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Abstract

The distribution of price returns is studied for a class of market models with Markovian dynamics. The models have a

non-constant diffusion coefficient that depends on the value of the return. An analytical expression for the distribution of

returns is obtained, and shown to match the results of computer simulations for two simple cases. Those two cases are

shown to have exponential and ‘‘fat-tailed’’ power-law decaying distributions, respectively.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical analysis has established that a wide range of physical and other processes have non-Gaussian
distributions. They include temperature fluctuations in hard turbulence [1], diffusion in inhomogeneous media
[2,3], and price variations in financial markets [4,5]. One common characteristic in these distributions is the
presence of exponential or power-law tails, signifying a more frequent occurrence of large deviations than
expected from a collection of independent, identically distributed events [6]. The width of the distributions
have also been shown to scale as the time interval during which the fluctuations occur. Based on these
properties, it has been proposed that Levy distributions be used to describe fluctuations in the underlying
processes [7,8]. In this paper, we propose an alternative explanation for the non-Gaussian distributions,
namely a non-uniform diffusion rate [9,10]. The discussion here is based on fluctuations in financial markets.

Financial markets are nonstationary, far from equilibrium systems. Consider a stock whose price at time t is
given by SðtÞ. Most financial market analyses are conducted in terms of the ‘‘return’’ of a stock,
xðtÞ ¼ ln½SðtÞ=S0�, where S0 is a reference price [11,12]. Empirical studies find that the variance of the returns
grows approximately linearly with time, s2 ¼ hðDxÞ2i / t, so that statistical equilibrium is never achieved.
e front matter r 2005 Elsevier B.V. All rights reserved.
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Empirical studies also find that the price return distribution, W ðx; tÞ, of real markets deviates significantly
from a Gaussian, especially far from the mean [13]. (For recent reviews see Refs. [4,5,14–18].) In particular,
some detailed studies [4,14,15] have found that the tails of the distributions have an asymptotic power-law
decay W ðx; tÞ�jxj�m, with m ranging from about 2 to 7.5, while others [18,19] have found that the distribution
of moderate sized returns are described by an exponential decay.

It was recently conjectured that the non-normality observed in real financial markets can be explained by
assuming that the rate of trading depends on the price of the stock [19,20]. Here, we explore that idea further
by studying some simple diffusive models for market dynamics that have diffusion coefficients which depend
on the price of the stock. We will demonstrate that, depending on the functional form of the diffusion
coefficient, our models can reproduce the full range of non-Gaussian behavior of the price return distributions
observed empirically in real markets. Notably, we will show that our simple models can have, in addition to
exponential distributions, ‘‘fat-tailed’’ distributions that decay as power-laws with exponent m ranging from 2
to1. This contrasts with stable Levy distributions which also have fat-tailed power-law decays, but have an
exponent restricted to the range 1pmo3.
2. Exact analytical solution for the return distribution

To obtain an analytical expression for the price return distribution W ðx; tÞ of a diffusive processes with a
diffusion coefficient Dðx; tÞ, note that it satisfies the Fokker–Planck equation [21,22]

qW

qt
¼ �RðtÞ

qW

qx
þ

1

2

q2

qx2
ðDW Þ , (1)

where D � Dðx; tÞ is the diffusion coefficient [23], and RðtÞ is a (time-dependent) drift rate [24]. For simplicity,
we assume RðtÞ ¼ 0 for the rest of this analysis. However, the case of non-zero RðtÞ can also be treated using a
simple coordinate transformation x0 ¼ x�

R t

0 Rðt0Þdt0.
A normalizable solution to Eq. (1), consistent with empirical investigations of financial markets [4,5,25], can

be found by assuming that the distribution of returns has the scaling form

W ðx; tÞ ¼
1

tZ
F ðuÞ . (2)

Here u ¼ x=tZ, and Z is the self-similarity exponent [5]. We also assume that the diffusion rate is a function of
u. This scaling hypothesis leads a unique value for Z, which can be seen by noting that, using it, Eq. (1)
becomes

�
Z

tZþ1
F ðuÞ �

Z
tZþ1

uF 0ðuÞ ¼
1

2

1

t3Z
ðDF Þ00ðuÞ . (3)

Consequently Z ¼ 1
2
, a value which is consistent with conclusions from empirical studies of real markets. Then

Eq. (3) simplifies to

½DðuÞF ðuÞ�00 þ ½uF ðuÞ�0 ¼ 0 , (4)

which can be integrated to

½DðuÞF ðuÞ�0 þ uF ðuÞ ¼ Const . (5)

If DðuÞ is symmetric about u ¼ 0 and the diffusion process starts at the origin, then F ðuÞ will also be symmetric
about u ¼ 0. Under these conditions, both terms in the LHS of Eq. (5) are anti-symmetric about u ¼ 0, and
thus Const ¼ 0. Therefore,

DðuÞF ðuÞ0 ¼ �½uþDðuÞ0�F ðuÞ , (6)

which has a general solution of the form

F ðuÞ ¼
1

DðuÞ
exp �

Z u ū

DðūÞ
dū

� �
. (7)
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As an example, consider a constant diffusion coefficient Dðx; tÞ ¼ D0. In this case, Eq. (7) gives a solution of
the form

F ðuÞ ¼ C0 exp �
1

2D0
u2

� �
, (8)

which is the well-known result for the traditional model of distribution of returns.

3. Static consensus price

In the above derivation it was assumed that the diffusion coefficient DðuÞ is a symmetric function of the
scaling variable u ¼ x=

ffiffi
t
p

. Following Ref. [19], consider DðuÞ as an expansion in juj

DðuÞ ¼ D0ð1þ �1juj þ �2u2 þ � � �Þ (9)

where the constants D040 and �iX0 for all i.
In the remainder of the paper, we explore the importance of the first few terms in this expansion on the

behavior of the model. Two different, simple functional forms of the DðuÞ will be considered. One is a
piecewise linear function of juj and the other is a quadratic function of u.

3.1. Piecewise linear diffusion

The first form of DðuÞ we consider is a piecewise linear function of juj

DðuÞ ¼ D0ð1þ �jujÞ , (10)

where D0 and � are constant parameters. It should be noted that D0 can be eliminated by a suitable rescaling of
time. The exact solution to Eq. (1), obtained using Eq. (7), is

F ðuÞ ¼ C0 exp �
juj

D0�

� �
ð�juj þ 1Þa�1 , (11)

where a ¼ 1=ðD0�2Þ, the constant C0 which normalizes W ðx; tÞ is given by

C0 ¼
½1=ðD0�eÞ�

a

2
ffiffi
t
p

G½a; a�
, (12)

and

G½a; z� ¼
Z 1

z

pa�1e�p dp (13)

is the incomplete Gamma function.
In the limit that � vanishes, W ðx; tÞ becomes a Gaussian. This can be seen from

ln F ðuÞ�
1

D0�2
� 1

� �
lnð1þ �jujÞ �

juj

D0�
�
�u2

2D0
þOð�Þ , (14)

and hence

lim
�!0

F ðuÞ� exp½�u2=2D0� . (15)

This is because, in that limit, the diffusion coefficient (10) is a constant. As � increases the tails of the
distribution decay slow down. We refer the reader to Ref. [19] for a more detailed study of the special case
� ¼ 1=

ffiffiffiffiffiffi
D0

p
when F ðuÞ is an exponential distribution.

We simulated the price returns using random walks with steps of unit size occurring at non-constant time
intervals. The time between steps is 1=Dðx; tÞ [21], where Dðx; tÞ was calculated at every time step. The
simulations consisted of many independent walkers, each of which started at the origin, and randomly chose
the direction of each event to be either an increase or a decrease with equal probability. The walks continued
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Fig. 1. Distribution of returns for a piecewise linear diffusion coefficient, Eq. (10), with D0 ¼ 1. The shape of the distribution changes with

the parameter �. Notice the special cases of � ¼ 0 where the distribution is Gaussian, and of � ¼ 1 where the distribution is exponential. The

solid lines represent the analytical solution of Eq. (11), and the data points are the results of the random walk simulations with 106

independent walks, each one lasting a time t ¼ 256.
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until a maximum time was reached. Fig. 1 compares the analytical and simulation results, showing good
agreement between them.

3.2. Quadratic diffusion

The second form of DðuÞ we consider is a quadratic function of u

DðuÞ ¼ D0ð1þ �u
2Þ . (16)

In this case, the solution to Eq. (1) obtained using Eq. (7) is

F ðuÞ ¼
C0

ð1þ �u2Þ
1þb , (17)

where b ¼ 1=ð2D0�Þ and the normalization constant for W ðx; tÞ is

C0 ¼
G½1þ b�ffiffiffiffiffiffi

t=�
p

G½1=2�G½1=2þ b�
. (18)

This result is plotted in Fig. 2, where it is compared to the results of the corresponding discrete random walk
simulation for different values of �, with D0 ¼ 1. The simulations were performed as in the case of piecewise
linear diffusion, except that in this case D is given by Eq. (16). Note also that the results from the simulation
are again consistent with the analytical solutions.

As before, the return distribution also becomes a Gaussian in this case when � vanishes. However, as �
increases, the tails of W ðx; tÞ become power-law distributed. This behavior can better be appreciated in Fig. 3
where a log–log plot for different values of � is presented. In the limit of �!1 the tails of the distribution are
well fitted by a power-law with exponent 2. Meanwhile, as �! 0 the tail can also be fitted with a power-law,
but with an exponent whose value increases and � decreases. However, the fit is good over a range that shrinks
as � decreases. This is expected since the distribution becomes Gaussian in the limit �! 0. It is important to
point out that as � is decreased from1 to 0 the exponent observed in the tail varies from 2 to1. Thus, these
results reproduce the empirical observations of real markets that find fat-tailed price return distributions with
exponents ranging from 2 upward. Exponents as large as 7.5 have been reported [4], but at these values the
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Fig. 2. Distribution of returns using the quadratic diffusion coefficient in Eq. (16). Note that the distribution is not exponential, but

instead has fat tails. The solid lines represent the exact solution to Eq. (17), and the data points represent the results from the simulation.

For � ¼ 0:05 2� 107 walks were simulated, 5� 107 for � ¼ 0:5, and 6� 107 for � ¼ 1. The final time used in each case was t ¼ 256.
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ranging from 2 upward. The data points represent the analytical solution, from Eq. (17). The tail of each case is fitted with a straight line
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results have large error bars. This is because large exponents are found when the time scale is increased, and
the amount of data samples used in the analysis decreases.

Fat tails Laðx; tÞ�jxj
�a�1 ( jxjb1) can also be generated by symmetric Lévy distributions [26,27],

Laðx; tÞ ¼
1

p

Z 1
0

dk e�gtk
a
cosðkxÞ , (19)

when 0oao2. The corresponding histograms scale like t1=a; i.e., Z ¼ 1=a. However, the Lévy distribution have
infinite variance for 0oao2. Another alternative to model the fat-tails observed in empirical data is the
Student-t distribution [28,29,32]

PðxÞ ¼
G½ðnþ 1Þ=2�ffiffiffiffiffiffi

pn
p

G½n=2�ð1þ x2=nÞðnþ1Þ=2
. (20)
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As the control parameter n!1 PðxÞ, PðxÞ approaches a Gaussian distribution. PðxÞ ! x�n�1 for large jxj,
and hxqi is finite for qon.

Note that both of the functional forms of DðuÞ we have considered have a minimum value at u ¼ 0. The
diffusion coefficient is proportional to the rate of transactions. Therefore, the minimum of DðuÞ occurs when
the rate of transactions is a minimum. The value of the returns for which this minimum occurs, x̄, is the most
probable (as well as the average value) of x. Thus, x̄ ¼ ln½S̄=S0� represents the ‘‘consensus’’ value of the return
(and S̄ the consensus price); it is the value of the return the market expects. Thus far we have assumed that the
consensus value is constant x̄ ¼ 0.
4. Dynamic consensus price

Generally, however, one may expect that the consensus price of the stock will fluctuate. We therefore now
introduce a simple model for the dynamics of the consensus price. In what follows, we again assume that
R ¼ 0. Assume that with every trade S̄ðtÞ will shift by a small amount toward the value of the current price
SðtÞ, or equivalently, that the consensus value of returns x̄ðtÞ will shift toward the value of the current return
xðtÞ. Of course, the diffusion constant will change with the consensus value changes to Dðx� x̄; tÞ in order to
keep its minimum at x ¼ x̄.

In this section, results of random walk simulations which utilize the non-constant diffusion coefficients
considered in the previous section, and which allow for the consensus value to change, are presented. A very
simple dynamics for the value of the consensus return x̄ is considered; the change in the value at each time
step, Dx̄, is assumed to be proportional to the difference in the return and the consensus value,

Dx̄ðtÞ ¼ k½xðtÞ � x̄ðtÞ� , (21)

where k40 is a constant that we will assume to be small. There are two essential differences between the
simulations discussed in Section 3 and those in this section. First, as mentioned above the diffusion constant
used is Dðx� x̄; tÞ instead of Dðx; tÞ. Therefore, the time between steps becomes 1=Dðx� x̄; tÞ. Second, the
value of x̄ is varied dynamically using Eq. (21).

The simulations again begin with the consensus price of the stock equal to its initial value S̄ð0Þ ¼ S0,
and therefore the initial value of the consensus return vanishes x̄ð0Þ ¼ 0. Subsequently, x̄ will fluctuate
around its initial value. Of course, xðtÞ will also fluctuate about the origin. When the value of xðtÞ is near the
origin, it is often the case that jxðtÞj � jx̄ðtÞj. This causes the peak in the distribution of returns W ðx; tÞ to
smear out.
4.1. Linear diffusion

To understand the effects of a dynamic consensus value x̄ on the distribution of price returns, first
consider the case of piecewise linear diffusion Dðx� x̄; tÞ. As discussed earlier, if � ¼ 1=

ffiffiffiffiffiffi
D0

p
and x̄ is

static, this form of the diffusion coefficient will result in an exponential return distribution. Figs. 4 and 6
present the results of simulations with dynamic x̄. As expected from the argument in the previous paragraph,
the effect of the dynamics of x̄ is to smooth out the peak in W ðx; tÞ. In fact, it becomes Gaussian in the
center, as can be seen from the fit to the quadratic function shown with solid line in Fig. 4. That function is fit
through the 31 points at the peak of W ðx; tÞ. The range of the quadratic region is directly related to the value
of k. If k increases this region is extended to a larger range, see Fig. 5. Away from the center of the
distribution, where the effects of the dynamics of x̄ become less important, the exponential form of W ðx; tÞ is
retained as expected. This is shown by the fit to the dashed line in Fig. 4, which works in the tail of
the distribution.

Fig. 6 shows the distribution of x̄ for different values of k, which we will call Pðx̄; tÞ to distinguish it from
W ðx; tÞ. As k is decreased, x0 stays closer to the origin, its starting position, and the tails of the distribution
decay rapidly. This is why the tails of the distribution of x are not affected by the movement x̄. In the limit of
k ¼ 0, x̄ becomes static, and the distribution will be a single point at the origin. On the other hand, in the limit
k goes to 1 the distribution becomes a Gaussian.
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Fig. 5. Dependence on k of the size of the Gaussian region at the center of the distribution. As k increases the width of the Gaussian region

is increased. In the limit of k ¼ 1 the distribution becomes completely Gaussian. The data points represent the simulation and the solid

lines represent the quadratic fits. Each simulation consisted of 107 random walks, with � ¼ 1, D0 ¼ 1 and t ¼ 256. For clarity the

distributions were shifted vertically and the tails are excluded from the plot.
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Fig. 4. Distribution of returns with linear diffusion and dynamic consensus value. The center of the distribution of xðtÞ is well described by

a quadratic function. The curve shown was fit to the 31 points in the center. The tails of the distribution have an exponential decay. A

straight line was used to fit the tails. The figure shows results for � ¼ 1, D0 ¼ 1 and k ¼ 0:01. 1:6� 108 walks, each with a final time of

t ¼ 256, were used in the simulation.
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4.2. Quadratic diffusion

Now consider the effects of the dynamics of x̄ on the return distribution for the case where Dðx� x̄; tÞ is a
quadratic function. In this case, as we have seen, if x̄ is static, then the center of the return distribution has a
peak, but does not have discontinuity in the slope at x ¼ 0. Fig. 7 shows the return distribution calculated
from simulations with dynamic x̄. As expected, the peak at x ¼ 0 is broader than in the case of static x̄, and it
can also be fitted with a quadratic function, indicating a Gaussian peak.

Notice, though, the tail behavior in this case differs from that observed when x̄ was static. In this case, the
tails of the distribution are exponential. We will return to this point at the end of this section.
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Fig. 6. Distribution of x̄ using the piecewise linear diffusion coefficient. Note that the distribution depends on the parameter k. For small

k, x̄ becomes more localized around the origin. In this simulation, � ¼ 1, D0 ¼ 1 and t ¼ 256 with 107 walks each. The solid lines are guides

to the eye.
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Fig. 7. Distribution of x using a dynamic consensus value and the quadratic diffusion coefficient. The central region of can be fitted using

a quadratic function (solid line). To obtain the fitted line, 31 points at the center were used to fit the distribution. The data points show the

results from the simulation using � ¼ 1, D0 ¼ 1, t ¼ 256, k ¼ 0:0005 and 2� 107 walks.
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Fig. 8 shows the distribution of x̄. As the value of k decreases, the distribution of x̄ becomes sharply peaked.
This occurs at the same time that the tails of the distribution are getting heavier, implying that compared to
Fig. 6 there is a larger chance of x̄ being far from its original position. This behavior is presumably due to the
effect of the fat tails in the distribution of xðtÞ for static x̄. When the value of xðtÞ is in the tail of its
distribution, x̄ is ‘‘pulled’’ far away from the origin. This dynamics is very different than what we observed in
the case of linear diffusion, where the tails of the distribution of x̄ decayed faster as k decreased. Notice that in
the limit of k ¼ 0 the distribution of x̄ will also be a single point at the origin, as is also the case for linear
diffusion.

We now take a closer look at the tails of W ðx; tÞ. Fig. 9 presents a log–log plot with results from simulations
for quadratic diffusion using different values of k and � ¼ 1. It is observed that as k decreases, the power-law
behavior starts to emerge in the tails. In the limit of k ¼ 0 the results should be the same as in the static x̄ case
(a power-law with slope 3). To explain why the power-law disappears with an increase of the parameter k we
turn to the dynamics of x̄ðtÞ. When k is increased the value of x̄ will follow closer xðtÞ making Dðx� x̄; tÞ have
a more constant value. This results in the tails of xðtÞ becoming Gaussian.
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Fig. 8. Distribution of x̄ using the quadratic diffusion coefficient with dynamic consensus value. The tails of the distribution get heavier as

k is decreased. These results were obtained using � ¼ 1, D0 ¼ 1 and t ¼ 256. The number of walks used was 2� 107 for k ¼ 5� 10�3 and

k ¼ 10�3, 4� 107 for k ¼ 5� 10�4 and 5� 107 for k ¼ 10�4. Here again the solid lines serve as guides to the eye.
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Fig. 9. Log–log plot of the distribution of x with quadratic diffusion coefficient and dynamic consensus value. The fat tails in the

distribution go to a power law as k goes to zero. Each simulation used � ¼ 1, D0 ¼ 1, t ¼ 256 and 2� 107 random walks. The black line at

the top has a slope ¼ 3. The distributions have been shifted vertically for clarity.
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5. Conclusions

We have presented a theory for the distribution of stock returns. It is based on the conjecture that the rate of
trading of a stock depends on how far its current price is from a consensus price, S̄. The resulting models use a
non-constant diffusion coefficient Dðx; tÞ to simulate the rate of returns. When S̄ is fixed and a piecewise linear
coefficient is used, an exponential distribution of returns is found. With quadratic diffusion, distributions with
fat tails are found. The exponents describing the power-law fat-tail distributions range from 2 to1. In both
cases we obtained an exact solution for W ðx; tÞ and simulations that support our findings. When S̄ is allowed
to move, both forms of diffusion coefficient give distributions with an approximately Gaussian near the origin.
Finally, we note that the range of behaviors observed here with this simple model covers the range of non-
Gaussian behaviors seen in the distribution of returns of real financial markets.



ARTICLE IN PRESS
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