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Microcanonical simulations of spectral truncations of the barotropic quasigeostrophic model are
utilized to demonstrate systematic departures from Gaussianity in these models. Truncated equations
conserve both the energy and the enstrophy, and predictions of the equilibrium statistical theory are
Gaussian for all values of geophysical parameters. Nevertheless, nonzero topographic modes induce
significant departures from Gaussianity in corresponding Fourier wavenumbers of the stream
function. In particular, the distribution becomes asymmetric, resulting in a significant increase of the
third moment. This behavior is most noticeable for large-scale topographic components �with small
wavenumbers� and intermediate truncation sizes. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2815728�

I. INTRODUCTION

Equilibrium statistical theories have been successfully
utilized in many areas of physics and mathematics, and, in
particular, in fluid dynamics. This approach predicts the equi-
librium statistical state of the fluid given the values of sev-
eral essential constraints of the flow. In particular, equilib-
rium statistical theory has been utilized in the context of the
atmosphere and ocean dynamics1–6 and to explain the statis-
tical behavior of Jupiter’s red spot.7,8 Various promising sta-
tistical strategies were also developed to model small-scale
processes.9–13,5 These statistical theories are typically utilized
in various subgrid-scale parametrizations and to explain the
statistical behavior of large scales.

Gaussianity is one of the most common and natural as-
sumptions in statistical physics and fluid dynamics. A vast
literature exists supporting this assumption, which has been
successfully utilized in many cases. On the other hand, it
also has been recognized that non-Gaussianity can appear
naturally in numerical and observational data. It was demon-
strated that additional conserved quantities in specially de-
signed low-dimensional truncations of the two-dimensional
vorticity equation can lead to non-Gaussian statistical
behavior.14,15 Also, truncations with higher-order Casimir in-
variants were examined in Refs. 16 and 17. It was demon-
strated that higher-order invariants are relevant for small to
intermediate truncation sizes and can result in non-Gaussian
behavior of the large scales.

It also has been recognized that the underlying bottom
topography can have a profound affect on large scales.2,18,5

Here we examine the role of the underlying bottom topogra-
phy in statistical predictions for quasigeostrophic flows. In
particular, we demonstrate that statistical properties of the
large scales can deviate from Gaussian predictions of the
equilibrium statistical theory with two conserved quantities,
namely the energy and the enstrophy. Microcanonical simu-

lations of the truncated barotropic quasigeostrophic model
with small to intermediate truncation sizes demonstrate that
nonzero topographic Fourier wavenumbers can cause signifi-
cant skewness in the corresponding modes of the stream
function.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model, briefly discuss its analytical proper-
ties, and outline the application of the equilibrium statistical
mechanics. Then, in Secs. III and IV we analyze the model
numerically with several choices of the bottom topography
and with and without other geophysical effects, such as the
mean flow and the Coriolis parameter.

II. THE MODEL

The nondimensional form of the barotropic quasigeo-
strophic model can be written through the small-scale stream
functions ��x , t� and the zonal mean flow U�t�,

�tq + ��� · �q + U�t��xq + ��x� = 0,

q = �� + h = � + h , �1�

U̇ =
1

4�2 � h�x�dxdy ,

where the zonal mean flow, U�t�, interacts with small-scale
eddies via the topographic stress, � approximates variation
of the Coriolis parameter, h=h�x ,y� represents the underly-
ing bottom topography, and ���= �−�y� ,�x�� is the small-
scale velocity field. We consider the equations in �1� in the
2��2� doubly periodic domain, thus the topography is also
chosen to be periodic with mean zero. The equations in �1�
conserve two quadratic invariants, namely the energy and the
enstrophy,

E =
1

2
U2 +

1

2
� ����2dx ,

a�Electronic mail: ilya@math.uh.edu. Telephone: 713-743-3483.
Fax: 713-743-3505.

PHYSICS OF FLUIDS 19, 116603 �2007�

1070-6631/2007/19�11�/116603/13/$23.00 © 2007 American Institute of Physics19, 116603-1

http://dx.doi.org/10.1063/1.2815728
http://dx.doi.org/10.1063/1.2815728
http://dx.doi.org/10.1063/1.2815728


E = �U +
1

2
� �q�2dx ,

respectively. Details of the derivation are provided, for ex-
ample, in Ref. 5.

It is natural to consider the spectral representation of the
equations in �1�. With the expansion

��x,t� = �
k

�k�t�eik·x,

the equations in �1� can be rewritten as an infinite system of
ordinary differential equations for the Fourier coefficients of
the stream function, �k, and the mean flow, U�t�,

�̇k =
1

2 �
k+l+m=0

Bklm�l
*�m

* + � Lkl�l + i��k − kxU��k

+ iHkU ,

�2�
U̇ = Im � kxhk�k

*,

where

Bklm = �lymx − lxmy�
�l�2 − �m�2

�k�2
, Lkl = �lykx − lxky�

hk−l

�l�2
,

�k =
kx�

�k�2
, Hk =

kxhk

�k�2
,

k, l, and m are two-dimensional wavenumbers, i.e., k
= �kx ,ky�, etc., and hk are the Fourier coefficients of the to-
pography. In addition, all Fourier coefficients obey the reality
condition

�k
* = �−k. �3�

Here we consider the spectral projection of the equations
in �2� on the “triangular” Fourier domain

T� = �k = �kx,ky�:�kx� + �ky� 	 �	 , �4�

i.e., we consider the system in Eq. �2� with all wavenumbers
restricted to the set T�,

k,l,m � T�. �5�

Truncated equations �2� and �5� satisfy the Liouville
�volume-preserving� property. In addition, the system in Eqs.
�2� and �5� conserves discrete analogs of energy and enstro-
phy �see Ref. 5�,

E� =
1

2
U2 +

1

2 �
k�T�

�k�2��k�2, �6�

E� = �U +
1

2 �
k�T�

��k�2�k − hk�2, �7�

for any symmetric truncation. Therefore, it has been recog-
nized that the equilibrium statistical mechanics formalism is
applicable to various spectral truncations of the system in
Eq. �1� and its analogs in spherical geometry.3,4 The predic-
tion of the equilibrium statistical mechanics is the probability
measure, which maximizes the Shannon entropy,

S�p� = �
RN

p�Z�ln p�Z�dZ ,

given the constraints for the invariants of the flow


E�� = E�, 
E�� = E�, �8�

where Z is the vector of dependent variables in the trunca-
tion, and averages are taken with respect to the probability
distribution p�Z�. Due to the reality condition �3�, not all the
wavenumbers in the truncation are independent. Therefore,
the vector of the dependent variables can be described as Z
= �U ,Re�k , Im �k� with k�T� and satisfying �k�Z
⇒−k�Z	. For example, the following choice describes all
independent degrees of freedom in the truncation Z
= �U ,Re�k , Im �k� with �k�T� ,kx
0	� ��0,ky� ,0�ky

	�	. Number of independent degrees of freedom in �� for
truncation sizes considered in this paper is presented in
Table I.

Utilizing the Lagrange multiplier method, the prediction
for the distribution of Z can be computed explicitly as

p�Z� = C exp�− �1E� − �2E�� ,

where C is the normalization constant, and �1,2 are the
Lagrange multipliers to satisfy the constraints in Eq. �8�.
Since the invariants in Eqs. �6� and �7� are quadratic, this
yields a two-parameter family of multivariate Gaussians for
the distribution of �k and U. Therefore, the statistical behav-
ior of the dependent variables is completely determined by
their means and variances,

mean U = −
�



, varU =

1

�

, �9�

mean �k =
hk


 + �k�2
, var�k =

1

��k�2�
 + �k�2�
, �10�

where � ,

0 are two parameters related to the energy-
enstrophy level �same as to the Lagrange multipliers �1,2� in
the system. Details of this derivation are presented in Ref. 5.
We would like to point out that according to the equilibrium
distribution, the magnitude of the topography affects only the
mean of the corresponding Fourier mode of the stream func-

TABLE I. Number of real degrees of freedom in the spectral truncation of the stream function, ��, with the
spectral projection in Eq. �4�.

Truncation size, � 4 6 8 10 15 20

Real degrees of freedom in �� 40 84 144 220 480 840

116603-2 I. Timofeyev Phys. Fluids 19, 116603 �2007�



tion. The equilibrium prediction for the third moment is zero
for all variables, i.e., if we define the skewness

skewf =

�f − f̄�3�


�f − f̄�2�3/2

as the measure of the asymmetry of the distribution, then the
equilibrium prediction is

skewU = skew�k = 0. �11�

The total energy and the total enstrophy of the system can be
decomposed into the mean part and the fluctuating part, and
the energy-enstrophy constraints can be expressed through
parameters � and 
 as follows:


E�� = E�
mean + E�

fluc, 
E�� = E�
mean + E�

fluc,

with

E�
mean =

�2

2
2 +
1

2 �
k�T�

�k�2�hk�2

�
 + �k�2�2 ,

�12�

E�
fluc =

1

2�

+

1

2�
�

k�T�

1


 + �k�2
,

E�
mean = −

�2



+

1

2 �
k�T�


2�hk�2

�
 + �k�2�2 ,

�13�

E�
fluc =

1

2�
�

k�T�

�k�2


 + �k�2
.

In Eqs. �12� and �13�, terms outside of the summations �i.e.,
�2 / �2
2�, 1 / �2�
�, and −�2 /
� correspond to the contribu-
tion of the mean flow, U. These terms should be omitted
when the mean flow is not present in the model �i.e., �=U
=0�.

The above formalism was developed for the ensemble
predictions of the system. However, the key question is the
applicability of this approach to the microcanonical simula-
tions on a constant energy-enstrophy level consistent with
the constraint in �8�. Some numerical evidence suggests that
the ergodicity assumption holds for the truncated system in
�2� with �4� and time averages in microcanonical simulations
converge to the predictions of the equilibrium statistical
theory in �9� and �10�. Nevertheless, the majority of the lit-
erature concentrates on the statistical predictions for means
and variances of the dependent variables. Here we demon-
strate that, indeed, the first two moments are in good agree-
ment with the statistical predictions in �9� and �10�, but the
skewness of the distribution is strongly affected by the pres-
ence of the underlying bottom topography.

III. STATISTICAL BEHAVIOR FOR �=U=0

For the barotropic model, the zonal mean flow is, typi-
cally, induced by various geophysical effect, such as the
Earth’s rotation. Therefore, we first consider a simplified sys-
tem with �=U=0 in Eqs. �1� and �2� for all times. The
motivation here is to demonstrate that the deviations from
Gaussianity are not related to the variations of the Coriolis

parameter and/or interactions between the mean flow and
small-scale eddies. In addition, results reported here indicate
that energy and enstrophy are two main conserved quantities
determining the statistical properties of the stream function.
Even if other conserved quantities exist in the truncated
model, they do not seem to have a strong influence on the
overall trend in the statistical behavior of the stream func-
tion.

With the simplification �=U=0, the equations in �2� and
�5� reduce to

�̇k =
1

2 �
k+l+m=0

Bklm�l
*�m

* + � Lkl�l,k,l,m � T� �14�

with truncated analogs of energy and enstrophy

E� =
1

2 �
k�T�

�k�2��k�2, �15�

E� =
1

2 �
k�T�

��k�2�k − hk�2, �16�

and the equilibrium statistical prediction is still a family of
Gaussians with means and variances in Eqs. �10�, and the
skewness being zero.

We verify the equilibrium predictions for the Fourier co-
efficients of the stream function by integrating equations in
Eq. �14� numerically. Parameters � and 
 in Eqs. �10� are
chosen to be

� = 1, 
 = 2. �17�

The stream function is initialized at random on a fixed
energy-enstrophy level consistent with the constraints in Eqs.
�12� and �13� for the above choice of parameters � and 
 and
all statistics are computed as time averages from a single
microcanonical realization. The equations in �14� were inte-
grated utilizing the pseudospectral method in space and
fourth-order Runge–Kutta time-stepping in time for the total
time T=365,000, skipping t0=5,000 in statistical calculations
to ensure statistical equilibration. In addition, we also selec-
tively �for some truncation sizes and topographic magni-
tudes� verified that different initial data with identical
energy-enstrophy constraints lead to the same statistical be-
havior.

A. Single-mode topography

First, we investigate the equations in �14� with a single-
mode topography

h�x,y� = H0�cos�x + 2.31� + sin�x + 0.11�� , �18�

with several values of H0, such that

max�h� = 0, 0.42, 0.5, 1, 1.5, 2.

In addition, four truncation sizes,

T�, � = 4, 6, 8, 10, �19�

are considered. The only nonzero coefficients of the topog-
raphy �18� are
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h±1,0 = �− 0.457 � 0.21i�H0, �20�

consistent with the reality condition �3�.
Overall, predictions of the statistical mechanics in Eqs.

�10� for the system in Eq. �14� are confirmed with high ac-
curacy for all modes �k in the absence of the topographic
mode h1,0. Moreover, the first two moments exhibit a good
agreement with analytical predictions of the equilibrium sta-
tistical mechanics in Eqs. �10� even when the topography is
present. These results are consistent with findings reported in
Refs. 1, 2, and 5. As an example, a comparison of numerical
and analytical predictions for �=6 and max �h � =1 is pre-
sented in Table II. On the other hand, when a particular to-
pographic mode is nonzero �h1,0 in the present case�, the
skewness of the corresponding stream function’s Fourier
mode deviates significantly from Gaussianity �i.e., zero�.
This is illustrated in Fig. 1, where the distribution of Re �1,0

is depicted for �=6 and max �h � =1.5. The distribution of
Re �1,0 is tilted to the left, which corresponds to the positive
skewness of the distribution. Moreover, the magnitude of the
third moment is proportional to the height of the topography.
The linear relationship between the magnitude of the topo-

graphic wavenumber h1,0 and the skewness of Re �1,0 holds
for topographies of small to intermediate magnitudes. This
behavior is illustrated in Fig. 2.

We also investigated the dependence of the third mo-
ment on the size of the truncation. In this series of simula-
tions, four truncation sizes in Eq. �19� were considered,
while the magnitude of the topography �18� was kept con-
stant with max �h � =1. These results are depicted in Fig. 3.
The skewness of the distribution of �1,0 decreases with �

and roughly follows the −1 /2 power law. Therefore, we ex-
pect that for higher resolutions, the distribution of �1,0 ap-
proaches the Gaussian prediction in Eqs. �10� and �11�. Nev-
ertheless, this approach is slow and non-Gaussian features
are noticeable for all intermediate size truncations.

B. Higher-frequency single-mode topographies

Next, we investigate the behavior of the system in Eq.
�14� for single-mode topographies with a higher topographic
mode. In particular, the following topographies are consid-
ered:

TABLE II. DNS: Numerical and analytical prediction for the low-order moments of �k in simulations of the
equation in �14� with topography �18�, max �h�=1 and �=6.

Num
Mean

StatMech
Mean

Num
Var

StatMech
Var

Num
Skewness

Num
Flatness

Re �1,0 −0.137631 −0.152259 0.176 0.1666 0.24184 2.58

Re �0,1 −0.001702 0 0.1774 0.1666 −0.0017 2.5

Re �1,1 0.000917 0 0.0679 0.0625 0.00092 2.66

Re �1,−1 0.001288 0 0.0681 0.0625 0.053 2.72

Re �2,0 0.000438 0 0.0221 0.0208 −0.0334 2.88

Re �0,2 −0.000036 0 0.0222 0.0208 −0.0746 2.86

FIG. 1. �Color online� Distribution of the Fourier com-
ponent Re �1,0 in the simulations of the truncated sys-
tem �14� with �=6 and topography �18� with max�h�
=1.5.
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hk�x,y� = H0�cos�k · �x,y� + 0.4� + sin�k · �x,y� + 1.28�	 �21�

with k= �1,0�, �1,1�, �2,0�, �2,1�, and several values of H0, so
that

max�h� = 0.63, 1.26, 1.89, 2.52, 3.78, 5.04, 6.3.

We would like to emphasize that in each simulation, only
one topographic mode k is present with the corresponding
nonzero Fourier coefficients h±k=H0�0.63±0.034i�, and the
magnitude of topographies �21� depends only on the particu-
lar value of H0, and is independent of the wavenumber, k.
Due to the significant difference in the magnitude of the real
and imaginary parts of the topographic mode, hk, deviations
from Gaussianity are manifested more strongly for the real
part of the corresponding Fourier coefficient of the stream

function. We also would like to emphasize that the maximum
magnitude of the topography is much larger than in simula-
tions in the preceding section �depicted in Fig. 2�.

The skewness of the corresponding Fourier coefficient of
the stream function, Re �k, is plotted against the magnitude
of the topography in Fig. 4. The topographic mode induces
significant deviation from the Gaussian predictions for all
wavenumbers considered in this section. On the other hand,
the non-Gaussian effect of the topography weakens for
higher topographic modes. In particular, for higher topo-
graphic wavenumbers, the skewness of the corresponding
Fourier coefficients of the stream function is smaller than for
the topography of the same magnitude with a lower fre-
quency. In addition, the third moment grows slower for

FIG. 2. �Color online� Skewness of the Fourier compo-
nent �1,0 in the simulations of the truncated system �14�
with �=6 and topography �18� vs the magnitude of the
topography.

FIG. 3. �Color online� Log-log plot of the skewness of
the Fourier component �1,0 in the simulations of the
truncated system �14� with topography �18� and differ-
ent truncation sizes T�, with �=4,6 ,8 ,10.
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higher topographic spectral components. Finally, we also ob-
serve the saturation of the skewness when the topography
becomes too large.

Overall, simulations with single-mode topographies �21�
can be summarized as follows: �i� Means and variances of
the Fourier coefficients �k are in good agreement with the
predictions of the equilibrium statistical mechanics, and �ii�
nonzero topographic modes induce significant departures
from Gaussianity for the third moment in low-dimensional
truncations of the barotropic quasigeostrophic model. In ad-
dition, these simulations also demonstrate that �iii� the sig-
nature of the non-Gaussian behavior weakens as the topo-
graphic Fourier frequency or the size of the truncation are
increased and �iv� the third moment is linearly proportional
to the magnitude of h for small h, but skewness growth satu-
rates for larger magnitudes.

C. Multimode topographies

To investigate the interaction of topographic modes, we
consider the statistical behavior of the truncated system in
�14� with multimode topographies,

h�x,y� = H0�cos�x + 2.31� + sin�x + 0.11� − cos�2x − 1.7�

+ sin�2x + 0.3� + M0�cos�x + y + 2.8�

− sin�x + y + 1.55��	 �22�

with

H0 = 0.67, M0 = 0, 1, 2, 3.

The phase of the Fourier coefficient h1,0 coincides with the
single-mode topography considered in �18�. In addition, two
more frequencies, �1,1� and �2,0�, are introduced. The mag-
nitude of the single-mode topography in �18� with H0=0.67
is approximately 0.42. Therefore, we can compare the behav-
ior of the mode �1,0 with simulations in the preceding sec-
tion. The magnitude of the topographic mode �1,1� is varied

to demonstrate interactions between various topographic fre-
quencies. The statistical behavior of �1,0 and �1,1 versus M0

is presented in the top part of Table III and also in Fig. 5. We
would like to emphasize that the maximum magnitude of
the topography �22� varies from max�hM0=0�=0.68 to
max�hM0=3�=4.65. Simulations with multimode topographies
�22� demonstrate that the statistical behavior of the Fourier
mode �1,0 is affected by the magnitude of the topographic
mode h1,1. The mean and the skewness of the mode �1,0 are
affected especially strongly by the growth of the topographic
mode h1,1. The total changes in the mean and the skewness
of Re �1,0 are approximately 15% and 25%, respectively.

FIG. 4. �Color online� Skewness of the Fourier compo-
nent �k in the simulations of the truncated system �14�
with topography �21� and different magnitudes H0.

TABLE III. Statistics of the Fourier components �1,0, �1,1, and the mean
flow U in simulations with topography �22� with and without U and �.

M0=0 M0=1 M0=2 M0=3

U ,�=0

Mean Re �1,0 −0.05462 −0.05741 −0.06038 −0.06126

Var Re �1,0 0.15528 0.15626 0.16152 0.16467

Skew Re �1,0 0.10291 0.09357 0.08309 0.06283

Mean Re �1,1 0.00014 −0.16147 −0.32829 −0.4970

Var Re �1,1 0.06296 0.05742 0.04455 0.03193

Skew Re �1,1 −0.00291 0.28019 0.45894 0.53036

U ,��0

Mean Re �1,0 −0.053873 −0.05413 −0.05677 −0.05904

Var Re �1,0 0.151778 0.15325 0.15701 0.161

Skew Re �1,0 0.08291 0.08074 0.06686 0.05299

Mean Re �1,1 0.000093 −0.15428 −0.31496 −0.48003

Var Re �1,1 0.061 0.05661 0.04658 0.03569

Skew Re �1,1 −0.002985 0.22866 0.38482 0.48092

Mean U −0.1753 −0.186186 −0.191914 −0.204916

Var U 0.374507 0.381094 0.401869 0.420441

Skew U 0.24062 0.241252 0.223465 0.197856
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The statistics of the mode �2,0 exhibit a similar �but less
pronounced� trend, and are not presented here for brevity of
presentation. The mean of �1,1 grows linearly with M0, as
expected, but the skewness exhibits a sublinear growth, simi-
lar to the simulations in Sec. III B with large single-mode
topographies. In addition to significant deviations from
Gaussianity in modes where the topography is nonzero,
simulations in this section also demonstrate a strong influ-
ence of the topographic mode h1,1 on the mean and the skew-
ness of �1,0, which are only significant when the topographic
mode h1,0 is present. Therefore, topographic frequencies in-
teract in a nontrivial manner and can have a strong affect on
the statistics of other modes. Such interactions are not pre-
dicted by the equilibrium statistical theory, since in statistical
predictions in Eqs. �10� different modes appear to be com-
pletely uncoupled. On the other hand, the overall trend of
these interactions is to improve mixing and reduce the non-
Gaussian effects of the topography.

IV. STATISTICAL BEHAVIOR FOR �Å0, UÅ0

In this section, we consider the full quasigeostrophic
model with variations of the Coriolis parameter, i.e., ��0
and mean flow U�0. To demonstrate the robustness of the
non-Gaussian behavior and the influence of geophysical ef-
fects, we consider both the small-size truncation T6 and
larger truncation sizes T15 and T20.

A. Smaller truncation size T6

To analyze the Gaussian behavior of the truncated sys-
tem in the presence of the mean flow, U, and Coriolis force,
�, we consider the same multimode topography �22� as in
Sec. III C with

H0 = 0.67, M0 = 0, 1, 2, 3.

The values of the other parameters are chosen to be

� = 1, 
 = 2, � = 0.5. �23�

The values of � and 
 are identical to the values of these
parameters �cf. with Eq. �17�� in the simulations in the pre-
ceding sections with �=U=0. A typical energy spectrum is
presented in Fig. 6. Recall that truncated barotropic quasi-
geostrophic equations can be rewritten through the Fourier
coefficients of the stream function as in Eq. �2�. The equa-
tions in �2� are considered on the truncation T� with �=6.
Numerical simulations are initialized on the energy-
enstrophy level consistent with constraints in Eqs. �12� and
�13�, which yields the equilibrium statistical predictions in
Eqs. �9� and �10�. Similar to other sections, all statistics are
computed as time averages from a single microcanonical re-
alization with T=495000.

Comparison of the statistical behavior of the Fourier
components �1,0 and �1,1 with and without U and � is pre-
sented in Table III and Fig. 7. Similar to other cases, means
and variances are sufficiently close to the predictions of the

FIG. 5. �Color online� Simulations
with the multimode topography in �22�
with U=�=0. Top left: Solid line,
mean of Re �1,0; dashed and dashed-
dotted lines, comparison with simula-
tions with the single-mode topography
in �18� with H0=0.67 and predictions
of the equilibrium statistical mechan-
ics, respectively. Top right: Solid line,
skewness of Re �1,0; dashed line, com-
parison with simulations with the
single-mode topography in �18� with
H0=0.67. Bottom left and right: Mean
and skewness of Re �1,1, respectively.
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equilibrium statistical theory. This is illustrated by the behav-
ior of the mean of the mode �1,1 �bottom left part of Fig. 7�,
which is unaffected by the presence of geophysical effects
and exhibits a linear growth proportional to the magnitude of
the topographic mode h1,1. Moreover, interactions of fre-
quencies �1,0� and �1,1� reduce the mean of the Fourier mode
�1,0 by approximately 1% or 2%. On the other hand, the

presence of the Coriolis parameter and the mean flow re-
duces the non-Gaussianity of �1,0 and �1,1 by approximately
15% and 10%, respectively. This demonstrates that interac-
tions with additional degrees of freedom in the equations
reduce the topographic non-Gaussian statistical effects, but
the statistical behavior of means and variances of �k remains
nearly unaffected by U and �.

FIG. 6. �Color online� Isotropic energy spectrum
��k�2
��k�2�� in simulations of the truncated system in
�2� �U ,��0� with parameters in �23� and multimode
topography in �22� with M0=1. Circles, predictions of
the equilibrium statistical mechanics; crosses, numeri-
cal simulations.

FIG. 7. �Color online� Comparison of
simulations with the multimode topog-
raphy in �22� with and without U, �.
Top left: Skewness of U vs the magni-
tude of the topographic �1,1�, M0. Top
right: Skewness of Re �1,0; solid line,
simulations with the mean flow, U and
�; dashed line, comparison with simu-
lations with U=�=0. Bottom left and
right: Mean and skewness of Re �1,1,
respectively. Solid line, simulations
with U ,��0; dashed line, comparison
with simulations with U=�=0.
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The equilibrium statistical predictions for the mean flow
in Eq. �9� with parameters in Eq. �23� are

StatMech Mean U = − 0.25, StatMech VarU = 0.5.

All statistics of the mean flow are affected considerably by
the growth of the topographic mode h1,1. Fluctuations of the
mean and variance of U are approximately 15% for the four
simulations with different values of M0. Moreover, since the
mean flow is driven linearly by the small-scale flow, the
non-Gaussian effects “propagate” into the statistical behavior
of U as well. Nevertheless, the non-Gaussian behavior of U
does not seem to be “additive.” Both third moments of
Re �1,0 and Re �1,1 are positive, but the skewness of U de-
creases for sufficiently large values of M0.

B. Simulations with larger truncation sizes
T15 and T20

In this section, we verify our findings for truncated sys-
tems of larger sizes. In particular, we consider the spectral
truncation of the equation in �14� with truncation sizes

� = 15, 20.

We would like to emphasize that the corresponding number
of real degrees of freedom in these systems is 481 and 841
for �=15 and 20, respectively. We utilize the following mul-
timode topography in the simulations:

h�x,y� = 0.5�cos�x + 2.31� + sin�x + 0.11�� + 0.5�sin�2x

+ 0.3� − cos�2x − 1.7�� + M0�cos�x + y + 2.8�

− sin�x + y + 1.55�� + 0.075�cos�3x + y − 3.1�

+ sin�3x + 2y + 2.1�� + 0.041�cos�5x + 2y + 7.3�

− sin�4x − 2y − 0.75�� . �24�

The large-scale modes of this topography are similar to the
multimode topography considered in Eq. �22�. In addition,

higher topographic wavenumbers �3,1�, �3,2�, �5,2�, and �4,
−2� are also added to ensure larger numbers of interactions
between the mean flow, U, and the stream function, ��.
Similar to other sections, we consider the energy-enstrophy
level given by

� = 1, 
 = 2, � = 0.5. �25�

To demonstrate the robustness of the phenomena described
in the previous sections, we consider topographies in Eq.
�24� with increasing magnitude for the mode h1,1 for �=15,
but due to the increasing computational complexity of the
problem, we performed only one simulation with the trunca-
tion size �=20. To summarize, we investigated the behavior
of the system for

� = 15, M0 = 0.25, 0.5, 0.75, 1;

� = 20, M0 = 0.5.

The behavior of the skewness for the coefficients �1,1

and the mean flow, U, are depicted in Figs. 8 and 9, respec-
tively. Similar to results described earlier, the third moment
of the stream-function coefficient �1,1 grows linearly with
M0. Due to the relatively small magnitude of this topo-
graphic mode, we do not observe the saturation of the third
moment with M0 �cf. with the bottom right part of the Fig. 7,
for example�. This is consistent with the results for the
single-mode topography described in Sec. III A. The skew-
ness of the mean flow, U, exhibits a nonuniform behavior,
where the fast initial growth changes into a slower decay for
larger values of M0. This is consistent with the statistical
behavior of the mean flow for smaller truncation size de-
scribed in Sec. IV A. In particular, we would like to empha-
size that the absolute values of the skewness are approxi-
mately comparable for the T6 �Sec. IV A� and T15 truncation
sizes.

FIG. 8. �Color online� Skewness of the Fourier compo-
nent Re �1,1 vs the magnitude of the topographic mode
�1,1�, M0, in simulations with the truncation size T15

and multimode topography in �24�.
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The statistical properties of the mean flow, U, and the
first few coefficients of the stream function for the truncation
size T20 are presented in Table IV. The statistical properties
of the mode Re �1,1 and the mean flow U are comparable for
truncation sizes �=15 and 20. This happens, probably, due
to the particular �k�−2 shape �see Eq. �12�� of the energy spec-
trum in the problem. In particular, for the parameter values

� = 1, 
 = 2, � = 0.5,

the total energy given by Eq. �12� is

E�=15 � 6.74, E�=20 � 7.61.

Therefore, although the difference in the total number of
degrees of freedom between truncation sizes �=15 and 20 is
considerable, changes in the total energy are much smaller
percentagewise. Thus, numerical simulations with larger
truncation sizes suggest that higher wavenumbers have a
rather limited affect on the statistical properties of large-scale
structures. In addition, we would like to comment that the
robustness of the results reported here was verified against
simulations with smaller time step and longer integration
times.

C. Simulations with truncation size T15 on higher
energy-enstrophy levels

To investigate the generality of the results presented in
the previous sections, we also performed simulations with
higher energy and enstrophy levels. In particular, we inves-
tigate the behavior of the systems in Eq. �14� with the trun-
cation size T15, multimode topography in Eq. �24�, and pa-
rameters

� = 1, 0.75, 0.5, 0.25,
�26�

M0 = 0.5, 
 = 2, � = 0.5,

and

M0 = 0.5, 1, 1.5, 2, 2.5,
�27�

� = 0.5, 
 = 2, � = 0.5.

From Eqs. �9� and �10�, the variance of the mean flow, U,
and the Fourier coefficients of the stream function are pro-
portional to �−1. Therefore, smaller values of � correspond
to higher energy-enstrophy levels and larger variance of �k
and U. Corresponding fluctuating energy-enstrophy levels in

Eqs. �12� and �13� are

E�=1, 0.75, 0.5, 0.25 = 6.67, 8.9, 13.35, 26.77,

E�=1, 0.75, 0.5, 0.25 = 226.89, 302.52, 453.79, 907.58.

For a fixed topography, the skewness of the coefficient �1,1

decays for higher energy-enstrophy levels �smaller values of
the parameter ��. This behavior is depicted in Fig. 10. The
statistical behavior of the mean flow, U, follows a similar
trend. On the other hand, on a fixed energy-enstrophy level �
�, 
, and � are fixed�, the non-Gaussian behavior of the
stream function seems to be strongly affected by the magni-
tude of the corresponding topographic mode even for higher

FIG. 9. �Color online� Skewness of the mean flow U vs
the magnitude of the topographic mode �1,1�, M0, in
simulations with the truncation size T15 and multimode
topography �24�.

TABLE IV. Statistics of the Fourier components �1,0, �1,1, and the mean
flow U in simulations with the truncation size T20 and topography �24� with
M0=0.5.

Mean Variance Skewness

Re �1,0 −0.0448 0.1511 0.0335

Re �0,1 −0.0058 0.1537 0.0070

Re �1,1 −0.1166 0.0591 0.1314

Re �1,−1 −0.0019 0.0602 0.0082

U −0.2326 0.4004 0.2059
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energy levels. In particular, the linear dependence of the
skewness of Re �1,1 on the magnitude of the corresponding
topographic mode is depicted in Fig. 11. Therefore, on the
one hand, larger fluctuations decrease the non-Gaussian af-
fect of topographic modes, but, on the other hand, in systems
with larger energy-enstrophy levels, it is possible to select a
topography with a large enough magnitude that will have a
significant influence on the non-Gaussian behavior of the
stream function. We would like to comment that the statisti-
cal behavior of the mean flow, U, is affected much weaker by
h1,1 on a higher energy-enstrophy level ��=0.5� than on the
lower one ��=1�. In particular, in simulations with param-
eters in Eq. �27�, the skewness of the mean flow is nearly

constant. Therefore, we expect that the statistical behavior of
the mean flow, U, will be nearly Gaussian on higher energy-
enstrophy levels regardless of the magnitude of the topogra-
phy.

V. CONCLUSIONS

The role of the underlying bottom topography is system-
atically studied for several low-dimensional conservative
truncations of the barotropic quasigeostrophic model in a
doubly periodic geometry. It is demonstrated that in the ab-
sence of the topography, the statistical behavior of the Fou-
rier coefficients is Gaussian and predictions of the equilib-

FIG. 10. �Color online� Skewness of Re �1,1 vs the
variance of Re �1,1 in simulations with the truncation
size T15 and multimode topography �24� with M0=0.5
on energy-enstrophy levels determined by Eqs. �12� and
�13� with �=1,75,0.5,0.25.

FIG. 11. �Color online� Skewness of Re �1,1 vs the
magnitude of Re h1,1, M0, in simulations with the trun-
cation size T15 and multimode topographies �24� with
M0=0.5,1 ,1.5,2 ,2.5 on the energy-enstrophy level de-
termined by Eqs. �12� and �13� with �=0.5.
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rium statistical theory with two conserved quantities �energy
and enstrophy� are in very good agreement with microca-
nonical simulations.

When topographic frequencies are present in the system,
they induce a significant departure from Gaussianity in cor-
responding Fourier modes of the stream function. The non-
Gaussian effect is manifested most strongly for the third mo-
ments of the distribution. The non-Gaussian response is
linear for small magnitudes of the topography, but saturates
for larger topographies. Additionally, non-Gaussian features
also become less pronounced as the size of the truncation
increases while the topographic magnitude is kept constant.
Therefore, for fixed topographies we can expect a near-
Gaussian behavior in systems of larger sizes.

Examples presented in Sec. III C demonstrate a non-
trivial interaction mechanism between multiple topographic
modes. While the equilibrium statistical predictions for a par-
ticular stream function coefficient �e.g., �1,0� are unaffected
by the presence of other topographic frequencies, microca-
nonical simulations with multimode topographies demon-
strate that additional topographic frequencies reduce the
overall non-Gaussian effect. Furthermore, this observation is
also supported by simulations with the mean flow, U, in Sec.
IV. The skewness of both Fourier modes, �1,0 and �1,1, is
significantly smaller in simulations when U and � are
present. This indicates that interactions with additional de-
grees of freedom improve the mixing properties of the model
and reduce the non-Gaussian effects of the topography.

Statistical behavior of the mean flow, U, is also affected
strongly by the presence of multiple topographic modes.
Both the mean and the variance of U exhibit significant fluc-
tuations in simulations with the multimode topography with
varying magnitude of h1,1. The non-Gaussian behavior of the
stream function “propagates” into the mean flow and U�t�
exhibits significant departures from Gaussianity even for
small topographies �e.g., compare skewness of �1,0 and U in
simulations with the multimode topography in �22� with
M0=0�.

Simulations with larger truncation sizes �=15 and �
=20 confirm the strong influence of topographic interactions
on the statistical properties of large-scale structures in sys-
tems with O�500� degrees of freedom. Although for a fixed
topography the non-Gaussian effects decrease for larger fluc-
tuating energy-enstrophy levels, it is possible to select for
each energy-enstrophy level a topography of a larger magni-
tude that will result in a distinct non-Gaussian behavior of
the stream function. Therefore, the non-Gaussian behavior
seems to be generic for systems with relatively large �com-
pared to the energy-enstrophy level� topographies. In addi-
tion, these simulations also indicate that increasing trunca-
tion sizes have a very weak affect on the non-Gaussian
statistical behavior of the low Fourier components of the
stream function and the mean flow, U.

In addition, the robustness of the results reported here
was also verified for several different values of energy-
enstrophy parameters and magnitudes of the Coriolis forcing.
In particular, non-Gaussian features of the statistical behav-
ior of the stream function and the mean flow were verified
for 
 ,�=1,0.5 and for the negative temperature regime

�without the mean flow� 
 ,�=−0.5,1. Although the mo-
ments’ magnitudes depend strongly on the particular energy-
enstrophy level, overall statistical trends reported in this pa-
per were confirmed in all simulations with different values of
parameters 
, �, and �.

Examples in this paper demonstrate significant depar-
tures from Gaussian predictions in spectral truncations of the
barotropic quasigeostrophic model of moderate sizes. The
non-Gaussian behavior is induced by the topographic fre-
quencies and does not interact with the variations of the Co-
riolis parameter, �. On the other hand, interactions between
the topography and the stream function in simulations with
multiple topographic frequencies lead to a complex behavior
and, overall, reduction of non-Gaussian features of the
stream function. It is possible for non-Gaussian topographic
effects to play a significant role in the forced/dissipative
barotropic quasigeostrophic model, especially with small
forcing and strong dissipation, where only a small subset of
stream function coefficients is significant. This issue will be
analyzed separately in a subsequent paper.
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