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Abstract

We describe a three-dimensional dynamical system, which is obtained as a pseudo-spectral approximation to a free boundary
problem modeling solid combustion and rapid solidification, and is capable of generating its major dynamical patterns. These
patterns include a Hopf bifurcation followed by a sequence of secondary period doubling and a transition to chaos, reverse
sequences, and sequences followed by Shilnikov type trajectories. A computer-assisted bifurcation analysis uncovers some
novel mechanisms of stability exchange. The most striking of them is an infinite period bifurcation which resembles the
classical Shilnikov bifurcation, but instead of a funnel-shaped spiral along which the period is continually increasing, the
continuation produced a series of isolas. Each isola is a closed branch of solutions of roughly the same period, and with
the same number of oscillations. The isolas corresponding to consecutive numbers of low amplitude oscillations about the
equilibrium are adjacent to each other, and appear to accumulate on a saddle-focus homoclinic connection of Shilnikov type.
©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we introduce and study a three-dimensional system of ordinary differential equations (see (4.6)–(4.8))
capable of generating a variety of non-trivial dynamics. This system is one of a handful of examples of differential
equations that provide “real life”, working models for constructions of the dynamical systems theory. The system
arises as a pseudo-spectral approximation of a free boundary problem for the heat equation, which describes
condensed phase combustion and some exothermic non-equilibrium phase transitions. In a wide range of parameters
the three-dimensional dynamical system gives a qualitatively accurate approximation of the free boundary problem
and reproduces its major dynamical patterns.

Evolution of exothermic interfaces generates a remarkable variety of spatio-temporal patterns. These patterns
arise when, in certain ranges of parameters, uniformly traveling modes of propagation become unstable, and undergo
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a transition to self-oscillatory regimes. Such transitions have been observed in experiments for both the condensed
phase and the premixed gaseous combustion [20,22]. Similar instabilities have been observed in the process of rapid
solidification of thin films initiated by a laser beam (see [23]), and laser-induced evaporation of solid materials [15].
A variety of complex (including chaotic) auto-oscillatory regimes have also been found in numerical simulations
of mathematical models of different degrees of complexity. In particular, in our recent work [6–10] we undertook
a systematic investigation of a “one-phase” free boundary problem.

As was demonstrated in [6], dynamics of the free boundary (in one spatial dimension the free boundary is
just a point moving along thex-axis) includes such different scenarios as a uniform motion, a Hopf bifurcation and
persistent simple periodic oscillations for any overcritical value of the control parameter, a Hopf bifurcation followed
by a sequence of secondary period doubling bifurcations resulting in a transition to chaos, reverse sequences,
sequences followed by Shilnikov type trajectories, infinite period bifurcations, etc. It is rather remarkable that such
a variety of dynamical patterns is exhibited by a relatively simple problem, which consists of the 1-D heat equation
and (free) boundary conditions. This dynamical abundance is predicated on the subtle interaction between the heat
release at the free boundary (governed by the boundary kinetics) and the thermal diffusion in the medium.

Results of numerical experiments with the free boundary model demonstrate surprisingly clear-cut patterns,
some of which are well known and have been studied extensively for the finite-dimensional dynamical systems. It
leads quite naturally to the conjecture that dynamics generated by the free boundary problem may be essentially
finite-dimensional. The low-dimensional qualitative approximation of the free boundary problem that is introduced
in the present paper gives substantial, although indirect, evidence in support of this conjecture.

For the derivation of the finite-dimensional model we employ a pseudo-spectral method with the basis formed
by the Laguerre polynomials. This is a very natural basis for the problem, in view of the uniform exponential decay
of solutions along the spatial variable. The issue of a correct choice of the discrete approximation method turns
out to be extremely important. Perhaps partially due to the success of the Lorenz model, the Galerkin method has
been used almost exclusively in the attempts to derive finite-dimensional approximations of systems governed by
PDEs. In our case, however, no reasonable imitation of the original problem, as it seems, could be achieved based
on the Galerkin approximation with a low number of modes. One plausible explanation could be that the dynamical
patterns described above occur for highly overcritical values of the bifurcation parameter and far away (in any
reasonable norm) from the basic solution, so that any sense of the orthogonality associated with the linearization is
completely lost.

Discrete approximation based on the collocation method appears much more successful. The three-dimensional
dynamical system introduced below generates a remarkably accurate qualitative imitation of the original free bound-
ary problem, especially taking into account that only three collocation points have been used. In fact, certain subtleties
in the dynamics of the original problem that we had not noticed in earlier simulations on the free boundary model
were discovered via the three-dimensional model. The dynamics persists with the increase of number of colloca-
tion points, while spectra of the corresponding linearizations approach the linear spectrum of the prototype PDE
problem.

The rest of the paper is organized as follows. In Sections 2 and 3, for the reader’s convenience, we describe
the underlying free boundary model, summarize its analytical properties and present certain relevant features of its
dynamical behavior. In Section 4 through the pseudo-spectral approximation, we derive a three-dimensional system
of ODEs that is the main subject of the paper. This section also includes a comparison of spectral properties of
successive approximations which are based on increasing number of collocation points.

Section 5 is central for the paper: it gives a detailed description of dynamics exhibited by the system of ODEs.
We present results of numerical simulations that demonstrate a rich variety of dynamical scenarios corresponding
to different kinetic functions inherited from the free boundary problem. Comparison with observations of dynamics
generated by the original problem shows a uniform qualitative agreement between them, practically throughout the
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entire parameter space. The bifurcation structure of the problem is investigated with the aid of theauto software
package [4]. We describe novel (and not yet completely understood) mechanisms of exchange of stability that
are suggested by the bifurcation diagrams. In particular, we would like to single out an infinite period bifurcation
which superficially appears to be similar to the classical Shilnikov bifurcation [14]. Periodic solutions for this
type of bifurcation have the following structure: they contain a longer duration, high amplitude excursion from the
equilibrium which is followed by a series of high frequency, low amplitude oscillations about the equilibrium. For the
classical Shilnikov case, the bifurcation curve is oscillatory, with the magnitude of oscillations gradually decaying
(a “snake”); the period of periodic solutions is continually increasing and approaching infinity along the bifurcation
curve. In contrast to the classical Shilnikov bifurcation, in our case the continuation produced an isola, a closed
branch of solutions of roughly the same period, and with the same number of oscillations. The isolas corresponding
to consecutive numbers of low amplitude oscillations are adjacent to each other. Periodic solutions bifurcate along
the envelope of the isolas, which appears to be aparabola. In this sense, the exchange of stability exhibited by
this infinite period bifurcation is analogous to the “soft” loss of stability for a supercritical Hopf bifurcation. A
derivation of the 3× 3 system and some results of the paper were announced in [11].

2. Motivation of the free boundary model

In this section we sketch the derivation of the free boundary model which is at the heart of the present investi-
gation. We consider condensed phase combustion. For this type of combustion a solid fuel mixture is transformed
directly into a solid product. In addition to its theoretical interest, gasless combustion currently finds technological
applications as a method of synthesizing certain ceramics and metallic alloys [21]. The most primitive model of
gasless combustion involves a system of differential equations for the temperatureu and the concentration of the
fuel C (see [22]). In the one-dimensional formulation it takes the form:

ut = (κux)x + qW(C, u), (2.1)

Ct = −W(C, u), (2.2)

whereκ is the thermal diffusivity,W is the chemical reaction rate, andq is the heat release.
For physically relevant values of parameters, the system is characterized by the strong temperature sensitivity of

the rate and by rather sharply defined regions of dramatic change in the field variables that are usually associated
with propagating fronts. This suggests an alternative to the models with distributed kinetics which is provided by
those with concentrated kinetics (so-called flame sheet approximation, see [25]). The distributed reaction rate in
(2.1) and (2.2) is replaced by theδ-function,

W = w(u) δ(x − s(t)), (2.3)

supported at the interfacex = s(t) between the fresh(C = 1) and burnt(C = 0) material (see [19]). In the case
of gaseous combustion when the distributed kinetics is of the Arrhenius type, theδ-function model is the rational
asymptotic limit of the distributed kinetics model in the large activation energy limit. In this case the strength of the
δ-functionw(u) is determined through an asymptotic analysis by matching relevant inner and outer solutions. Of
course, all the intricacies of the behavior in the reaction zone are lost in this approximation.

The system (2.1) and (2.2) with theδ-function source is understood in the sense of distributions. This leads to
the system of two heat equations coupled at the interface:

u−
t = (κu−

x )x, u+
t = (κu+

x )x, u−|x=s(t) = u+|x=s(t),

(κu+
x − κu−

x )x=s(t) = −w(u)x=s(t),
ds

dt
= −w(u)|x=s(t), (2.4)
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where

u−(x, t) = u(x, t) for x < s(t), u+(x, t) = u(x, t) for x > s(t).

This is the free interfacetwo-phaseproblem of condensed phase combustion. The heat conductivity coefficient
κ is usually considered to be a constant. But, in principle, the heat conductivities of the fuel and of the product
may be drastically different. For example, if the product is a foam-like substance thenκproduct � κfuel. By setting
κproduct = 0 in the equation and the boundary condition foru+ in (2.4), we arrive at the followingone-phasemodel
problem foru = u+:

ut = uxx, −∞ < x < s(t) (2.5)

with the Stefan type conditions at the free boundary,

u|x=s(t) = g(ṡ(t)), ∂u/∂x|x=s(t) = −ṡ(t), (2.6)

wheres(t) is the position of the free boundary andṡ(t) is its velocity. The concrete form of the dimensionless
version of the nonlinearityg,

g(ṡ) = 1 + νK(−ṡ), whereK(1) = 0, K ′(1) = 1, (2.7)

is introduced in Section 3. A very similar one-phase model was introduced earlier in the context of laser induced
evaporation from the surface of metals [15] or for impurity controlled solidification [18].

We note that in the context of condensed phase combustion, the kinetic boundary condition in (2.6) expresses
the dependence of the propagation velocity on the temperature of the flame front. In the context of solidification of
overcooled liquids (see, e.g., [5]) or the amorphous to crystalline transition (see [18,23]) the condition corresponds
to the interface attachment kinetics, which are determined by various microscopic mechanisms of incorporating the
product phase into the crystalline lattice at the interface.

3. Dynamics of the free boundary model

With the normalizations stated in (2.7), it is easy to see that the free boundary model (2.5) and (2.6) supports the
traveling wave solution,

ub(x, t) = ex+t for x ≤ −t; sb(t) = −t. (3.1)

that moves with velocityV = ṡ(t) = −1. It is the only traveling wave solution, provided the kinetic functiong is
monotone.

The rate of change ofg(V ) at V = −1 is a very important characteristic of the chemical reaction. For the
asymptotics employed in [19], the inverse to the kinetic functiong is given byV = −exp[α(u − 1)] or

u = g(V ) = 1 + 1

α
ln(−V ), (3.2)

whereα (the Zeldovich number) is proportional to the dimensionless activation energy. As a parameter responsible
for the sensitivity of the reaction with respect to temperature variations, we utilizeν = 1/α. We will use the kinetic
function in the form:

g(V ) = 1 + νK(−V ), whereK(1) = 0, K ′(1) = 1. (3.3)

The free boundary problem in (2.5) and (2.6) is well posed for a wide class of kinetic functionsg = 1 + νK. It
was proved in [8,10] that if the inverse functiong−1 is monotone and bounded from 0,V = g−1(u) < −v0 for
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u ≥ 0, and its growth for largeu is bounded by a “slightly” sublinear function,∼ Cu1/(1+γ ), whereγ > 0.132 is a
constant, then a classical solution exists for any once differentiable initial data that are consistent with the boundary
conditions at time 0. The solution exists for all time, and the corresponding free boundary velocity is bounded.
Note that the important case of Arrhenius kinetics is included, since in that caseg−1(u) is boundedfor largeu.
The well-posedness result is obtained through a rather clever use of parabolic potentials. It appears that the excess
sublinearityγ > 0 is due more to the method of [10] than the nature of the problem. At least in the case of the
two-phase version of the problemγ is equal to 0 [12]. We should note an earlier work by Visintin [24] where the
existence of weak solutions had been established for a related two-phase problem in a bounded interval.

Some indications of the complex dynamics generated by the model can be obtained even at the level of linear
analysis (see [9] for detail). Consider small perturbations of the basic solution (3.1) which in the front attached
coordinate system take the formu = εeλtf (x), ṡ = εeλt and drop all the terms of order higher thanε. To satisfy
the linearized differential equation and boundary conditions, one is led to the following dispersion relation:

ν2λ2 + (3ν − 1)λ + ν = 0, (3.4)

which produces two eigenvalues

λ = 1 − 3ν ± (1 − ν)
√

1 − 4ν

2ν2
.

The real part of the eigenvalues changes sign from negative to positive asν decreases through the thresholdνcr =
1/3; the eigenvalues cross the imaginary axis transversally. In addition to the two points of discrete spectrum, the
linearized operator has the continuous spectrum filling the set(−∞, −1/4]. Thus, one can expect a Hopf bifurcation
atν = νcr, which is indeed the case as was proved in [9].

The situation, however, is much more interesting and complicated than just a Hopf bifurcation, if a physically
relevant case of a parametric family of kinetic functions is considered. Concerning the choice of the kinetic function
we remark that this issue is far from settled either theoretically or experimentally. For example, for solid combustion
the widely used Arrhenius kinetics has not been obtained from an analysis of molecular collisions in the spirit of the
kinetic theory of gases, but has been, to a degree, “transplanted” from gas combustion. There are several types of
functions that were suggested for a more realistic description of kinetics in specific chemical and physical settings.
On the other hand, the exact form of the interface attachment kinetics for solidification fronts may vary, and to the
best of our knowledge, has not been reliably established. For example, Brailovsky and Sivashinsky [1] suggested
to employ a family of kinetic functions with the extra parameter related to a temperature ratio that is characteristic
for the uniform propagation of the reaction.

In our work [6] we also used another one-parameter familyKp(V ) of kinetic functions that has a simple, power
behavior for large|V | and similarly to (3.2) has a singularity atV = 0:

Kp,q(−V ) = V p − V −q

p + q
, V > 0. (3.5)

The power kinetics behaves very similarly to the Arrhenius kinetics (see Fig. 1 of [6]). It also appears that dynamical
scenarios are, in some sense, “homeomorphic” to each other for differentq ’s. Everywhere in this paper we keepq

fixed atq = 1. Note that the extra parameterp is nonlinear in the sense that it does not make any contribution to
the linearization.

Results of numerical simulations of [6] are summarized next. We note that dynamical scenarios are identical, no
matter whether kineticsKp or the kinetics from [1] are used. It appears that what does matter is the presence of
two bifurcation parameters, (ν, p in our case); only theKp kinetics will be discussed below. We also note that the
non-trivial dynamics for numerical simulations with distributed kinetics [2], also require an extra parameter, which
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in this case is related to melting of the solid before burning. In the figures below, we illustrate dynamics by graphs
of time evolution of the velocity perturbationv(t) over the basic velocity,v = V − (−1). To give a better idea about
the phase space behavior of the solution, we also plotv(t) against the value of the solution at a fixed distance ahead
of the front,u(−1, t). The latter picture is a two-dimensional projection of the infinitely dimensional phase space
u(x, ·), v(·).

All the regimes discussed below are initiated by a small deviation from the basic profile and velocity. The time
histories and phase diagrams are shown only for sufficiently large times when the transient behavior is eliminated.
Forν > νcr = 1/3, the basic traveling wave is stable (the local exponential stability was proved in [9]). Asν drops
below νcr there are two principal types of stability exchange, depending on the value of the second bifurcation
parameter,p. For the first type, exchange of stability resembles a Shilnikov bifurcation (see e.g., [14]) and for the
second type, exchange of stability starts as a Hopf bifurcation (which is followed by a period doubling cascade and
further, more complicated evolution).

The Shilnikov type case is demonstrated in Fig. 1 for the kineticsK3.3. Just below the critical value,ν = 0.3332,
we observe a solution of a very large periodT ∼ 150. Each period contains a large excursion piece (a burst
of large amplitude and duration) which is followed by an accumulation phase (low amplitude, high frequency,
expanding oscillations whose frequency is very close to the linearized frequency

√
3). Asν drops down, the number

of oscillations in the accumulation phase decreases while the shape of the burst is virtually unchanged. For the
smallest value ofν in Fig. 1 the higher frequency oscillations disappear entirely and we are left with the lower
frequency relaxational oscillations consisting of the bursts alone. It appears that, asν decreases, solutions with any
finite number of low amplitude oscillations can be observed. Also, numerical evidence suggests that the period of
solutions and the number of high frequency oscillations approach infinity asν approachesνcr from below. Thus,
one can naturally conjecture the existence of a saddle-focus type homoclinic orbit with the burst corresponding
to the hyperbolic direction and the low amplitude oscillations corresponding to the spiral. As discussed below in
Section 5.2, in many respects the scenario depicted in Fig. 1 is very different from the classical Shilnikov case. For
this reason we prefer to call it the infinite period bifurcation.

For the other typical scenario (cf. Fig. 3 of [6]), the basic solution loses stability via a Hopf bifurcation and
gives rise to harmonic oscillations. Asν decreases, one can observe a period doubling cascade leading to chaotic
oscillations. With the further decrease inν the solution exits the chaotic regime via an infinite reverse cascade
of period doubling that is terminated with a “period 3” solution. Asν drops even further, the “period 3” solution
undergoes a cascade of period doubling again leading to chaos. Asν changes within this chaotic regime, the
phase curves deform in such a way that the characteristic “burst corner” (cf. phase diagrams in Fig. 1) becomes
well-pronounced. Again the system leaves the chaotic regime through a reverse period-doubling cascade which is
terminated with an accumulation-burst pattern containing just one low amplitude oscillation. This, according to our
observations, is always the case, that is, if the system enters the region of chaos it exits in one fashion or another
for lower values ofν to return to simple periodic regimes. Periodic orbits of other finite winding numbers were
observed for different values of the kinetic parameterp. The reader can find a rather accurate illustration of the
scenario just described in Fig. 13 that presents a similar scenario for the ODE approximation.

4. Finite-dimensional approximations and their spectra

In the free boundary problem (2.5) and (2.6), it is convenient for our purposes to pass to the moving coordinate
system,

z = x − s(t),
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Fig. 1. Infinite period biburcation (the pde case): velocity perturbation profiles,v(t) vs t and projections of the orbits into the plane(v, u|x=1)

for K3.3, ν = 0.3332, 0.331, 0.322, 0.317, 0.3 and 0.28.

and to introduce the new dependent variables

w(z, t) = u − ub, v = V + 1,

which are the deviations from the basic traveling wave solution. In terms of the new variables, the free boundary
problem takes the form:

wt = wzz + (v − 1)wz + vu′
b, z ≤ 0, (4.1)

w(0, t) = νk(v), wz(0, t) = −v, w(−∞, t) = 0, (4.2)

herek(v) is defined ask(v) = K(1− v). Recall thatub is the basic traveling wave which in the moving coordinate
frame is given byub(z, t) = ub(z) = ez, while u′

b = ez is its derivative.
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Now we apply the general scheme of pseudo-spectral approximation (see e.g., [16]). As the approximation space
Bn+1 we take the space spanned by the functions of the formp(z)ez, wherep(z) is a polynomial of degreen. This
choice of the approximation space is motivated by the exponential spatial decay of solutions (recall thatz < 0). Let

φk(z), k = 1, 2, . . . , n + 1

be a basis inBn+1. Then we look for an approximation for thew component of the solution of (4.1) and (4.2) in the
form

w̃(z, t) =
n+1∑
k=1

ak(t)φk(z). (4.3)

Next we selectn collocation pointsz1 = 0 > z2 > · · · > zn. Possible choices of collocation points will be
discussed later, but it should be emphasized that the inclusion of the free boundary pointz = 0 as a collocation
point appears to be necessary for obtaining an approximation with correct dynamics. We requirew̃(z, t) and the
functionv(t) to satisfy (4.1) at the collocation points, and the boundary conditions in (4.2) at 0. As the result we
obtain the following system ofn ordinary differential equations and two algebraic equations for then+ 2 functions
v(t) anda(t) = {a1(t), a2(t), . . . , an+1(t)}tr:

Φȧ = ΦD2a − ΦDa + vΦDa + vΦb (4.4)

〈a, f(z1)〉 = νk(v), 〈a, Dtrφ(z1)〉 = −v. (4.5)

HereΦ = (Φij ) with Φij = φj (zi) is then × (n + 1) matrix of the transformation of the(n + 1)-dimensional
approximation spaceBn+1 ontoRn, Φ : f → (f (z1), f (z2), . . . , f (zn)). Matrix D is the(n+1)× (n+1) matrix
of differentiation inBn+1, dΦ/dz = ΦD, finally Φb is the image inRn of the basic solutionub(z) = ∑

bjφj (z),
andf = (φ1, . . . , φn+1).

We note that because of linearity ina, changes of basis inBn+1 do not affect the system in (4.4) and (4.5), leading
just to a rearrangement of equations. From the computational viewpoint, a certain care should be taken in selecting
a basis for higher dimensions: orthonormal bases lead to better conditioned matrices.

Even in the case of two differential equations (the spaceB3), the pseudo-spectral approximation reveals non-trivial
dynamics. In this paper we investigate the case ofB4 whose dynamics is an amazingly accurate reflection of the
behavior of the free boundary problem. A convenient basis in this case is provided by

φ1(z) = z2ez, φ2(z) = z3ez, φ3(z) = (1 − z)ez, φ4(z) = zez,

(the somewhat unorthodox numeration of polynomials above is dictated by the desire to have the final equations in
terms ofa1 anda2 rather than ofa3, a4). Note thatφj (z1) = 0, j = 1, 2, 4; φ′

j (z1) = 0, j = 1, 2, 3; φ3(z1) =
1; φ′

4(z1) = 1. The boundary conditions in (4.5) give the relations

a3 = νk(v), a4 = −v.

Upon the substitution of these relations into (4.4), the latter can be resolved with respect to the derivatives to yield
the following system of ordinary differential equations:

v̇ = 2a1 − νk − v2

νk′ , (4.6)

ȧ1 = α

[
−2a1 − 3a2 − 2a1 − νk − v2

2νk′ + νk

2
(v + 1) + v2 − va1

]
+ 3a2(v + 1) + va1, (4.7)
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ȧ2 = β

[
−2a1 − 3a2 − 2a1 − νk − v2

2νk′ + νk

2
(v + 1) + v2 − va1

]
+ va2, (4.8)

where prime stands for d/dv, andα = −2(z2 + z3)/z2z3, β = 2/z2z3. Everywhere in the next section we use
z2 = −1, z3 = −2 which yield the valuesα = 3, β = 1.

We remark that the system in (4.6)–(4.8) takes a particularly simple form (which will not be used in the sequel),
if it is written in terms of the new variables:

ξ = 2

(
a1

α
− a2

β

)
, η = v + 2

β
a2, ζ = k(v). (4.9)

Then it is convenient to treat (4.6)–(4.8) as a system of three differential equations, supplemented by an algebraic
relation betweenv andζ :

ζ̇ = −ζ + α

ν
(ξ + η − v) − 1

ν
v2, ξ̇ = 3

β

α
(η − v)(1 + v) + vξ,

η̇ = (2α + 3β)(v − η) − 2αξ + ν(v + 1)ζ + 2v2 + v[(1 − α)(η − v) − αξ ], ζ = k(v), (4.10)

where the nonlinearities of the differential equations are quadratic. Our preliminary investigation shows that the
complicated dynamical behavior discussed in the paper is preserved even if some nonlinearities are dropped.

The system in (4.4) and (4.5) possesses an equilibrium at the origin. The linearized stability of the system about
the origin is determined by the following eigenvalue problem:

λΦa = ΦD2a − ΦDa + vΦb, 〈a, f(z1)〉 = νv, 〈a, Dtrf(z1)〉 = −v. (4.11)

As in the casen = 3, the problem can be simplified by selecting a basis for whichf(z1) = (0, 0, . . . , 1, 0) and
Dtrf(z1) = (0, 0, . . . , 0, 1). For the 3× 3 system (4.6)–(4.8) withα = 3, β = 1, the linear eigenvalue problem
can be solved explicitly, and the linearization yields the following eigenvalue equation:

λ3 + (10− 3/ν)λ2 + (12− 3/ν)λ + 3 = 0.

It is easy to see thatλ = −1 is a root for anyν. By factoring this root out, one can see that there are two complex
conjugate eigenvalues

λ = 1
2(9 − 3/ν ±

√
(9 − 3/ν)2 − 12)

crossing into the positive half-plane asν decreases. By coincidence, the threshold value is the sameνcr = 1/3
as for the free boundary problem, with the same pure imaginary eigenvalues±i

√
3. Thus, atν = 1/3 the spec-

trum of the system is consistent with a Hopf–Shilnikov bifurcation. Symbolic computations (performed with the
aid of Maple) demonstrate that the spectra are qualitatively similar for arbitrary choices of collocation points
z2 andz3: i.e., there is a negative real root and a pair of complex conjugate eigenvalues crossing into the pos-
itive half-plane asν decreases. Of course, for arbitraryz2 and z3, the critical value deviates (rather slightly)
from 1/3.

Forn > 3, the linearized eigenvalue problem in (4.11) was solved numerically. In Fig. 2(a) we show eigenvalues
of several low dimensional approximations for a fixedν = 0.37. Note, how the negative eigenvalues tend to “fill”
the negative real axis approaching the continuous spectrum of the free boundary problem (cf. Section 3). The plots in
Fig. 2(b) demonstrate how the pair of complex conjugate eigenvalues crosses the imaginary axis for approximations
with different numbers of modes.

As the number of modes in the approximation increases, the placement of collocation points becomes rather
important. Our experience shows that a spectrum with the qualitative properties described in the previous paragraph
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Fig. 2. (a) Distribution of eigenvalues in the complex plane for approximations with 3, 4, 5 and 6 modes,ν = 0.37; (b) motion of complex roots
into the positive half-plane asν decreases.

is attained if collocation points are accumulated near the free boundaryz = 0. Both a simpleminded distribution
zk = zk = −8k2/100 and a bit more sophisticated distribution at zeros of the corresponding Chebyshev polynomial
produced spectra which are qualitatively similar, Fig. 3(a). On the other hand, the uniform distribution of collocation
points leads to generation of extra pairs of complex roots, Fig. 3(b). However, all these extra roots are very stable, and
from the spectral view point, the approximation with uniformly distributed collocation points is not much inferior
to the approximation with properly clustered points.

Fig. 3. Distribution of eigenvalues in the complex plane forzk = −8k2/100 (a) andzk = −k (b); n = 10k = 0, 1, 2, . . . , 10.
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5. Dynamics of the three-mode approximation

In this section we describe and classify fascinating dynamical scenarios that are exhibited by the 3× 3 system
of ODEs (4.6)–(4.8). Dynamical scenarios of this section are strikingly similar to the dynamical scenarios for the
free boundary model that have been discussed in Section 3.

All the time histories and phase portraits presented below are obtained through direct numerical simulations with
initial conditions close to the equilibrium at 0. Thus, periodic time histories are in fact time evolutions which are
attracted bystableperiodic solutions; as a rule the attraction in these cases is extremely strong. For convenience of
comparison with the free boundary problem, we use here the same phase plane projection into thevu|x=−1 plane as
in Section 3. It is easily seen thatu|x=−1 = (a1−a2)/e. We note that the direct numerical simulations of this section
were repeated for afour-modepseudo-spectral approximation of the original free boundary problem. Simulations
on the 4× 4 system of ODEs gave a virtually identical reproduction of time histories and phase portraits observed
for the 3× 3 case.

All the bifurcation diagrams of this section represent theL2-norm of solutions against a bifurcation parameter
(which is almost alwaysν), whereL2-norm is defined as normalized by the period,

lim
T →∞

1√
T

[∫ T

0
(v2(t) + a1(t)

2 + a2(t)
2) dt

]1/2

.

Recall thatv, a1, a2 are components of a solution. This norm is a standard norm for almost periodic functions. For
periodic functions it produces theL2-norm normalized by the period. The bifurcation diagrams are generated by
the continuation softwareauto94 [4], which computes both dynamically stable and dynamically unstable periodic
solutions.

Recall from Section 4, that whenν drops below the critical levelνcr = 1/3, two complex conjugate eigenvalues
of the linearized system cross the imaginary axis into the right half-plane. The crossing is transversal, and the basic
solution loses stability via a Hopf bifurcation. The character of the bifurcation and stability properties of bifurcating
periodic solutions depend on the structure of nonlinearity, which in our case is governed by the parameterp (as
before, we consistently use the nonlinear kinetic function from (3.5)). Numerical computation of Floquet exponents
of bifurcating solutions was performed with the aid ofauto94. The computations show that there are two critical
values ofp, p1 = 0.55 andp2 = 2.37, at which the bifurcation switches from a subcritical to a supercritical case.
Typical bifurcation diagrams forp = 0.4, 1.5, 3 are presented in Fig. 4. For both subcritical diagrams, Fig. 4(a,c),
the solutions corresponding to the points of the bifurcation branch for smallν − νcr are dynamically unstable and
cannot be observed in simulations. Meanwhile, dynamics that do occur forp < p1 andp > p2 differ dramatically.

5.1. Subcritical bifurcation: “hard” loss of stability

Thep < p1 regimes exhibit a classical “hard” exchange of stability. Asν drops belowνcr the zero solution loses
stability giving rise to a limit cycle of finite magnitude. On the bifurcation diagram, the bifurcation corresponds to
a jump upwards from 0 to the stable part of the bifurcation branch. In Fig. 5 we present a few time histories and
phase portraits for decreasingν.

Even very close to the threshold of stability, the periodic solution is of order one amplitude. In contrast with
harmonic oscillations, the periodic solutions are characterized by the prolonged plateaus separated by the zones of
a very steep change (in the context of nonlinear oscillations, such oscillations are sometimes calledrelaxational).
As ν decreases the amplitude and period increase gradually.
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Fig. 4. Typical bifurcation branches,L2-norm of periodic solutions vsν: (a) subcriticalp = 0.4 < p1; (b) supercriticalp1 < p = 1.5 < p2;
(c) subcriticalp > p2.

Fig. 5. Hard loss of stability,p = 0.4: velocity perturbation profiles,v(t) vs t and projections of the orbits into the plane(v, u|x=1) for
ν = 0.3333, and 0.3.

5.2. Subcritical bifurcation: an infinite period bifurcation

Thep > p2 regimes demonstrate the infinite period bifurcation that appears identical to its counterpart for the
free boundary problem. The sequence depicted in Fig. 6 should be compared to the one in Fig. 1. Again we see
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Fig. 6. The infinite period bifurcation case: velocity perturbation profilesv(t) vs t and projections of the orbits into the plane(v, u|x=1) for
p = 3, ν = 0.3325, 0.33, 0.32, 0.315, 0.3 and 0.28.

a series of higher frequency oscillations whose period is close to the linear period (i.e., the period corresponding
to the pure imaginary eigenvalues of the linearized problem). The higher frequency oscillations are followed by a
prolonged larger amplitude burst. The total period of the solution approaches infinity asν approachesνcr (for the
first plot in Fig. 6,T ∼ 200 forν = 0.3325). This structure of solutions, and the nature of the linearized spectrum
at νcr (two complex-conjugate eigenvalues crossing into the positive complex half-plane, and one negative order
one eigenvalue) seem to suggest the existence of a homoclinic orbit and a Hopf–Shilnikov type bifurcation. We will
demonstrate that the situation is dramatically different from the classical Shilnikov case [3,14,17].
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Fig. 7. Bifurcation curves for periodic solutions with four low-amplitude oscillations: (a) continuation inν, theL2-norm vsν, p = 3; (b)
continuation inp, theL2-norm vsp, ν = 0.324.

As was discussed above, for smallν − νcr the piece of the bifurcation branch in Fig. 4(c) which is adjacent to
the ν-axis corresponds to dynamically unstable solutions. Clearly, the continuation from the basic solution does
not allow us to connect to dynamically stable solutions of Fig. 6. To investigate bifurcations of dynamically stable
solutions, we started the continuation process from such a solution which was obtained as a result of direct numerical
simulation. In contrast with the classical Shilnikov bifurcation, instead of an oscillatory bifurcation curve, with the
magnitude of oscillations gradually decaying (a “snake”) along which the period is continually increasing, the
continuation produced a closed branch of solutions of roughly the same period.

A typical example is depicted in Fig. 7(a) (continuation inν for fixed p) and in Fig. 7(b) (continuation inp
for fixed ν). All the periodic solutions on the closed continuation branches have the same number (five for this
example) of oscillations, whose shape is being deformed along the way (see Fig. 8 for typical time evolutions of
v). Only small vicinities of the points marked “a” in Fig. 7 correspond to stable periodic solutions as determined
by auto94 (we remind that to determine stability, the code computes the corresponding Floquet exponents). It is
worth mentioning that both bifurcation curves are topological circles, and therefore in the‖ · ‖2 −p − ν bifurcation
space, the surface of periodic solutions with the same number of oscillations is a topologicaltorus.

In Fig. 9 we present a sequence of closed curves corresponding to consecutive numbers of oscillations. In contrast
with the classical Shilnikov bifurcation, in this scenario there is no continuous transition in “adding” high frequency
oscillations. To avoid cluttering the figure we present consecutive closed curves only for 2, 3, 4, 5 low amplitude
oscillations and then for 14. As the number of low amplitude oscillations in the periodic solution increases, the
corresponding figure eight curves become smaller and smaller and converge to the point(1/3, 0). For higher number
of high frequency oscillations, only selected dynamically stable solutions are shown in Fig. 9; the dots correspond
to 8, 12, 16, 19, 23, and 90 accumulation oscillations.

The top parts of figure-eight curves correspond to dynamically stable solutions, thus the envelope of these
figure-eight curves is the curve along which stable periodic solutions bifurcate. The envelope curve approaches
the point(1/3, 0) along aparabola. In this sense the infinite period bifurcation is similar to the standard Hopf
bifurcation, for which the norm of bifurcating solutions is also on the order of

√
νcr − ν. Of course, unlike the

standard Hopf bifurcation case, only the frequency of small oscillations is related to the linear period, while the
overall period is infinite.

We note that in numerical simulations, stable periodic solutions attract other solutions at different rates. For
the values ofν close to the transition betweenn andn + 1 low amplitude oscillations, the rate of attraction is
substantially slower than for the values ofν away from the transition level. Close to the transition level, before
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Fig. 8. Typical time historiesv(t) vs t for periodic solutions with four low-amplitude oscillations. The time histories correspond to the points
marked “a”, “b”, and “c” in the previous figure.

Fig. 9. A series of bifurcation curves, theL2 norm of periodic solutions for solutions with increasing number of oscillations,p = 3.
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Fig. 10. A simple transition from harmonic oscillations to relaxation oscillations, velocity perturbation profiles,v(t) vs t , and projections of the
orbits into plane(v, u|x=1), p = 1.5, ν = 0.33, 0.315, and 0.29

settling to a periodic trajectory withn small oscillations, the numerical solution “hesitate” and may pick up, at
random, different numbers of small oscillations separated by large bursts.

5.3. Supercritical bifurcation (p1 < p < p2)

In the weakly nonlinear regime, the periodic solutions that bifurcate from the trivial solution are harmonic
oscillations with the period close to the linear period and the amplitude on the order of

√
νcr − ν, as prescribed by

the bifurcation diagram Fig. 4(b). Asν moves into more nonlinear regions however, there is a variety of possible
dynamical scenarios, depending on the value of the kinetic parameterp.

For the regimes withp < p3 = 1.92 dynamics are qualitatively similar. They are illustrated by the sequence in
Fig. 10. Asν decreases, harmonic oscillations gradually become more and more relaxational while their period is
gradually increasing.

At p ' 1.92 a new qualitative feature appears which is illustrated in the sequence in Fig. 11. Atν = 0.323 the
harmonic periodic solution experiences period doubling. Asν continues to drop, the larger oval of the phase portrait
develops a characteristic “corner” that corresponds to the burst phase of the infinite period bifurcation sequence.
Finally, through the reverse period doubling, a simple periodic solution is created, it contains the periodically
repeated burst-like phase alone. Asp increases, this scenario evolves in the following fashion (Fig. 12) : a harmonic
oscillation undergoes two period doublings, then the ovals form corners, and through the cascade of two reverse
doublings a single burst solution is born. Asp increases further, the scenario of cascade-deformation-reverse cascade
was observed with 3 and 4 period doublings. Apparently, cascades with any 2k number of ovals should exist.

Yet another interesting qualitative feature appears asp increases beyondp = 2.1. First, asν decreases, a periodic
solution undergoes an infinite series of period doubling and becomes chaotic. With the further decrease inν the
solution exits the chaotic regime via an infinite reverse cascade of period doubling that is terminated with a “period
3” solution. Asν drops even further, the “period 3” solution undergoes a cascade of period doubling leading to
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Fig. 11. A transition from harmonic oscillations to burst like oscillations through direct and reverse period doubling, velocity perturbation
profiles,v(t) vs t and projections of the orbits into the plane(v, u|x=1); p = 2.0, ν = 0.33, 0.324, 0.323, 0.315, 0.3101, and 0.3.

chaos. Asν changes within this chaotic regime, the phase curves deform in such a way that the characteristic “burst
corner” becomes well-pronounced. Again the system leaves the chaotic regime through a reverse period-doubling
cascade which is terminated with an accumulation-burst pattern. Depending on the value of parameterp, we
observed patterns with 2, 3, 4, and 5 accumulation oscillations; apparently any number of these oscillations can
be obtained. Finally, asν moves even further into the nonlinear region, the number of accumulation oscillations
is consecutively reduced to two through the mechanism described in Section 5.2. After that the last accumulation
oscillation disappears through a reverse period doubling, and a pure burst periodic solution arises. The scenario just
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Fig. 12. A transition from harmonic oscillations to burst like oscillations through a cascade of direct and reverse period doubling, velocity pertur-
bation profiles,v(t) vst , and projections of the orbits into the plane(v, u|x=1), p = 2.08, ν = 0.326, 0.325, 0.323, 0.3195, 0.3063, and 0.306

described is illustrated in Fig. 13. The second reverse cascade there ends with the burst-accumulation pattern which
contains three low amplitude oscillations.

6. Conclusion

We have presented a three-dimensional system of ordinary differential equations that reveals very rich dynam-
ics and novel mechanisms of exchange of stability. In particular it demonstrates a critical and subcritical Hopf
bifurcation, multiple cascades of period doubling, and a novel type of infinite period bifurcation.
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Fig. 13. A transition from harmonic oscillations to burst like oscillations through a cascade of direct and reverse period doubling, period
3, and another direct-reverse period doubling cascade, velocity perturbation profiles,v(t) vs t , and projections of the orbits into the plane
(v, u|x=1), p = 2.3, ν = 0.33, 0.329, 0.3285, 0.3281, 0.32805, 0.328, 0.327, 0.3245, 0.3235, 0.322, 0.315, 0.31, and 0.29.

The system has clear physical origins and approximates dynamics of the underlying infinitely dimensional (pde)
problem extremely accurately. This gives a strong indication that the free boundary problem itself possesses a
finite-dimensional attractor. We address this issue in a work in progress. We prove that a version of the free
boundary problem on a finite spatial interval does possess a finite-dimensional attractor. Moreover, the dimension
does not depend on the length of the interval. These results will appear in the nearest future (see [13]).

We believe the three-dimensional system of ordinary differential equations of the present paper is a very interesting
example of a relatively simple low-dimensional dynamical system that preserves important features of its physically
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Fig. 13. (Continued).
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motivated and dynamically rich PDE source, even in a variety of strongly nonlinear regimes. It appears that not all
the nonlinearities of the system are of equal importance, and that some of them can be dropped without loosing any
dynamical scenarios. It would be very interesting to find a normal form for the system that would allow to clarify
the origin and structure of the unusual dynamics we have discussed in the paper.
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