a left-moving pedestrian is in cell k + 1),

c3, if σ−k = σ−k+1 = 1 (left-moving pedestrians in cells k and k + 1).

Notice that from the common sense considerations, the velocities should obey the

following relationship: c3 < c2 ≈ c1 < c0. The velocities of the left-moving pedes-

trian σ−k = 1 can be obtain in a similar manner.

The prescribed velocities are used to determine the probability of a pedestrian

to move to the neighboring cell, that is, the probability of transition k → k + 1 for
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σ+
k during a small time interval ∆t is

P+
k→k+1 = ∆t

[
c0σ

+
k (1− σ+

k+1)(1− σ−k )(1− σ−k+1)

+ c1σ
+
k (1− σ+

k+1)σ−k (1− σ−k+1) + c2σ
+
k (1− σ+

k+1)(1− σ−k )σ−k+1

+ c3σ
+
k (1− σ+

k+1)σ−k σ
−
k+1

]
,

(2.1)

while the probability of transition k → k − 1 for σ−k is

P−k→k−1 = ∆t
[
c0σ
−
k (1− σ−k−1)(1− σ+

k−1)(1− σ+
k )

+ c1σ
−
k (1− σ−k−1)(1− σ+

k−1)σ+
k + c2σ

−
k (1− σ−k−1)σ+

k−1(1− σ+
k )

+ c3σ
−
k (1− σ−k−1)σ+

k−1σ
+
k

]
.

(2.2)

The lattice configurations σ−t := {σ−k } and σ+
t := {σ+

k } together constitute a

continuous-time Markov chain for σt := {σ−t ,σ+
t }. This model is easily simulated

numerically using the Metropolis algorithm for computing the expected values of

σ− and σ+. One can develop a Kinetic Monte-Carlo algorithm for these problems,

but we found that the Metropolis algorithm was quite efficient when the velocities

c0, c1, c2, c3 are not very small. We expect the Metropolis algorithm might become

inefficient when these velocities are ∼ 10−2 and a Kinetic-Monte Carlo might be

necessary to perform faster simulations of the stochastic system.

Since σt is a continuous-time stochastic process, its generator is defined by

Aψ = lim
∆t→0

Eψ(σ∆t)− ψ(σ0)

∆t
,

where σ0 is the initial configuration, σ∆t is the configuration at time ∆t, ψ is any

test function, and the expectation is taken over all possible transitions from σ0 to

σ∆t. The generator of this stochastic process can be computed as follows:

Aψ =
1

∆t

∑
k

{
P+
k→k+1

[
ψ(σ+

k↔k+1,σ
−
0 )− ψ(σ0)

]
+P−k→k−1

[
ψ(σ+

0 ,σ
−
k↔k−1)− ψ(σ0)

]}
,

(2.3)

where σ+
k↔k+1 is the configuration obtained from σ+

0 by exchanging the values in

cells k and k + 1, and similarly, σ−k↔k−1 is the configuration obtained from σ−0 by

exchanging the values in cells k and k − 1. To derive the coarse-grain model, we

need to compute the generator (2.3) in two particular cases: For ψ(σ+,σ−) = σ+
k

and ψ(σ+,σ−) = σ−k , we obtain

Aσ+
k =

P+
k−1→k − P

+
k→k+1

∆t
and Aσ−k =

P−k+1→k − P
−
k→k−1

∆t
, (2.4)

respectively.
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3. Mesoscopic Model

In this section, we use the microscopic CA model presented in Section 2 to derive

the mesoscopic model for the densities ρ±k := Eσ±k (once again, to simplify notation,

the time-dependence of ρ±k is omitted throughout the paper). To this end, we first

recall that the generator A satisfies the following property:

d

dt
Eψ = EAψ,

which can be applied to the test functions ψ = σ+
k and ψ = σ−k . This together with

(2.1), (2.2) and (2.4) results in the equations for the time-evolution of ρ±k :

dρ+
k

dt
= E

[
c0σ

+
k−1(1− σ+

k )(1− σ−k−1)(1− σ−k )

−c0σ+
k (1− σ+

k+1)(1− σ−k )(1− σ−k+1)

+c1σ
+
k−1(1− σ+

k )σ−k−1(1− σ−k )− c1σ+
k (1− σ+

k+1)σ−k (1− σ−k+1)

+c2σ
+
k−1(1− σ+

k )(1− σ−k−1)σ−k − c2σ
+
k (1− σ+

k+1)(1− σ−k )σ−k+1

+c3σ
+
k−1(1− σ+

k )σ−k−1σ
−
k − c3σ

+
k (1− σ+

k+1)σ−k σ
−
k+1

]
,

dρ−k
dt

= E
[
c0σ
−
k+1(1− σ−k )(1− σ+

k )(1− σ+
k+1)

− c0σ−k (1− σ−k−1)(1− σ+
k−1)(1− σ+

k )

+c1σ
−
k+1(1− σ−k )(1− σ+

k )σ+
k+1 − c1σ

−
k (1− σ−k−1)(1− σ+

k−1)σ+
k

+c2σ
−
k+1(1− σ−k )σ+

k (1− σ+
k+1)− c2σ−k (1− σ−k−1)σ+

k−1(1− σ+
k )

+c3σ
−
k+1(1− σ−k )σ+

k σ
+
k+1 − c3σ

−
k (1− σ−k−1)σ+

k−1σ
+
k

]
.

(3.1)

The system (3.1) is exact, but not closed, since its right-hand side involves

higher-order moments. The closure approximation can be derived by assuming that

the joint measure for σ+ and σ− is approximately a product measure. This implies,

for instance, that adjacent cells are approximately independent and, in particular,

E[σ±k σ
±
k+1] ≈ Eσ±k Eσ

±
k+1. Thus, a closed system of equations for ρ±k can be obtained
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and the resulting mesoscopic model for the pedestrian density reads

dρ+
k

dt
=c0ρ

+
k−1(1− ρ+

k )(1− ρ−k−1)(1− ρ−k )

−c0ρ+
k (1− ρ+

k+1)(1− ρ−k )(1− ρ−k+1)

+c1ρ
+
k−1(1− ρ+

k )ρ−k−1(1− ρ−k )− c1ρ+
k (1− ρ+

k+1)ρ−k (1− ρ−k+1)

+c2ρ
+
k−1(1− ρ+

k )(1− ρ−k−1)ρ−k − c2ρ
+
k (1− ρ+

k+1)(1− ρ−k )ρ−k+1

+c3ρ
+
k−1(1− ρ+

k )ρ−k−1ρ
−
k − c3ρ

+
k (1− ρ+

k+1)ρ−k ρ
−
k+1,

dρ−k
dt

=c0ρ
−
k+1(1− ρ−k )(1− ρ+

k )(1− ρ+
k+1)

−c0ρ−k (1− ρ−k−1)(1− ρ+
k−1)(1− ρ+

k )

+c1ρ
−
k+1(1− ρ−k )(1− ρ+

k )ρ+
k+1 − c1ρ

−
k (1− ρ−k−1)(1− ρ+

k−1)ρ+
k

+c2ρ
−
k+1(1− ρ−k )ρ+

k (1− ρ+
k+1)− c2ρ−k (1− ρ−k−1)ρ+

k−1(1− ρ+
k )

+c3ρ
−
k+1(1− ρ−k )ρ+

k ρ
+
k+1 − c3ρ

−
k (1− ρ−k−1)ρ+

k−1ρ
+
k .

(3.2)

Note that the system (3.2) is defined on the same lattice L as the microscopic model.

4. Macroscopic PDE Model

We now treat sites k ∈ L as cells with some fixed length h > 0. Let Ω denote

a subdomain of R corresponding to the lattice L, i.e., Ω = [0, L] (the number of

cells, of course, depends on h). We consider a rescaling of time t→ ht and derive a

coarse-grained PDE model in the limit as the cell size tends to zero and the number

of cells tends to infinity.

To this end, we rewrite the system (3.2) in the following flux form (taking the

time rescaling into account):

dρ+
k

dt
= −

F+
k,k+1 − F

+
k−1,k

h
,

dρ−k
dt

=
F−k,k+1 − F

−
k−1,k

h
, (4.1)

where

F+
k,k+1 = ρ+

k (1− ρ+
k+1)

[
(1− ρ−k+1)

(
c0(1− ρ−k ) + c1ρ

−
k

)
+ρ−k+1

(
c2(1− ρ−k ) + c3ρ

−
k

)]
,

F−k,k+1 = ρ−k+1(1− ρ−k )
[
(1− ρ+

k )
(
c0(1− ρ+

k+1) + c1ρ
+
k+1

)
+ρ+

k

(
c2(1− ρ+

k+1) + c3ρ
+
k+1

)]
.

(4.2)

Multiplying the above equations by ϕk := ϕ(kh), where ϕ ∈ C1
0 (Ω) is a test function,

and using the summation by parts property over Ω, yields

∑
k

ϕk
dρ±k
dt

= ±
∑
k

F±k,k+1

ϕk+1 − ϕk
h

. (4.3)
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Next, we multiply equation (4.3) by h and expand ϕk+1 in a Taylor series about kh

to obtain ∑
k

ϕk
dρ±k
dt

h = ±
∑
k

F±k,k+1[ϕ′k +O(h)]h. (4.4)

We define pedestrian densities on Ω as follows. Again, using the notation ρ± (for

convenience), define the function ρ±(x, t) as a continuous piecewise linear interpo-

lation (in the spatial variable) of ρ±k (t) and take the limit as h → 0+. Due to the

boundeness of both ρ± and
dρ±k
dt we obtain a weak formulation of the coarse-grained

model: ∫
Ω

ϕ(x)
∂

∂t
ρ±(x, t) dx = ±

∫
Ω

F±(ρ+, ρ−)ϕ′(x) dx, (4.5)

where F±(ρ+, ρ−) are defined as the corresponding limits of F±k,k+1, i.e.,

F+(ρ+, ρ−) = f(ρ+)g(ρ−), F−(ρ+, ρ−) = f(ρ−)g(ρ+),

where

f(u) = u(1− u), g(u) = (c3 − c2 − c1 + c0)u2 + (c2 + c1 − 2c0)u+ c0. (4.6)

Since ϕ is arbitrary, the integral equations (4.5) can be written as the following

system of PDEs:

ρ+
t +

[
f(ρ+)g(ρ−)

]
x

= 0,

(4.7)

ρ−t −
[
f(ρ−)g(ρ+)

]
x

= 0.

Note that the velocities c1 and c2 enter only as a sum into (4.6). Therefore, it is not

necessary to specify them separately.

The coarse-grained system (4.7) is only conditionally hyperbolic. Indeed, the

Jacobian (
f ′(ρ+)g(ρ−) f(ρ+)g′(ρ−)

−f(ρ−)g′(ρ+) −f ′(ρ−)g(ρ+)

)
(4.8)

has real eigenvalues only if[
f ′(ρ−)g(ρ+) + f ′(ρ+)g(ρ−)

]2 − 4f(ρ−)f(ρ+)g′(ρ−)g′(ρ+) > 0. (4.9)

Therefore, for any particular choice of velocities c0, c1, c2, and c3 there is a region on

nonhyperbolicity in the (ρ−, ρ+) plane. From (4.6), one can see that the nonhyper-

bolicty can only manifest itself when pedestrians moving in two opposite directions

are both present in a particular location. Two examples of nonhyperbolic regions

are plotted in Figure 2. The nonhyperbolic region described in (4.9) depends only

on the ratio of velocities c1/c0, c2/c0, and c3/c0, but not on the particular value of

c0. The region of nonhyperbolicity becomes larger as the slowdown effect becomes

more pronounces (i.e., as the ratios c1/c0, c2/c0, and c3/c0 become smaller). The
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loss of hyperbolicity may induce instabilities (as illustrated in Section 5), which are

nonphysical and can be removed by introducing a nonlinear diffusive correction to

the system (as we demonstrate in the next section).
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Fig. 2. Regions of nonhyperbolicity (inside) in the ρ+, ρ− plane for the equation (4.7) for three
particular choices of velocities c0 = 1, c1 = c2 = c0/a, c3 = c0/(2a) with a = 1 (left), a = 2

(middle), and a = 3 (right).

The flux function F+(ρ+, ρ−) = f(ρ+)g(ρ−) for two different choices of veloc-

ities is depicted in Figure 3. For the unidirectional flow, the coarse-grained model

(4.7) is equivalent to the Lighthill-Whitham-Richards model of car traffic with the

symmetric flux of the form ρ(1− ρ). Moreover, the flux F+(ρ+, ρ−) is always sym-

metric about the plane ρ+ = 1/2 due to the particular structures of F+.

In Figure 4, we plot the total flux defined as F+ + F− for two particular re-

lationships between ρ+ and ρ−. This demonstrates that the total flux can become

non-symmetric (with respect to the position of the maximum of the flux) for the

bidirectional flow with the heavier right tail. This is consistent with the experimen-

tal results reported in Refs. 27, 28.

The stochastic CA model described in this paper can be generalized to in-

clude the look-ahead potential and the corresponding coarse-grained PDE with

look-ahead terms can be derived similarly to Refs. 8, 25. We expect that a more

general form of the flux (including highly non-symmetric) can be obtained by includ-

ing the look-ahead potential into the model. However, strong look-ahead potentials

are likely to destroy the approximate independence assumption (Ref. 13) and a

more empirical closure might be necessary. Nevertheless, the one-sided interactions

induced by the look-ahead potential would result in a highly non-symmetric flux

functions and more general fundamental diagrams. This work will be carried out in

a subsequent paper.
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Fig. 3. Flux function F+(ρ+, ρ−) = f(ρ+)g(ρ−) with f and g in (4.6) for two particular choices
of velocities: c0 = 1, c1 = c2 = c0, c3 = c0/2 (left) and c0 = 1, c1 = c2 = c0/2, c3 = c0/4 (right).
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Fig. 4. Total Flux F+(ρ+, ρ−) + F−(ρ+, ρ−) for the velocities c0 = 1, c1 = c2 = c0, c3 = c0/2
and two particular relationships between ρ+ and ρ−: ρ− = ρ+ (left) and ρ− = ρ+/2 (right).

4.1. Diffusive Correction

The derivation of the coarse-grained PDE system (4.6), (4.7) can also be obtained

by formally using the Taylor expansions

ρ±k±1 = ρ±k ± h(ρ±k )′ +
h2

2
(ρ±k )′′ +O(h3)

in the flux formulation (4.1), (4.2) followed by passing to the limit as h→ 0+.

Alternatively, keeping h fixed and neglecting the O(h3) terms, leads to the fol-
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lowing second-order PDE system, which contains nonlinear diffusion terms:

ρ+
t +

[
f(ρ+)g(ρ−)

]
x

= h
[c0

2
ρ+
xx +

(
c1 − c0 + (c3 − c2 − c1 + c0)ρ−

+(c2 − c1)ρ+
)
ρ−x ρ

+
x +

1

2
(c1 − c2)ρ+(1− ρ+)ρ−xx

+
1

2

(
(c1 + c2 − 2c0)ρ− + (c3 − c2 − c1 + c0)(ρ−)2

)
ρ+
xx

]
,

ρ−t −
[
f(ρ−)g(ρ+)

]
x

= h
[c0

2
ρ−xx +

(
c1 − c0 + (c3 − c3 − c1 + c0)ρ+

+(c2 − c1)ρ−
)
ρ+
x ρ
−
x +

1

2
(c1 − c2)ρ−(1− ρ−)ρ+

xx

+
1

2

(
(c2 + c1 − 2c0)ρ+ + (c3 − c2 − c1 + c0)(ρ+)2

)
ρ−xx

]
.

The diffusion in the above system can be simplified considerably. Using the

expressions for f and g in (4.6) we can rewrite the above system as

ρ+
t +

[
f(ρ+)g(ρ−)

]
x

=
ε

2

[
g(ρ−)ρ+

x + (c1 − c2)f(ρ+)ρ−x
]
x
,

ρ−t −
[
f(ρ−)g(ρ+)

]
x

=
ε

2

[
g(ρ+)ρ−x + (c1 − c2)f(ρ−)ρ+

x

]
x
.

(4.10)

It is easy to see that the coefficients of nonlinear diffusion are positive provided

c1 ≥ c2 and both ρ+ and ρ− are between 0 and 1. In the present work, we make an

additional simplifying assumption c1 = c2 which considerably simplifies the diffusion

terms. This is motivated by the fact that the velocities c1 and c2 only enter as a sum

into the fluxes and both velocities correspond to a slowdown due to the presence

of one pedestrian moving in the opposite direction. Therefore, we expect that the

slowdown effect is equal in the limiting case of small cells.

Remark 4.1. The nonlinear diffusion in (4.10) reflects the presence of pedestrians

moving in the opposite direction. For instance, the diffusion coefficient in the first,

ρ+-equation depends on ρ−. It is instructive to consider the limiting cases: If ρ− = 0

(i.e., no pedestrians moving to the left are present), the diffusion reduces to the usual

linear diffusion 0.5εc0ρ
+
xx, while if ρ− = 1, then the diffusion becomes 0.5εc3ρ

+
xx.

The latter is, again, a linear diffusion, but with a smaller coefficient (since c3 <

c0) reflecting a high density presence of the pedestrians moving in the opposite

direction. Particular shape of the nonlinear diffusion coefficient g(u) is depicted in

Figure 5 for two different choices of velocities.

Remark 4.2. It should be observed that the stochastic CA model is more diffu-

sive in nature than the corresponding coarse-grained PDE system. This is a direct

consequence of the approximate independence assumption E[σ±k σ
±
k+1] ≈ Eσ±k Eσ

±
k+1

used in the derivation of the PDE model (4.7). It can be shown numerically that

this assumption is valid only approximately which is manifested in a slightly wider

spread of the ensemble in stochastic simulations than in the simulation of (4.7).

Effectively, there are two sources of diffusion in the PDE model (4.7): (i) due to the
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Fig. 5. Nonlinear diffusion coefficient g(u) as a function of u for two particular choices of velocities:

c0 = 1, c1 = c2 = c0, c3 = c0/2 (left) and c0 = 1, c1 = c2 = c0/2, c3 = c0/4 (right).

finite cell size in stochastic simulations and (ii) due to small discrepancies in the

approximate independence. Therefore, the value of ε has to be chosen empirically

to match the stochastic simulations best.

5. Simulations

In this section, we present several sets of numerical experiments comparing and

contrasting the propagation of pedestrian density in ensemble simulations of the mi-

croscopic stochastic model and the corresponding numerical solutions of the macro-

scopic PDE models (with and without diffusion). The mesoscopic model (3.2) can be

considered as a conservative first-order finite-difference discretization of the PDE

models and the results of the mesoscopic simulations (not shown in the paper),

performed on a sufficiently fine grid, typically agree very well with the PDE results.

In all of the PDE simulations below, we implement a semi-discrete second-order

central-upwind scheme from Refs. 17, 18 with the minmod parameter θ = 1, CFL

number equal to 0.5. The scheme is briefly described in Appendix Appendix A. It

should be observed that the PDE simulations are performed on a much coarser mesh

than the corresponding microscopic ones. We use periodic boundary conditions in

all of the presented numerical examples.

In the first set of numerical experiments (Section 5.1), the initial conditions

resemble the “red light” situation when a group of tightly packed pedestrians with

density 1 is released at time t = 0. In the second set (Section 5.2), we mimic the

pedestrian movements starting with fully mixed initial conditions sampled from

a particular piecewise constant density. Finally, in Section 5.3, we illustrate the

stabilizing effect of the diffusive corrections in the nonhyperbolic regime.
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5.1. “Red Light” Initial Conditions

We first consider the microscopic CA model with the following initial conditions:

σ+(k, 0) =

{
1, n1 ≤ k ≤ n2,

0, otherwise,
σ−(k, 0) =

{
1, N − n2 ≤ k ≤ N − n1,

0, otherwise,
(5.1)

with n2 − n1 � N . These initial conditions correspond to two (relatively small)

groups of pedestrians standing still and starting to move toward each other at time

t = 0. The velocities are taken as

c0 = 0.8m/s, c1 = c2 = c0/a, c3 = c0/(2a), (5.2)

where the parameter a describes the strength of the slowdown interactions, for

which we consider two regimes with either a = 2 or a = 3. The parameters in the

CA model are chosen so that the two groups are away from the boundary and, thus,

boundary conditions do not affect the interaction:

N = 1400, n1 = 301, n2 = 340, h = 0.2m, ∆t = 0.01s, MC = 5000, (5.3)

where MC is the number of Monte-Carlo simulations.

The macroscopic simulations of the purely convective PDE system (4.7) are

performed on the computational domain [0, 280] with the mesh size ∆x = 0.8 and

initial data corresponding to (5.1):

ρ+(x, 0) =

{
1, 60 < x < 68,

0, otherwise,
ρ−(x, 0) =

{
1, 212 < x < 220,

0, otherwise,
(5.4)

with the velocities c0, c1, c2 and c3 same as in (5.2).

The initial settings (5.1)–(5.3) and (5.4) correspond to the right- and left-moving

groups, which initially do not overlap and their dynamics is equivalent to moving

cars. After some time, the two groups begin to interact and we study how well

the macroscopic PDE model reproduces these interactions. Figures 6 and 7 show

comparison of the density profiles in CA and PDE simulations.

The macroscopic PDE model (4.7) produces very good results in the a = 2

regime. In particular, it reproduces the forward front at times t = 80, 110 and

140 quite well. The macroscopic results are slightly different from the stochastic

ones after the two groups pass through each other (see times t = 170 and 210):

The back front of moving pedestrians in simulations of the macroscopic model is

sharper compared with the simulations of the stochastic model at these times. This

can be explained by the purely hyperbolic nature of the macroscopic PDE for this

range of the density values. Nevertheless, for a = 3 the PDE solution is closer to

the non-hyperbolic region (see figure 2).

The a = 3 regime corresponds to stronger slowdown interactions between the

two groups of pedestrians. We observe a considerable discrepancy between the CA

and PDE models at times t = 140, 170 and 210. In particular, an effect similar

to blocking occurs in the Monte-Carlo simulations of the stochastic model; this is
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Fig. 6. Comparison of the density profiles computed by the CA (solid line) and PDE (dash-dotted
line) models with a = 2 and the “red light” initial conditions in (5.1) and (5.4). The right- (ρ+)

and left-moving (ρ−) pedestrians are represented by the blue and red colors, respectively.

especially evident at time t = 170. The propagation of two blocked groups resembles

a slow diffusion over a barrier, whereas the simulations of the PDE model exhibit a

faster propagating wave. Therefore, the PDE model with a = 3 seems to be outside

of the range of validity of the closure approximations used in its derivation.

We note that the results obtained using the viscous PDE model (4.10) are quite

similar to the inviscid ones: The diffusion simply smears the fronts but no substan-

tially different phenomena have been observed.

5.2. Fully Mixed Initial Conditions

In the second set of numerical experiments, we simulate pedestrian movement in

a periodic domain, which is divided into 30 sectors with 15 cells in each sector

(totally N = 450 cells). We initialize the CA simulations with the total number of

70 pedestrians (with 35 pedestrians moving in each direction). The initial numbers

of right- and left-moving pedestrians in each sector are specified, while their dis-
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Fig. 7. The same as in Figure 6 but with a = 3.

tribution inside each sector is purely random (uniform). In dimensional units, each

cell is 0.466m long, each sector is 7m long, and the domain is 210m long. Other

parameters in the CA simulations are chosen to be ∆t = 0.005 and MC = 3000.

The corresponding initial densities for the PDE models (4.7) and (4.10) are

ρ±(x, 0) =
n±i
15

for
i− 1

30
L < x <

i

30
L, i = 1, . . . , 30, (5.5)

where n+
i and n−i are numbers of right- and left-moving pedestrians in the ith sector,

respectively. The size of the computational domain is L = 210 and ∆x = 0.25. In

the simulations of the viscous PDE (4.10), we take the diffusion coefficient ε = 0.5.

As in Section 5.1, we take the velocities

c0 = 1m/s, c1 = c2 = c0/a, c3 = c0/(2a), (5.6)

and perform two sets of numerical simulations with velocities with a = 2 and a = 3.

The obtained results are plotted in Figures 8–15. In the a = 2 case, the CA

and PDE results are in a very good agreement, especially when the diffusion terms

are included into the PDE models (Figures 8–11). By comparing Figures 8 and 10,
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one can see that the invscid PDE model preserves sharp boundaries between pedes-

trian clusters considerably longer than the CA or viscous PDE ones. The viscous

PDE model reproduces the results of the stochastic simulations quite accurately,

including the “stop-and-go” phenomenon observed there. The “stop-and-go” wave

is most evident for the right-moving cluster of pedestrians at ρ+(x ≈ 180, t = 0)

(Figures 8 and 12). These results verify that the stochastic simulations are more

diffusive due to the approximate independence assumption used in the derivation

of the effective PDE model. Therefore, diffusive corrections are essential for repro-

ducing the behavior of the stochastic model for longer times. When the slowdown

interaction is stronger (a = 3), the difference between the CA and the inviscid PDE

simulations are more pronounced: The stochastic “blocking” is more severe, while

the PDE models develop both “blocking” and “stop-and-go” waves (see Figures

12–15).

Numerical solutions of the inviscid PDE model are expected to be influenced by

a numerical diffusion especially when a coarse grid is used. To check the effect of the

numerical diffusion, we perform a mesh refinement study. The results are presented

in Figure 16, where we plot the snapshots of the PDE solution at a particular time

t = 25 computed with different spatial resolutions. As one can see, the inviscid PDE

solution is considerably affected by the size of the spatial discretization for lower

resolutions. On the other hand, solutions of the viscous PDE are not visibly affected

by the spatial discretization due to the presence of viscous terms. Grid refinement

study has been performed for all simulations discussed in this paper, but it is not

presented only for the brevity of the presentation.

5.3. Nonhyperbolic Regime

In both simulations described in Sections 5.1 and 5.2, the magnitude of pedestrian

densities ρ+ and ρ− remain smaller than the critical values for the nonhyperbolic

behavior (recall that the hyperbolicity criterion is given by (4.9)).

To illustrate the nonhyperbolic behavior we choose the velocities to be (5.6)

with a = 2 and the initial density in the simulations of the coarse-grained PDE

models to be

ρ+(x, 0) =

{
0.6, 140 ≤ k ≤ 210,

0, otherwise,
ρ−(x, 0) =

{
0.6, 186.6 ≤ x ≤ 233.3,

0, otherwise,
(5.7)

that is, the initial data are in the nonhyperbolic regime. The computational domain

is [0, 420] and the simulations are conducted on a ∆x = 420/1280 grid.

The initial pedestrian distribution for the CA computations is sampled from the

initial density (5.7). The number of cells in the stochastic simulations is N = 900,

the cell size is 420/900 ≈ 0.4667m, the time step is ∆t = 0.005 and MC = 3000.

Here, we depict only ρ+ since ρ− exhibits a similar behavior. Comparison be-

tween the stochastic and inviscid PDE simulations is shown in Figure 17. As one

can see, the PDE solution develops spurious large magnitude oscillations, which
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Fig. 8. Dynamics of right-moving pedestrians in both the CA and PDE models with the fully
mixed initial conditions (5.5) and velocities (5.6) with a = 2.

demonstrates that the inviscid system (4.7) is ill-posed. Figure 18 shows ρ+ com-

puted using the viscous PDE model (4.10). The results suggest that the nonlinear

diffusion present in (4.10) stabilizes the PDE solution: The bigger value of ε = 1.5

fully suppresses spurious oscillations and leads to a very good agreement between

the CA and PDE simulations.

Remark 5.1. Since coarse-grained PDEs are discretized on a finite mesh with

a particular mesh-size ∆x numerical diffusion can affect simulations of both the

systems (4.7) and (4.10). Numerical diffusion inversely proportional to the number

of points in the mesh and can lead to significant numerical errors if the mesh size

∆x is not sufficiently small (i.e. the use of coarser meshes typically leads to the

increasing numerical diffusion). A particular example of numerical diffusion affecting

the numerical solution is presented in Figure 16.

We have verified that all of our numerical PDE simulations in Sections 5.1, 5.2,

and 5.3 are not affected significantly by the grid refinement. In particular, we have

refined the mesh and performed computations with N = 700 and N = 1400 in

Section 5.1, with N = 1680 in Section 5.2, and with N = 2560 and N = 5120 in

Section 5.3. We have not observed any noticeable changes in the numerical solution

of the coarse-grained PDEs. Therefore, we conclude that the numerical diffusion is

not significant in the simulations presented in this paper.
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Fig. 9. Time snapshots of the solutions from Figure 8. The solid blue line represents the CA

solution, while the dashed magenta line represents the inviscid (left) and viscous with ε = 0.5
(right) PDE solutions.

6. Conclusion

In this paper, we have developed a PDE formulation for the pedestrian dynamics

in a narrow street or corridor. The resulting 1-D system of PDEs has been sys-

tematically derived from a microscopic stochastic CA model. The slowdown rules

in the CA model need to be specified explicitly by prescribing different velocities

when pedestrians moving in the opposite directions are present. The condition of

approximate independence of neighboring cells is essential for the derivation of the

coarse-grained PDE model and “propagate” into the macroscopic PDE formulation

resulting in a particular form of the flux. We have also demonstrated that the re-

sulting PDE is only conditionally hyperbolic. To stabilize the resulting PDE system

we have rigorously derived the nonlinear diffusion correction using the intermediate

mesoscopic model.

We have performed a number of numerical experiments comparing and contrast-
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Fig. 10. The same as in Figure 8 but for left-moving pedestrians.

ing the statistical behavior of the stochastic solution and its deterministic PDE

counterparts. Our numerical experiments indicate that in the case of weak slow-

down interactions, the average behavior of the stochastic CA model is reproduced

quite well by the coarse-grained PDE model. On the other hand, the approximate

independence assumption does not seem to hold in the case of the stronger slow-

down regime, which results in a considerable discrepancy between the stochastic

and deterministic results.

In addition, our numerical experiments indicate that the statistical behavior of

the microscopic CA model is more diffusive than the corresponding deterministic

inviscid coarse-grained analog. Therefore, we also derived the second-order diffusive

correction of the coarse-grained PDE. We have numerically demonstrated that these

nonlinear diffusive corrections lead to a significant improvement in reproducing the

CA results using the PDE model. One of the possible aspects of future research in-

cludes fitting parameters of the stochastic model (e.g. velocities ci) and, thus, fitting

the parameters of the coarse-grained PDE using experimental data. Nevertheless,

the nonlinear diffusive corrections derived in this paper have a rather general form

and can be used in other models of bi-directional traffic.

We would also like to point out that the PDE simulations are an order of mag-

nitude faster than the corresponding CA ones. Therefore, the coarse-grained PDE

systems have considerable numerical advantages in practical applications such as

real-time predictions of the pedestrian traffic via filtering, investigation of pedes-

trian traffic flow on networks, etc. These and other issues will be investigated in
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Fig. 11. Time snapshots of the solution from Figure 10. The solid blue line represents the CA

solution, while the dashed magenta line represents the inviscid (left) and viscous with ε = 0.5
(right) PDE solutions.

subsequent papers.
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Fig. 12. Dynamics of right-moving pedestrians in both the CA and PDE models with the fully
mixed initial conditions (5.5) and velocities (5.6) with a = 3.

Appendix A. Central-Upwind Scheme for Systems of Conservation

Laws

In this section, we briefly describe a semi-discrete second-order central-upwind

scheme used for numerical solution of the 1-D systems (4.7) and (4.10), which can

be written as

ρt + F(ρ)x = (Q(ρ)ρx)x, (A.1)

with ρ = (ρ+, ρ−)T , the flux F(ρ) =
(
f(ρ+)g(ρ−), f(ρ−)g(ρ+)

)T
, and the viscosity

matrix

Q(ρ) =
ε

2

(
g(ρ−) (c1 − c2)f(ρ+)

(c1 − c2)f(ρ−) g(ρ+)

)
.

For simplicity, we divide the computational domain into finite-volume cells Cj =

[xj− 1
2
, xj+ 1

2
] of a uniform size ∆x with xj = j∆x and denote by

ρj(t) =
1

∆x

∫
Cj

ρ(x, t) dx,

the computed cell averages of the solution ρ, which we assume to be available at

time t. The semi-discrete central-upwind scheme for (A.1) is given by the following
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Fig. 13. Time snapshots of the solutions from Figure 12. The solid blue line represents the CA

solution, while the dashed magenta line represents the inviscid (left) and viscous with ε = 0.5
(right) PDE solutions.

system of ODEs for ρj :

dρj(t)

dt
= −

Hj− 1
2
(t)−Hj+ 1

2
(t)

∆x
+

Pj− 1
2
(t)−Pj+ 1

2
(t)

∆x
, (A.2)

where the numerical hyperbolic Hj+ 1
2
(t) and parabolic Pj+ 1

2
(t) fluxes are con-

structed as follows (for convenience, we will omit the dependence of the computed

quantities on t in the rest of the text).

We first reconstruct a piecewise linear approximation,

ρ̃(x) = ρj + (ρx)j(x− xj), x ∈ Cj . (A.3)

The numerical derivatives (ρx)j should be computed componentwise and are (at

least) first-order approximations of ρx(xj , t), calculated using a nonlinear limiter

needed to avoid oscillations in the reconstruction (A.3). In our numerical experi-
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Fig. 14. The same as in Figure 12 but for left-moving pedestrians.

ments, we have used the generalized minmod limiter (see, e.g., Refs. 20, 22):

(ρx)j = minmod

(
θ
ρj − ρj−1

∆x
,
ρj+1 − ρj−1

2∆x
, θ

ρj+1 − ρj
∆x

)
, θ ∈ [1, 2], (A.4)

where the minmod function is defined as

minmod(z1, z2, ...) :=


min
j
{zj}, if zj > 0 ∀j,

max
j
{zj}, if zj < 0 ∀j,

0, otherwise,

(A.5)

and the parameter θ can be used to control the amount of numerical viscosity

present in the resulting scheme (larger values of θ correspond to less dissipative

but, in general, more oscillatory reconstructions).

The reconstruction (A.3) is, in general, discontinuous at the cell interfaces, x =

xj+ 1
2
, where it has two values, which we denote by

ρE
j := ρj +

∆x

2
(ρx)j , ρW

j := ρj −
∆x

2
(ρx)j . (A.6)

These discontinuities propagate in time with one-sided local speeds that can be

estimated from the eigenvalues λ of the Jacobian matrix (4.8) and are calculated in

the following way. We denote by

R = f ′(ρ+)g(ρ−)− f ′(ρ−)g(ρ+),

D =
[
f ′(ρ−)g(ρ+) + f ′(ρ+)g(ρ−)

]2 − 4f(ρ−)f(ρ+)g′(ρ−)g′(ρ+)
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Fig. 15. Time snapshots of the solution from Figure 13. The solid blue line represents the CA

solution, while the dashed magenta line represents the inviscid (left) and viscous with ε = 0.5
(right) PDE solutions.

and consider two possible cases:

• If both DE
j ≥ 0 and DW

j+1 ≥ 0 (hyperbolic regime), then

a+
j+ 1

2

=
1

2
max

{
RE
j +

√
DE
j , R

W
j+1 +

√
DW
j+1, 0

}
,

a−
j+ 1

2

=
1

2
min

{
RE
j −

√
DE
j , R

W
j+1 −

√
DW
j+1, 0

}
,

• If either DE
j < 0 or DW

j+1 < 0 (nonhyperbolic regime), then

a+
j+ 1

2

=
1

2
max

{√
(RE

j )2 −DE
j ,
√

(RW
j+1)2 −DW

j+1

}
,

a−
j+ 1

2

= −a+
j+ 1

2

.
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Fig. 16. Comparison of the snapshots of the solution at time t = 25 for different spatial resolutions.

The solid blue line represents the CA solution, while the dashed magenta line represents the inviscid
PDE solutions computed with different number of grid points in the mesh.

The numerical fluxes are then given by

Hj+ 1
2

=
a+
j+ 1

2

F(ρE
j )− a−

j+ 1
2

F(ρW
j+1)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
ρW
j+1 − ρE

j

]
,

Pj+ 1
2

= Q(ρj+ 1
2
)
ρj+1 − ρj

∆x
, ρj+ 1

2
=

ρE
j + ρW

j+1

2
.

(A.7)

Finally, the resulting semi-discretization (A.2)–(A.7) is a time-dependent ODE sys-

tem, which should be numerically integrated using a stable ODE solver of an ap-

propriate order. In our numerical experiments we have used the third-order strong

stability preserving Runge-Kutta method (see Ref. 11).

Remark Appendix A.1. Notice that the choice of one-sided local speeds in the

nonhyperbolic regime is ad-hoc. However, it is important to point out that we

have not tried to stabilize the inviscid PDE solution by increasing the amount of

numerical viscosity: The solution has been stabilized by adding nonlinear diffusion

terms rigorously derived from the mesoscopic formulation.
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