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Abstract

Several a priori tests of a systematic stochastic mode reduction procedure recently devised by the authors [Proc. Natl. Acad
Sci. 96 (1999) 14687; Commun. Pure Appl. Math. 54 (2001) 891] are developed here. In this procedure, reduced stochastic
equations for a smaller collections of resolved variables are derived systematically for complex nonlinear systems with many
degrees of freedom and a large collection of unresolved variables. While the above approach is mathematically rigorous in
the limit when the ratio of correlation times between the resolved and the unresolved variables is arbitrary small, it is shown
here on a systematic hierarchy of models that this ratio can be surprisingly big. Typically, the systematic reduced stochastic
modeling yields quantitatively realistic dynamics for ratios as large as 1/2. The examples studied here vary from instructive
stochastic triad models to prototype complex systems with many degrees of freedom utilizing the truncated Burgers—Hopf
equations as a nonlinear heat bath. Systematic quantitative tests for the stochastic modeling procedure are developed he
which involve the stationary distribution and the two-time correlations for the second and fourth moments including the
resolved variables and the energy in the resolved variables. In an important illustrative example presented here, the nonlinea
original system involves 102 degrees of freedom and the reduced stochastic model predicted by the theory for two resolved
variables involves both nonlinear interaction and multiplicative noises. Even for large value of the correlation time ratio of the
order of 1/2, the reduced stochastic model with two degrees of freedom captures the essentially nonlinear and non-Gaussial
statistics of the original nonlinear systems with 102 modes extremely well. Furthermore, it is shown here that the standard
regression fitting of the second-order correlations alone fails to reproduce the nonlinear stochastic dynamics in this example.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Despite the rapid improvement of computer performance, many problems of scientific and engineering interest
will not be amenable to direct numerical simulations in the foreseeable future. To list a few, the dynamics of
the coupled atmosphere/ocean sysfgéithe folding of a large protein in macromolecular dynanji&s or the
epitaxial growth of a crystal in material scienf4], each of these problems involves such a huge number of
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degrees of freedom interacting on so many different space—time-scales that they vastly overwhelm direct numerical
computations. On the other hand, while a complete description of the dynamics in these examples is impossible, it
is also not necessarily useful since one is typically interested only in a few more essential degrees of freedom in
the system which evolve slowly on the largest scales. In the above examples, these essential degrees of freedom
might be a few large scale telleconnection patterns in the atmosphere, a few angles describing large conformational
changes in the protein, or the position of a few steps edges on the crystal surface. There is therefore a real need for
modeling strategies able to provide closed simplified equations for the dynamics of essential degrees of freedom
alone by systematic elimination of all the other modes. Such a systematic mode elimination strategy was proposed
and developed in detail by the authorg%6] (for different approaches to this question, see, [#-g10]). The aim

of the present work is to illustrate the method on a systematic family of non-trivial test cases which bear some of
the features of the motivating examples listed above and to asses their performance in regimes with large values of
the coupling parameters.

The mode elimination technique proposefbij®] is a two step procedure based on the assumption that the degrees
of freedom in the system under consideration have been split into a set of essential modes we wish to describe and
a set with all the other modes we wish to eliminate. The essential modes in the first set will be referred to as the
resolved ones, and the unessential modes in the other set as the unresolved ones. In the first step of the procedure
the equations of motion for the unresolved modes are modified by representing the nonlinear self-interaction terms
between unresolved modes by stochastic terms. The motivation is that the self-interaction terms are responsible
for the sensitive dependence on small perturbations in the system on short time-scales and they can indeed be
represented adequately by stochastic terms if coarse-grained modeling on longer time-scales is the objective. In the
second step of the procedure, the equations of motion for the unresolved modes are then eliminated using standard
projection techniques for stochastic differential equatifiris-14} The elimination step is rigorous in the limit
where the stochastic terms are infinitely fast, corresponding to situations where the unresolved modes evolve much
faster than the resolved ones.

This mode elimination technique has two obvious advantages. First, the ad hoc simplification of the original
dynamics is made on the level of the equations for the unresolved modes and not the resolved ones. This is unlike
most modeling strategies found in the literature where one starts with the equations for the resolved modes, drops all
terms involving the unresolved modes in these equations, and replaces them by ad hoc stochastic terms, usually of
linear Langevin-type, with parameters obtained by regression fit (see the bibliograehymfseveral examples).

In contrast, our technique systematically gives the structure of the stochastic terms in the equations for the resolved
modes, and it was shown [&,6] that this structure is surprisingly rich: nonlinear correction arise, linear Langevin
terms which can be both stabilizing or destabilizing, multiplicative noises, as well as the modification of such effects
through dispersion. The second advantage of the technique is its rigor in some appropriate limiting parameter range
which can be deduced a priori from the original equations. This provides a guideline for the applicability of the
method, which is also an important new feature.

In this paper, we shall illustrate both advantages of the approach on some non-trivial test cases which demonstrate
the feasibility and effectiveness of the method. Atthe same time, this will allow us to discuss some typical phenomena
we may expect for more general systems; they are related to the special structure of the reduced equations for the
resolved modes which is predicted.

In Section 2 we will first discuss simple triad systems. Triads have the generic nonlinear structure of any
larger system involving quadratic nonlinear interactions, and we will show that they fit into two types. The first
(studied inSection 2.) will be referred to as the additive type and is such that the nonlinear interaction in the
equation for the (single) resolved mode involve two unresolved modes. In this case the reduced equations are linear
Langevin equations of Ornstein—Uhlenbeck type. The second type (studedtion 2.2will be refereed to as the
multiplicative type and is such that the nonlinear interaction in the equations for the (two) resolved modes involve
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one resolved and one unresolved modes. In this case the reduced equations contain nonlinear corrections in th
resolved modes as well as multiplicative noises, and these unusual features are shown to be crucial to reproduc
adequately the original dynamics. Beside discussing the phenomena in triad systems, we also show how to determin
explicitly the regime of validity of the mode elimination technique even though there is no small parameter explicit
in the original equations. The mode elimination technique turns out to be applicable on a surprisingly large range
of parameters which is a potentially important practical feature.

In the triad examples, we start with stochastic differential equations. Hence, these examples are void for the
stochastic modeling step in our technique. This step is illustrated and discussed in d&tition 3where we
consider extensions of the truncated Burgers—Hopf system introdufdes) 6] by two of the authors. The truncated
Burgers—Hopf system s a purely deterministic system which displays features common with vastly more complicated
models such as the examples cited before and makes it an ideal test case for mode elimination technique. We us
extensions of the truncated Burgers—Hopf system where the original degrees of freedom in these equations, takel
as the unresolved ones, are coupled to one or two essential degrees of freedom. In these examples, the effectivene
of the stochastic modeling step in our technique can be assessed in detail and we show that we can achieve ver
good stochastic consistency between a suitable stochastic model and the original equations. A closed set of reduce
equations for the resolved modes alone is then obtained by suitable projection following the general sfi@@&gy in
As in the triad system, we consider extensions of the truncated Burgers—Hopf system in an #lglitiom (3. 2and
a multiplicative Section 3.3 settings. We also study an extension involving both types combin&edtion 3.4
We discuss in detail the phenomena described by the reduced equation and show that their specific structure i
essential to reproduce correctly non-trivial features of the original dynamics, including the stationary distribution
and two-time statistical moments of order up to 4. In fact, if the reader were to pick a single example in the paper
demonstrating the power of the methods developeb,iB] as a preview, it should be the multiplicative one in
Section 3.31In this example, there is only a moderate separation of time-scale between resolved and unresolved
modes. The stochastic model does an excellent job here, demonstrating almost complete stochastic consistenc
with the original system both at the level of the resolved and the unresolved modes, even regarding tests involving
two-time fourth-order moments. The reduced equations obtained through mode elimination for only two resolved
modes out of the 102 modes in the original system also do very well. For instance, these reduced equations reproduc
the essentially nonlinear and non-Gaussian statistics of the original system extremely well. Furthermore, itis shown
there that a linear Langevin-type model based on standard regression fitting of the second-order correlations fails
to reproduce the nonlinear dynamics.

2. Elementary triad models

Triad systems where three modes interact through quadratic nonlinear interactions provide a nice simple test
case for our mode elimination strategy. The nonlinear coupling in triad systems is generic of nonlinear coupling
between any three modes in larger systems with quadratic nonlingaily In this section, we shall consider
the two generic cases where: (i) one of the three modes is identified as the resolved variable and the other twc
as unresolved, and (ii) two of the modes are identified as resolved variables and the other one as unresolved. Ir
case (i), which we shall refer to as thdditive case, we will show that the reduced equation is a linear Langevin
equation of Ornstein—Uhlenbeck type which, surprisingly enough, can be both stable or unstable depending on
the parameters. In case (ii), which we shall refer to asnthliplicative case, the reduced equations involve
both nonlinear correcting terms and multiplicative noises. In this case, the stationary distribution for the system
(when it exists) is a quite complicated non-Gaussian distribution which will be exactly captured by the reduced
equations.
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In these examples we start from stochastic differential equations by adding appropriate forcing and damping
terms in the equations for the unresolved variables. As a result, these examples do not address the issue of stochasti
consistency butthey clearly illustrate the main ideas behind the mode elimination theory as well as the role of the small
parameters. Heree is not explicit in the original equations but is identified through careful non-dimensionalization.
Numerical simulations show that the asymptotic theory is applicable and the solutions of the reduced equations and
the original triad equations agree quantitatively up & 0.5.

2.1. Additive triad model

The additive triad model consists of one resolved megeand two unresolved modes, andvs, satisfying

dvq dvo . dvs .
o - Bivovs, o - Bov1vz — yov2 + o2 Wa(1), rr B3v1v — y3v3 + 03Wa(1). 1)

We shall obtain a closed equation fgralone by suitable elimination @b, v3. As we will see, the reduced equation
for vy is linear invy with an additive noise, i.e. it determines an Ornstein—Uhlenbeck process.

2.1.1. Sationary distribution

In order to apply the mode elimination strategy (tt) we first establish the order of magnitude of the
different terms in these equations. We do this by analyzing the stationary distribution for the dynaiiirs in
By non-dimensionalization we will then determiaén terms of the other parameters.

The Fokker—Planck operator associated with the Ornstein—Uhlenbeck part of the stochastic model (damping and
white-noise forcing only) if{1) annihilates exactly the Gaussian density distribution

_ - V2 V3
p(v2,v3) = Z lexp<——2U§ - —2U§> ; 2
92 93
where here and below is a constant of normalization whose value may change from line to line. On the other
hand, the deterministic dynamics(ih) possess three Manley—Rowe relations as quadratic invariant;

Mo = B]_U% — Bzvf, M3 = Blvg — B3U]2_, Moz = Bzv% — B3U%. 3)

Any two quantities amongst those (B) are linearly independent and the other one can be obtained as linear
combinations of these two. Under the additional assumption that the coupling cortaBis B3 satisfy

B1+ B>+ B3 =0, (4)
the deterministic dynamics if1) also conserves the energy
E:v%—i—v%—i—v%, (5)
which again can be expressed as a linear combination of two Manley—Rowe relations. Here, we consider the general
case wher¢4) is not necessarily satisfied.
Since the Manley—Rowe relations are conserved by the deterministic dynamics, it follows that the Liouville

operator associated with the quadratic nonlinear terng)iannihilates exactly any Gaussian distribution with a
density of the type

p(v1, vz, v3) = Z L exp(—BoaM12 — B3Mu3). (6)

Herep1, B3 are arbitrary constants and for convenience we piddeg andM13 as the two primary Manley—Rowe
relations. In order tha{6) be the unique stationary distribution for the full dynamicgihwe must require the
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following two properties: (iX6) must be consistent wit{2), and (ii) (6) must be normalizable. Requirement (i) is
Jg pdv1 = p, and itis satisfied if

V2 5 = V3
Blo':,? '

B2 =

= 5,
Bio;

()

For requirement (ii), we usg’), and write(6) explicitly as

2 2 2
2C1 2C2 2C3

where
2.2 2 2
o505B1 o o
2y2y3(B2y205 + B3ysoy) 2y2 2y3

(C1 can also be written a7 = —B1C2C3/(B2C3 + B3C2).) The quantitieC;, C2, andC3 are the respective
variances of the modes, v2, andvsz computed with the measure associated {8)hand requirement (ii) is satisfied
if and only if

C1>0. (10)

It is clear from(9) that (10) is not always satisfied. FaF; < 0, (8) cannot be the stationary distribution for the
dynamics in(1) and, in fact, our analysis suggests that there is no stationary distribution in this case (note that we
can haveC1 < 0 even if(4) is satisfied, i.e. even if the deterministic dynamic§linconserves the ener@§)). The
non-existence of a stationary distribution for the dynamicéljfor suitableB;, B2, and B3 means that in such
regimes the backscatter of energy from megdo modesv, andvs where the dissipation occurs is insufficient,
and the variance of modg then increases without bound. Both the existence of a stationary distribution with the
Gaussian density i(B) if C1 > 0 and the non-existence of a stationary distributiog4f < 0 were confirmed
numerically. InFig. 1the Gaussian density for mode alone obtained by projection @8) is compared to the
density obtained from numerical simulations for a typical value of the parameters such thadl. The agreement

is excellent. (Note that ifrig. 1 and elsewhere in this paper, a logarithmic scale is utilized in plotting probability
density functions.}ig. 2 shows the unaveraged(z) for a typical value of the parameters such tbat< 0. As
expected (z) grows unboundedly in time. Let us point out finally that the reduced equatian fastained below

by mode elimination leads to the correct Gaussian denstty if 0 and confirms the non-existence of a stationary
distribution forC1 < 0.

2.1.2. Non-dimensionalization and determination of ¢

Unless explicitly stated otherwise from now on we focus on the situation where stationary distribution exists,
i.e.C1 > 0. We also focus on the statistical equilibrium solution of the equatio()iwhere the memory of the
initial conditions is lost. We shall non-dimensionalize the equatiori$)im such a way that the small parameter
necessary for the mode elimination procedure enters the equations and is explicitly determined in terms of the other
parameters. We proceed in two steps. First we normalize the mgdssthe square-root of their variance, i.e. we
substitute

vi = /Cjv;, j=123 (12)

In terms of the new variables the equationglinbecome

dvy dvo dvs

rr bivovs, o bov1vz — Y22 + /22 Wa(t), rr b3v1vz — yavs + /2yaWa(t),  (12)
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Fig. 1. Additive triad system. The Gaussian densit{@hcompared with the density obtained from numerical simulation€’jos 0.

where
JC2C JC1C JC1C
b1 = Bq 2 3, by = B> ! 3, b3z = B3 1 2. (13)
JC1 JC2 JC3
It can be checked by direct verification that
b1+ bz +b3 =0. (14)

By construction all the dependent variablesin (12) are in average of order 1. To proceed further we now
renormalize time in such a way that the nonlinear termgLR) are of order 1, i.e. we substitute (usifitg) to
represenb; = —bo — b3)

t
t—> b = max(|bz + b, |b2|, |b3]). (15)

Using the new time variabl@l5) and assuming without loss of generality that> y3 (for y» < y3 relabel modes
v2, v3), (12) becomes

dvy 5 dvo 5 1 IZW(I) dvs 5 1 12 . o (16)
— = bivovs, — = bovivz — —v2 + 4/ — , — = b3vivy — —v3 +,/ —W3(7),
ar 1V2V3 ar 2V1V3 832 852 ar 3V1V2 83 83

where we define

. b
b= j=123 s=Cco1 =2 (17)
y2 v3
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Fig. 2. Additive triad system. The unaveraged proaggs) for a situation withC; < 0 where there is no stationary distribution: the process
grows unboundedly in time.

Since all terms but the damping and forcing termg§1i6) are on the average of order&las defined above is the
correct parameter which need to be small for mode elimination. The relénderms of time-scales of the modes
v1, v2, andvz will be explained in the next section. More explicitkyis

JC2C3 |Bz|x/C1C3 |Bg|«/C1C2>
Ve JC1 JC3 )’

where theC;’s are given by(9).

In the remainder of this section, we may work with the dimensionless equati¢h€)innless explicitly stated
otherwise. At statistical equilibrium the solutions(@8) define a three-parameter familyy, b3, 8, ), with either
by or bz or by + b3 equal to+1 by construction, the other two taking values i1} 1], § € (0, 1], ande > 0
arbitrary. Notice that the stationary distribution {@6)is a product of standard Gaussians with zero mean and unit
variance. (Recall thgtl6) make sense only if a stationary distribution for the original equatiori$)iexists, i.e.
if (10)is satisfied, since otherwise we cannot change variables(a4)ifn Of course, the two-time statistics of the
process defined bii6) s still undetermined; next we study it by mode elimination.

e=y5 ! max(|Bl| (18)

2.1.3. Mode elimination

The detailed calculations for mode elimination in general systems with quadratic nonlinearity have been presented
elsewherd6]. The method is rigorously justified i in (18) is much smaller than 1. The rangex 1 actually
corresponds to situations where the maximum between the time-scales of thesmaddss is much smaller than
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the time-scale of1. This can be checked upon noting that to leading order<da 1, (16) gives at statistical steady
state

(v2(t + $)va(s)) = € VE - (us(t + 5)va(s)) = eV, (19)

whereas the time-correlation function for will decay on a time-scale of the orderof! (see(24)). Here we will
see if the predictions of the theory can be utilized for large valuediké ¢ = 0.5.
To leading order iz, the mode elimination procedure (é¢) gives the following equation far; alone:

% = —eyv1+V2ea W(r), (20)

where

o2 (b2 + b3)?
14810

Note that coarse-graining time as- ¢/¢ as in[6] amounts to setting = 1 in (20). In fact, the theorem used to

obtain(20) states that the solution of this equation converges to solution of the first equafibs) fior v1 in the

limit ase — 0 on the coarse-grained time-scale.
It is also interesting to consid€20) in the original variables

y = (21)

d )
% =—y'v1+0' W), (22)
where
B B3o2  Boo? B
o 1 395 | Beog ) o = 0203Bal (23)
(2+v3) \ »2 V3 N 2y2v3(y2 + v3)

The Ornstein—Uhlenbeck process defined(®g) has a statistical steady state if and onlyif > 0, which is
equivalent to the constraint {10). If this criterion is satisfied, the stationary distribution for the proceg@a)is
consistent with(8), and it reduces to the standard Gaussian for the non-dimensionalized process def@@d by
sinces?/y = 1 from (21). Fory’ < 0, the unresolved modes, vs actually pump energy in1. In fact, in the
unstable case, the estimatg(ir8) is valid provided that one replaces the varian€esomputed on the stationary
distribution by the instantaneous variances of the modes. Of course, in this basemes time dependent as well
and it can be checked fro(i8) thats grows as the variance of () grows. If thes computed by replacing the;

by the initial conditions;f(O) is small, the solution of22)is a good approximation of the actual solution of(1)
locally in time, but(22) eventually fails wher becomes greater than 1.

2.1.4. Numerical simulations
We now compare the time-correlation function for the slow mogpredicted from(20),
(1@t + 5)vi(s)) = eIl (24)

with the results of numerical integrations of the non-dimensional form of the triad equati¢b&).iWwe perform
the simulations with

by=-075  by=-025  b3=1  §=075 (25)

for which the constraint ifL0) for existence of the stationary distribution is satisfied and 0.24107, and consider
four values ofe

¢ =0.1250.25,0.5, 1. (26)
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To integrate the triad equations(ih6) we use time-splitting and utilize a second-order Runge—Kutta algorithm for

the nonlinear coupling terms and the “exact solution” formula for the damping and forcing terms. The exact solution

formula is the discrete analog of the integral representation of the exact solution of the Ornstein—Uhlenbeck process
dx

m =—yx+ aW(t),

and is given by
x(t 4+ A1) = €72 x(t) + ona 1),

where theya,(¢)'s are independent Gaussian random variables with mean zero and variance

5 1— e—ZVAt
f))y=———6#—.
(A (D) 2y
Finally, the statistics here and elsewhere are computed using time-averaging since the underlying stochastic mode
is ergodic.

The time-correlation function for the slow modg, is presented ifrig. 3together with analytical prediction in
(24). The same is presentedriy. 4in logarithmic scale. The agreement is excellentfer 0.125, 0.25, 0.5, though
(24) decays always faster than the actual time-correlation functionjfdfore = 1, though the time-correlation
function forvq remains exponential, the discrepancy in correlation time is more than 30%. This is of course natural
since we cannot expect the asymptotic procedure to work for all values of

0.9F \.- 1

08F \ - i

0.4+ Co .

0.3 N 1

|
0 2 4 6 8 10 12 14 16 18
Course—Grained Time e t

Fig. 3. Additive triad system. Time-correlation function of the resolved mad8&olid line: prediction from mode eliminatiq20); dashed line:
& = 0.125; dot-dashed line: = 0.25; dotted lines = 0.5; dotted-plus linez = 1.



A. Majda et al./ Physica D 170 (2002) 206-252 215

10 T T T T T T T
L
N
ol
N
NG
e .
107 e e b
[ S . j
>'_ N~ . »
w S
O S
\V\
\ B
~N
~
S
N
N
\-\‘
107 1
I I I | I | I |
0 2 4 6 8 10 12 14 16 18

Course—Grained Time e t

Fig. 4. Additive triad system. Same ashiyg. 3in logarithmic scale.

We also tested higher order statistics of the megasing the following two-time four-order moment:
(Vi + )v3(s))

K = .
10 (v3)2 + 2(v1(t + 5)v1(s))?

(27)

This statistical quantity is very natural since it measures how much the “enﬂ%gy"correlates with itself at later
time. The reduced equation (B0) predicts that the process is Gaussian, which implieskhét) = 1 for all time.
The quantityK1(¢) is plotted inFig. 5for four values ofs. Fore = 0.125, 0.25 the process is fairly Gaussian,
but as the value of increased we observe departure from Gaussianity not captur@DpyAt the large value of

¢ = 0.5 the peak departure is still below 10%, but it exceeds 20% fer 1. It should be pointed out that later
on in Section 2.Zabout multiplicative triad systems (and then agaiSéttions 3.3 and 3fr systems with many
degrees of freedom) we will observe systematic departure from Gaussianity even at srhadh are correctly
captured by the reduced equations. In f&id, 5should be compared withig. 12(the vertical scales are identical
on these two figures).

2.2. Multiplicative triad model

The multiplicative triad model consists of two resolved modesndv,, and one unresolved modse, satisfying
(comparg1))
dvy dvy dvs

o - Bivovs, o - Bov1vs, o = B3v1v — y3vs + o3Wal(t). (28)
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Fig. 5. Additive triad system. The two-time fourth-order mom&n{¢) defined in(27). Dashed lines = 0.125; dot-dashed line: = 0.25;
dotted line:e = 0.5; dotted-plus lines = 1. The reduced equation {0) predicts a Gaussian (r) for which K1(¢) = 1.

A closed set of equations fax andv, alone will be obtained by elimination af; in the appropriate limit. Since
the right-hand sides of the equations farandv; in (28) contain the products; vz andvovs, we can expect that
the equation fop, andv, obtained by mode elimination will contain nonlinear corrections as well as multiplicative
noises. Below, we confirm this intuition.

2.2.1. Sationary distribution

We proceed as in the additive case and first evaluate the order of magnitude of the different &8 ®m
the stationary distribution associated with these equations. This will again allow for non-dimensionalization of the
equations and will give us in terms of the other parameters.

The important difference with the additive case which will actually lead to interesting new phenomena is that the
Manley—Rowe relation

M1z = Biv3 — Byv2, (29)

is conserved by the full dynamics (i.e. with damping and forcingimcluded) in(28). Denote bny2 the initial

value of M1,. Conservation of29) implies thatv; and v, move either on the ellipsBiv? — BovZ = MY, if

B1B> < 0, or on the hyperbol#,v3 — Bov? = MY, if B1B; > 0. In the latter case the motion is also restricted
on one branch of the hyperbola, since the sign;as conserved iBle2 > 0, while the sign ofu, is conserved

if Ble2 < 0. Combining all this we deduce that the following density is conserved by the Liouville operator
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associated with the quadratic nonlinear termgis).

p(v1, v2, v3) = Z 7L exp(—BM13)8(M12 — M) G (v1, v2), (30)
where
G(v1, v2) = ((B1B2)— + (B1B2)+ (B1M,) s H(v1vY) + (BiMD)_ H (v202))). (31)

Here v(l) = v1(0) and vg = v2(0) are the initial conditions for the first two equations(&8), 8 is an arbitrary
constantg(-) the Dirac distribution H (-) the Heaviside distribution(z) . = max(z, 0), (z)— = min(z, 0), and we
picked M13 as the additional primary Manley—Rowe relation besitgs for (32). In (32), the Dirac distribution
concentrates the measure on the set where the Manley—Rowe relaf28) hras fixed value. The functiof is
unity if this set (projected on any plang = cst) is an ellipse, and simply picks the correct branch if this set is a
hyperbola. The density i(80) is explicitly

p(v1, v2, v3) = Z~ L exp(—B(B1v5 — B3v?)8(B1vs — Bovi — MO,)G (v1, v2), (32)

and it will be the stationary distribution for the dynamicg®8) if: (i) it can be made consistent for sorgewith
the Gaussian density annihilated by the Fokker—Planck operator associated with the Ornstein—Uhlenbeck part of
the dynamics fows

p(v3) = Zlexp<—y—32v§> : (33)
o3

and (i) it is normalizable. Consistency is achieved by taking

V3
= , 34
P B]_G3 (34)

which leads to

— V3 y3 B3
p(v1, v2,v3) = Z 1exp<——2U§ + _ZB_lvf

) 8(B1v3 — Bov? — M9,)G (v1, v2). (35)
o3 o3

Note that the factopsBsv2/02B1 can also be written ags Bsvs /o2 B, using the Dirac distribution, which shows

that (35) is symmetric in the indices 1 and 2 as it should be. Concerning normalizabilit$)f if the Dirac
distribution picks an ellipse in the spata, vy), i.e. if B1B> < 0, then(35) is obviously normalizable since it is
concentrated on a finite curve in any plane= cst. On the other hand, if the Dirac distribution picks a hyperbola in
the spacévs, v2), i.e. if B1B2 > 0, then normalizability requires that the coefficient in front@fn the exponential

in (35) is negative, i.e. we must havg Bz < 0. On the other hand, 1B, > 0 andB1 Bz > 0 (i.e. all threeB;

have the same sign)35)is not normalizable and our analysis suggests that there is no stationary distribution in this
case. This was confirmed numerically ($8g. 10. It is interesting to note that this cannot happen if the energy in
(5) is conserved since the constraint(#) then precludes that all thg;’s have the same sign. Thus, a stationary
distribution always exists if the energy is conserved.

Unlike in the additive case, the stationary distribution associated @8fls not unique. Indeed, the Manley—Rowe
relation(29) (as well as the sign ojj) or vg) is information about the initial conditions which is never lost and picks
exactly one amongst a family of possible stationary distributions with densiti@®)rior the process defined by
(28).
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We checked the density {85)by computing numerically the reduced densities for madesdv, and comparing
these results with the actual reduced densities obtained by integrati®s)of

B H (B1Bv? + ByM?
p(vl)zzlexp<y—323—3vf) (Bab2vt + BIM12 . oy,
o5 B1 ") /BiBa? + BiMY,
_ v3 B3 H(B1Bov3 — BoMY,)
p(v2) =2 1exp<—23—v§> z ;2 G2(v2), (36)
of B2 \/ B1Byv? — ByMY,

where

G1(v1) = (B1B2)— + (B1B2)+ (B1M3y)_ + (B1MY) 1+ H (v1vY)),
G2(v2) = (B1B2)— + (B1B2)+ ((B1M2) 1 + (B1MY,) _ H (vav9)). (37)

As can be seen ifigs. 6 and 7or a typical situation wheré1B2 < 0 (motion restricted to an ellipse) and in

Figs. 8 and Jor a typical situation wher®, B> > 0 (motion restricted to a hyperbola), the numerical results are in

excellent agreement with the theoretical prediction&8B). Finally, Fig. 10shows the unaveraged(z) andva(¢)

for a typical situation where the stationary distribution does not exist: as expected, they grow unbounded in time.
Reproducing the density {85) (projected on the spades, v2), which amounts to settings = 0 in (35)) with

the closed set of equations forandv, obtained by mode elimination is a severe test for any such mode elimination

107

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 6. Multiplicative triad system. Probability density f@rin (36) compared with the density obtained from numerical simulationB8{&: < 0
(motion on an ellipse).
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Fig. 7. Multiplicative triad system. Probability density figrin (36) compared with the density obtained from numerical simulation8f@, < 0O
(motion on an ellipse).

procedure. We shall show below that the stationary distribution for the reduced equatiopsfatv, which we
obtain rigorously by the systematic procedurd@hhas a density given exactly {85) (projected on the space

2.2.2. Non-dimensionalization and determination of ¢

We now non-dimensionalize the equationg28) and determine explicitly in terms of the other parameters.
Throughout this section we assume that a stationary distributiq2®exists, i.e(35) is normalizable. We could
proceed as in the additive case and normalize all the modes according to their root mean square computed from

Cj= / vjz-p(vl, v, v3) dvydvpduz, j=1,23 (38)
R3

The problem with this procedure is that, though convenient numerically, it leads to unpleasant analytical formulae
because the second moments of the densiti€86hhave rather involved expressions. For simplicity, we shall
slightly modify the procedure in such a way that the parametappearing in the non-dimensional equations
obtained below is always an upper bound for the actushich would be obtained by normalizing the modes by
their exact root mean squares (the actualin fact given by(18) with the C;’s computed fron(38)). For modevs,

we simply use its variance, i.e. we substitute

2
o
v3 — +/C3v3, C3= 2—;‘3 (39)
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1 I 1 1 indeNe 41 1
0 0.5 1 1.5 2 25 3 3.5

Fig. 8. Multiplicative triad system. Probability density f@rin (36) compared with the density obtained from numerical simulationB8{&; > 0
(motion on one branch of a hyperbola).

For modes1, v, we always substitute
v1 — VC1v1, v2 — /Covo, (40)

but we use differen€, C2 if the motion is restricted to an ellipse or to a hyperbola. In the case of an ellipse, i.e. if
B1B2 < 0, we simply take the tips of the ellipse as normalizing factors, i.e. we use

| M2, (M|

= —= > = —== if B1By <O. 41

| B2| | Bl 40
The exponential factors i(B6) might actually restrict1(z), v2(z) to some portion of the ellipse, but obviously
C1 andCy boundvf(r) and v%(t) for all times. In the case of a hyperbola, i.eBf B, > 0, we use the variance
computed from the Gaussian densitieg3df) alone, but we add the square value of the tip of the hyperbola for the
mode whose motion is restricted to the right or left of that tip. Thus, we use

B3lo2 MO B3|c2
, = ABslos | 1Ml o= B3O8 pg, < 0 and BuM, <0, (42)
2|Bilys  |Ba2l 2|B2lys3
or
B3|o? B3lo?2 MO
_ 1Bslog. _ IBslos  IMiol ¢ pig, - 0 and BimO, > 0. (43)

l - £l 2 -
2|B1lys 2|Balys  |Bi]
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-6 | | | |
-3 -2 -1 0 1 2 3

Fig. 9. Multiplicative triad system. Probability density figrin (36)compared with the density obtained from numerical simulation8f@, > 0
(motion on one branch of a hyperbola).

Again, on the average the€g, C2 overestimate the dynamical values t@(t), v%(t). In terms of the new variables,
the system ir{28) becomes

dv dvo dvs

o - bivovs, e bav1va, o = b3v1vz — y3v3 + v/ 2y3Wa(t), (44)

where theb;’s are defined as i(iL3) with the C;’s given above (meaning that they do not sati&f¢) in general).
By construction all the dependent variablgsin (44) are of order 1 or smaller. Next, we renormalize time as in
(15), i.e. we substitute

t
t — b b = max(|b1], |b2], |b3]). (45)
The system ir{44) then becomes
dvy - dvp, - dvy - 1 2.
—=b , —<=b ; —=b - = = Wa(r), 46
o 10203 o 20103 & gUIV2 — —v3 /- 3(1) (46)
where we define
_ b; b
bjz—j, j=123 &= —. (47)
b V3

Since the three linear terms {46) are of order 1 or smaller, we can conclude that the parametatering(46)
is an upper bound for the parameter which must be small for mode elimination. A more explicit expression for



222 A. Majda et al./ Physica D 170 (2002) 206-252

40 T T T

30 b

20 N

10+ -

_40 1 1 1 L L L 1
0 20 40 60 80 100 120 140 160
Time

Fig. 10. Multiplicative triad system. The unaveraged process€s, v2(¢) in a situation withB; B, > 0, B1B3 > 0 where no stationary
distribution exists. Both processes grow unboundedly very fast in time.

is given in(18) with the C;’s given by(39), (41) and (42pr (43). The only additional difficulty with(46) is that

the change of variable leading to this non-dimensional system of equations also depends of the initial condition
through the values chz and sgmv(l’) or sgr(vg). Consistency with{28) thus leads to some additional constraint

on the initial condition fol(46) which can be satisfied, e.g. by taking the initial condition(#8) at the tips of the

ellipse or the hyperbola on which the motionmaf v, is restricted, i.e.

, B3Ba|o? _
W=1 8 =0if BiBr<0 of=(1+2352%) 00t BBy~ 0 and BIMS, <0,
2| BiM |
|B3B1|o2 iz
W=0 =142 if BB, >0 and ByMY, > 0. 48)
2|BZM12|

From now on we work with{46) unless explicitly stated otherwise. The initial condition 46) can be taken as

, W) =0 if bibp <0, W =3, v) =0 if bihp >0 and by > 0,
, W) =8 if bihp >0 andby <0 (49)
with § € [—1, 1], and the solution of46) with the initial condition in(49) defines a four parameter family,

(b1, by, b3, €), on the ellipses, and a five parameter famiby, b>, b3, €, 8), on the hyperbola. Here recall that one
of thij is +1 by construction, the other two take values4il] 1], § € (0, 1], ande > 0O is arbitrary.
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2.2.3. Mode elimination

As explained in the additive triad case, the method for mode eliminatif@} applies rigorously it « 1. Here,
it corresponds to situations where the time-scale of the mgiemuch smaller than the time-scales of the modes
v1, U2, Since at statistical steady sté#) gives to leading order in <« 1

(v3(r + s)vs(s)) = e /e, (50)

whereas the time-correlation functions fat, v» will decay on a time-scale of the order of! (see(52)).
As extensively developed 6] by the authors, the mode elimination procedure is actually simpler in the multi-
plicative triad case because the equationfpin (16) can be solved explicitly as

B t 2 rt
v3(t) = v + b3 /0 e =98y (s)va(s) ds + \/g /0 e =9/¢ dwa(s). (51)

Inserting this expression in the equations#grv, in (46) and performing asymptotic expansioreirg 1 gives to
leading order the following equations for, v> alone:

d I - - . d - I _ .
# = ebibovr + eb3bivdvy + v/ 2ebrvaW (1), g = ebibova + £b3baviuy + N 2ebo1 W (). (52)

The initial condition for these equations is given(49). Coarse-graining time as— ¢ /¢ in this equation amounts
to settings = 1, and in fact the solution ¢b2) converges to the solution of the first two equationgii) ass — 0
in the coarse-grained time-scal&.

In the original variableg52) reads

2 2
dvy _ o3 B;BZ vy + B1Bs v3vy + o381 W (), dvz _ 03B152 vo + Ba2Bs v+ oaf2 viW(). (53)

dr i % % dr v2 V3 3

These equations conserve the Manley—Rowe relakes (29), in each realization. (Thug53) could be further
reduced into a single equation fot, say, by using the constraiMi, = Mfz.) Furthermore, it can be checked

by direct verification that the density {85) projected in thgvy, v2) is the density of the stationary distribution
associated witl{52). Thus, we have full consistency between the original triad syste(@8hand (46)and the
reduced equations if52) and (53) As in the additive case, if the parameters are such that there is no stationary
distribution for the dynamics i(28), then(53) remains valid locally in time provided that the initialis small
enough.

2.2.4. Numerical simulations

We now compare the statistics of the slow modgesndv, predicted either fron62) or from the non-dimensional
form of the triad equations i(46). Since the solution of the reduced equationg58) is not available, we use
numerical methods for both the equation$28) and (52) We perform the simulations with

b1 = 0.4384 by = 0.5616 bz = —1, § =0.7254 (54)

for the more difficult case in which the motion is restricted on a hyperbola and the stationary distribution exists, and
consider four values of:

£=0.1,0204,1 (55)

The triad equations i(28) are integrated as in the additive case. The reduced equations for dmel v, in (52)
are integrated by a split step algorithm utilizing the combination of the fourth-order Runge—Kutta algorithm and
the “exact solution” formula for the multiplicative noise part of the equations. The exact solution of the stochastic
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Fig. 11. Multiplicative triad system. Comparison of the correlation functions{f@ndv, for the multiplicative triad equations i@#6) and the
reduced equations if52) with different values ot. Solid line: reduced equations; dashed line: 0.1; dot-dashed lines = 0.2; dotted line:
¢ = 0.4; dotted-plus lineg = 1.

part for the right-hand side db2) can be obtained in closed form as an integral over white-noise[{$§e
Similar to the Ornstein—Uhlenbeck process discussed earlier, the numerical scheme for the stochastic terms ic
a suitable discretization of the exact solution formula. Statistics are obtained by time-averaging in this ergodic
system.

In Fig. 11, we first compare the time-correlation functions(of, vo) predicted either fronf28) and (52) We
obtain excellent agreement between the predictions of the triad equations and effective equations for all values of
¢ includinge = 0.4, except for the very large value= 1.

We also checked higher order statistics of the resolved mades. For simplicity we focus on mode which,
unlike vy, has zero mean for the range of parameter which we consider. As in the additive case, we used

(V3(t + 5)v3(s))
(v3)2 + 2(v2(r + 5)v2(1))2

Ko(1) = (56)

which represents how the energy in magecorrelated with itself. From the densities (86) we know that the
process is already non-Gaussian on the stationary distribution (one-time statistick»(Qe.# 1. The results
presented irFig. 12 show that the departure from Gaussianity is even more pronounced for two times averaged
guantities such ak’»(r) for r > 0. The reduced equations {#6) reproduce this non-Gaussian behavior very
accurately for all values of, excepte = 1. It should be stressed that it is essential that the reduced equations in
(52) are of multiplicative type in order to reproduce such departure from Gaussianity. In particolamat be
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Fig. 12. Multiplicative triad system. The two-time fourth-order mom&ptz) defined in(56). Solid line: reduced equations; dashed line: 0.1;
dot-dashed lines = 0.2; dotted linez = 0.4; dotted-plus linez = 1.

reproduced by a linear Langevin equation of Ornstein—Uhlenbeck type (cofigaré and 1pwhich is the form
assumed in a posteriori regression fitting procedures of the second-order correlakanslih

3. Stochastic modeling in systems with many degrees of freedom

The truncated Burgers—Hopf system was introducdd,16] by two of the authors as a simple test model for
various statistical theories and stochastic modeling procedures. The truncated Burgers—Hopf system is defined by
the following system of nonlinear ordinary differential equations for the complex mipdesitisfyingit; = i _:

diiy ik A

o =32 Z iy, 1<k<A, AeN. (57)
k+p+q=0
Iplilgl=A

The truncated Burgers—Hopf system displays features in common with vastly more complicated systems: it is
deterministic but chaotic and mixing, itis ergodic on suitably defined equi-energy surfaces, and the time correlations
for the various degrees of freedom are different but obey a simple scaling law. These properties make the truncated
Burgers—Hopf system an ideal candidate for a stochastic heat bath.

In this paper we consider a simple extension of the truncated Burgers—Hopf system obtained by coupling the
equations in(57) to one or two additional modes. The coupled truncated Burgers—Hopf system is constructed in
such a way that there is a free parameter in the problem which controls the time-scale for the additional modes.
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The coupling can also be adjusted in various ways so that the nonlinear interaction between the additional modes
and the Burgers bath be of additive type, multiplicative type, or both types at once. Here we use the terminology
introduced for the triad systems. In this way the coupled truncated Burgers—Hopf system provides a simple but
highly non-trivial test case for the mode elimination procedure developgd@hwhich yields a closed system of
equations for the additional modes alone.

After recalling the main properties of the systen{5i@) we shall investigate the coupled truncated Burgers—Hopf
system in various settings. First, Bection 3.2 we shall consider a coupled system with one additional mode
for which the reduced equation is of additive type.Saction 3.2we discuss in detail our stochastic modeling
assumption, which leads us to the issue of stochastic consistency. In particular, we show how to determine the
various parameters entering the stochastic model. We also give both an empirical and an a priori criterion to
guantify the mode elimination procedure (i.e. we obtain what is the appropriatehe model). These results are
used inSections 3.3 and 3vWhere we discuss the coupled truncated Burgers—Hopf system in two different settings,
one of multiplicative type and one which combines both additive and multiplicative types.

3.1. Thetruncated Burgers—Hopf system

The model is defined as a finite-dimensional Fourier Galerkin truncation of the inviscid Burgers—Hopf equations
on the periodic [027] domain

(A + 3PaW), =0, (58)
whereP,, A € N, is the projection operator in Fourier space
s ik 2 1 [ o
Paf(x) = falx) = Z [ fi= —/ f(x)e " dx. (59)
k<A 2 0

In terms of the Fourier modekg,,

MA()C) = Zﬁk e”‘x, (60)

k<A

the equations if68)reduce tq57). The equations i(b7) satisfy the Liouville property and conserve the momentum

M:%AZHMAdxzﬁo, (61)
and the energy
1, 1.2 = 2
E=gr ), wade=s3liol +kZ_1|uk|. (62)

The momentum constraint is trivial and without loss of generality we consider solutionsWvith iig = 0. In
addition to the conserved quantities(61) and (62the discrete analog

21
H :/0 ui dx, (63)

is also conservefil6,18] For a typical initial conditionH ~ 0 for large A by the central limit theorem. As a
result the conservation @f does not affect the statistical behavior of the solutions for most initial datasfarge
enough (for a precise discussion of this issue [$8B.
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The Liouville property together with the conservation of energy implies that the canonical Gibbs measure with
density

A
pp = Z‘lexp<—ﬂ > |uk|2> . B>0 (64)
k=1

is a stationary distribution for the dynamics(®i7). In fact, the numerical results reported[irb,16] suggest that
the Gibbs measure is the appropriate (at figg¢dtationary distribution fo(57), at least for large enough values of
A such asA = 50 utilized here, with a very fast convergencetinMore precisely, for almost all initial conditions,
the dynamics ir{57) will eventually spar(64) in the sense that

1 T
?/0 J i), zig (0, -, yir (D), 27, (1)) dt ~ fRZA S Gigs Zigs -5 Y 2 )pp dyrdza, ..., dya dza,

(65)
whereiy = yi +izg, and{yi,, zi, - - -, i, z,-/A} is an arbitrary subset of the original variables with< A. For a
given valueEg of the energy in62) computed from the initial conditiong, is given by
A
=, 66
f= (66)
Thus, the canonical Gibbs measure predicts equipartition of energy among all mgdes: 14 with
E
coviy) =gt = 70. (67)

These statistical predictions were confirmedlib,16] with surprising accuracy. Furthermore, the mode(5i)
has a very high rate of mixing and achieves the statistical steady state rather quickly.

A simple dimensional argument for the decorrelation rate of the méggdeswas also presented and confirmed
numerically in[15,16] Under the assumption that the energy per mdtigA = A1, with units lengtf/time?,
and the wavenumbet, with units lengthr®, are the only relevant dimensional parameters for mgqdefollows
that this mode must decorrelate on a time-scale proportional to the eddy turnover time defined as

Cov/B

whereCyp is a universal constant of proportionality independent ahdk. Thus, we expect
Co

m.

The numerical experimen[5,16]confirm the scaling if§69), with a constant of proportionalityo, only weakly

dependent on the size of the truncation, It was observed that, to numerical accuracy, the correlation functions
for the real and imaginary parts &f, yr = Reiiy, andz; = Im iy, are equal

/O (i (t + $)af(s)) dt = 71T} = (69)

(Vi + $)y(s)) = (zx(t + 5)zk(s)), (70)
while the cross-correlation functions betwegrandz; are zero,

(yk( + s)zi(s)) = 0. (71)
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3.2. Coupled truncated Burgers-Hopf system with one additional mode: additive case

Now we shall consider the following extension of the truncated Burgers—Hopf systemi (Ip|, |¢| < A):

dX1 1 dyk ik Ak A 1
5 = A Zbklyzykzk, o = _ReE Z u’,‘,uz +)»b,f| “X12k,
k p+q+k=0
dz ik ok A
d_tk = —Im E Z M;MZ + )\.b]i‘ly)(?]_yk, (72)
p+q+k=0

whereu; = y; + izx. The interaction coefficienﬁg('" are of order 1 and satisfy
b+ )" I =0, (73)

The parametek is a measure of the strength of coupling between the additional medand the Burgers bath
(v, zx)- Forx = 0, the system irf72) reduces to the truncated Burgers—Hopf systeifbif). For A # 0, one can
think of modex; as being driven by the Burgers bath. We will derive a closed stochastic differential equation for
x1 alone by suitable elimination of the bath modesg, zx) using the theory from Majda et gb,6]. Note that the
nonlinear terms containing any given tripley, y«, zx), k fixed, in the right-hand side of the equationg12) are
of the same type as in the additive triad model. Thus we can expect that the reduced equatiatoioe obtained
from (72) will be linear inx1 with an additive noise. This is confirmed below.
Throughout this section, we shall consi@é®) in the regime

A=50, ir=4 (74)

with the first five interaction coefficients non-zero and picked at random as listadbie 1 These coefficients were
generated randomly in the rangel, 1] with the constraint that they satisfy3). The initial conditions were taken
such that the parametgr measuring the energy per mode and defined through

1 Eo _ .2 S 2
2= i Fo=do+ ;m (0) + z2(0)), (75)
has value
B = 50. (76)

We show below that the energlyp, is conserved in time fof72), so thatg is well defined independent of time. In

the numerical simulations, the equationgi) are integrated using a pseudo-spectral method for the evaluation of
the nonlinear terms of the Burgers bath and a fourth-order Runge—Kutta scheme for time-stepping. All the statistics
in the deterministic system are computed through time-averaging in a standard {Ashidi}

Table 1

Coupled truncated Burgers—Hopf system: additive case. The interaction coefficients

k bi\yl bi’\lz b;\l.v

1 0.2810 —0.6675 0.3865
2 0.3923 —0.9356 0.5433
3 0.3953 —0.6975 0.3023
4 0.3523 —0.6520 0.2997
5 0.5245 —0.8272 0.3027
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Unlike the triad systems, the systen(it®) is deterministic. To proceed, we shall approximate the systdi#2in
by a stochastic model following the method developejbif]. We will discuss in detail the stochastic consistency
between the original system and the stochastic model. Next, we determine the small pasaimétems of the
other parameters in the system. Finally, we perform mode elimination on the stochastic model and obtain a closed
equation for the mode; alone. Before doing all this, though, we determine some properti@pf

3.2.1. Sationary distribution
Due to the constrainf3) on the coupling coefficiemis,’('", the system ir{72) conserves the energy

A A
E :xf+Z|uk|2:xf+Z(y,§+z,§). (77)
k=1 k=1
(The coupling destroys the other invariait andH, seg(61) and (63)) It can also be checked by direct calculation
that the system i72) satisfies the Liouville property

A
F OF, OF
0=y (G4 5. (79)

0x1 pae] Yk 07k

whereF,,, ... denote the respective right-hand sides of the equatiof®2)nThe conservation of energy together
with the Liouville property imply that the Gibbs measure with density

A
pp=2Z texp—BE) = Z texp (—ﬁ (xf +Y OF+ z,f))) : (79)
k=1
is a stationary distribution for the dynamics(if2). In fact, the numerical results support that, for a large number
of degrees of freedom lika = 50, (79) is the density of the unique (for fixed energy) stationary distribution for
the system ir{72), i.e. for almost all initial conditions fof72), the dynamics will eventually spgii9) similarly as

in (65). The density in79) implies equipartition of energy among maggand the bath variablesy, zx)

COV(x1) = COV(yx) = COV(zk) = % (80)
and the parametgris uniquely determined by the energy(#v) computed on the initial conditiotkp, through(75).
With the above parameters ag[irb,16], the numerical simulations strongly confi(ff9) and (80) The numerical
values for the first few moments of which are consistent with these predictions are givefainle 2
It is worth noting that the parametgiin (72) does not affect the one-time statistical properties of the system. Of
course, this parameter will influence the two-time statistics, as investigated below.

3.2.2. Sochastic modeling and stochastic consistency
As mentioned before, the mode elimination technique developgdGhapplies to stochastic differential equa-
tions, not deterministic systems as(if2). Thus, in a first step we need to approxim@ig) by some stochastic

giﬂ;lsd truncated Burgers—Hopf system: additive case. One point statistics forximode
Stat Mech DNS

(x1) 0 0.0015

(x2) 0.01 0.010025

(x$) 0.0003 0.0003004




230 A. Majda et al./ Physica D 170 (2002) 206-252

model. Withx; declared as the only resolved mode, the stratedy,8] is to replace the nonlinear self-interaction
terms in the equation for the unresolved modes, zx), by some stochastic model. Specifically, we shall make the
following stochastic modeling assumption (also use8éwtions 3.3 and 3)4
ik e Ly .
Y WA —yan 4 o (W () + TWE)), (81)
p+q+k=0

Whereka (1), W; (r) are independent Wiener processes. Thus, we replace the original sy§t@ybiythe stochastic
model

dxy Lyz dye _ vtz i

a A Xk:bk VkZk, o ADj " x1zk — viyk + ok Wi (2),

dz 1y .

o = WY X1y — yizi + ok WE(0). (82)

Note that this stochastic model might already involve a smaller number of equations since we only need to consider
those(yx, zx) such thaib,}'yZ # 0 (recall that thougt = 50, we tookb,}Iyz # 0 for the first five modes only, see
Table ).

The parameterg;, o must be chosen so as to optimize stochastic consistency between the approximated model
in (82) and the original coupled truncated Burgers—Hopf syste(i2i In fact, there is a first obvious criterion for
consistency which fixes the rat;ir;2 /vk: the stationary distribution fdi82) will be exactly(64) if

*_ (83)

Thus itonly remains to determing (say), and we now discuss this issue in some detail using numerical experiments.
The stochastic model i(82) was integrated using time-splitting with a second-order Runge—Kutta algorithm for
the nonlinear coupling terms and the “exact solution” formula for the Ornstein—Uhlenbeck process for the damping
and forcing terms i{82).

There are various different strategies to determinenhich are all based on optimizing the matching between
the time-correlation functions of the unresolved modes

(Vi@ + $)yi(s)) = (2t + 5)2k(5)), (84)

predicted by the original system (@2) and by the stochastic model {82). (We shall also use these strategies in
Sections 3.3 and 3fr other variants of the coupled truncated Burgers—Hopf system.) A common difficulty faced

by all the strategies given below and others in the literature (see the applied referd6pessithat it is not possible

to reproduce all the details of the actual correlation functions for the original mo@éR)rby such a first-order
Markov model. We can only expect to capture some coarse-grained information about these functions, and the
natural choice in these first-order Markov models is to approximate the actual correlation functions by exponentials

exp(—y ™)), (85)

WhererdnsiS the area belowyy (t + s)yi(s)), {(zx(t + s)zx(s)) normalized by 2:

ykdns = (28 x area under the actual correlation function of mbye. (86)
The values oﬁxkdns are given inTable 3and the functions ex;}y,f”3|t|) /2 and the actual correlation functions are
compared irFig. 13 We now pick they, in the stochastic model so as to optimize consistency {@Bhusing one
of the following three different procedures:
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Table 3
Coupled truncated Burgers—Hopf system: additive case. Comparison betwef’ﬁafbbtained from the scaling law i{87), the y,f’”sobtained
from (86), and the adjusteyzlfdJ used in the stochastic model with procedure 2

k yfcm yfns yfm

1 0.7107 0.7147 0.6027
2 1.4213 1.4160 1.1543
3 2.1320 2.0637 2.0637
4 2.8427 2.7069 2.7069
5 3.5534 3.3176 3.3176

(P1) The most a priori strategy consists in using the scaling la@8hfor the uncoupled truncated Burgers—Hopf
dynamics and identify; with

Cik
yl =Tt = ﬁ. (87)

HereC1 = 1/Co is the only numerical constant left to determine; this can be done once and for all, e.g., by
measuringy—1 from the numerical simulations for the uncoupled truncated Burgers—Hopf system. For the
parameters used in the simulations this gives

€, =503, (88)

k=1 k=2

k=3 k=4

1 1

058 0.8
0.6 06
0.4 0.4
0.2 0.2
0 0
02 2 4 6 02 2 4 6

Fig. 13. Coupled truncated Burgers—Hopf system: additive case. Comparison between the actual correlation functions far, modesm
the original system if72) (full line) and the functions ex;}ykd”5|t|)/2ﬂ (dashed line).
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Fig. 14. Coupled truncated Burgers—Hopf system: additive case. Comparison between the correlation functions obtained from the stochastic
model in(82) with y = 5 (full line), the functions exp-y™i¢|)/28 (dashed line), exp-y£2|t|) /28 (dot-dashed line).

and the correspondimgfca' are listed inTable 3 The underlying assumption behif@i7) is that the coupling

with x1 in both (72) and (82)does not affect very much the correlation functions of the unresolved modes
(yk, zx)- As explained inSection 3.2.3this is justified in the range of parameters where mode elimination
applies because to leading order in the appropuateere is separation of time-scales between the fast
unresolved modeéyy, zx) and the slow resolved moda. Thus, in first approximation the fast dynamics

on which the unresolved modes decorrelate is governed solely by the nonlinear self-interactions between
Yk andzg’s in (72) or, equivalently through the stochastic modeling assumptid8i by the forcing and
damping terms in(82). In Fig. 14 we compare on the logarithmic scale the functions(emf”s|t|)/2,3,
exp(—y,fca'|t|)/2ﬁ, and the correlation functions f@yy, zx) obtained by integration of the stochastic model

in (82)with y, =

scal

. This figure clearly shows the potential problem with procedure P1. The coupling with

x1 might not be completely negligible and may actually change the correlation fundiignd.4 shows that

the decay rates for the correlation functions predicted by both the original system and the stochastic model are

not yksca' in the example at hand. The stochastic model tends to overestimate the deqq?"i“aaspecially

for the first two modes witth = 1, 2.
(P2) We showirsection 3.2.3hatwhenthe parameters are such that mode elimination is justified, to leading orderin

the appropriate the correlation functions of the stochastic mod€BR) display an exponential decay given by

(Vi 4 5)yi(s)) = {2kt + 5)2x(5)) ~

e*Vkm

2

(89)
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Fig. 15. Coupled truncated Burgers—Hopf system: additive case. Comparison between the func(ier;vﬁ'l?ptp)/Zﬂ (dashed line) and the
correlation functions obtained from the stochastic modé8®) with y; = y,?”s(full line).

This automatically leads us to identify with the ykdns obtained from(86). The potential problem with pro-
cedure P2 is that the decay(B9) is only approximately true for the solution of the stochastic mod€ )

(this is again due to coupling with mode). This can be seen iRig. 15where we compare on the logarithm
scale the functions eXpy,?”sltD/Zﬂ with the correlation functions fo¢y, zx) obtained by integration of
the stochastic model i(82) with y;, = ykdns. Thus, for the example at hand, the stochastic model tends to
overestimate the decay ratg, especially for the first two modes with= 1, 2. (Procedure P2 does in fact
much better for the examples presente8éctions 3.3 and 3where it give results as good as those obtained
by the more refined procedure P3.)

(P3) Better results are expected if thes are picked in such a way that the correlation functions for the unresolved
modes solution of the stochastic mode(&2) reproduce the functions eﬁ(py,?”s|t|)/2ﬂ as closely as possi-
ble. As we just explained, generally this amounts to taking: 2% 3" The values for thg,*” given in
Table 3were used in the stochastic model to obtain the correlation functions depiétied it The agreement
is now quasi-perfect for all the modes, though we only adjusted the vajydafthe first two modes; = 1, 2.

Note that none of the procedures P1-P3 make adjustment at the level of the correlation function for the resolved
mode, x1. In this sense they are all a priori procedures. How good the stochastic model does (bgj;ﬁa'for
y,?”s and ykad’) at the level of the resolved mode (herg will be discussed below iSection 3.2.4about mode
elimination (see als8ections 3.3.3 and 3.4f@r the coupled truncated Burgers system in different settings). Notice
that procedures P1-P3 are actually much more a priori than what disciplinary people in, say, the atmosphere/ocean
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Fig. 16. Coupled truncated Burgers—Hopf system: additive case. Comparison between the correlation functions obtained from the stochastic
model in(82) with y; = 1,2¥ (full line) and the functions exg-y™i¢|)/28 (dashed line).

science community might be willing to use in a stochastic modeling strategy (see the referd¢ednrfact, a

purely empirical procedure, which we shall not discuss in this papef{88dut is expected to give the best results,
would be to forget altogether about consistency for the unresolved modes and simply require optimal matching for
the correlation function of the resolved modeshere or(x1, x2) in Sections 3.3 and 3.4n fact, this procedure

gives truly excellent agreement between the reduced equations obtained by mode elimination and the couplec
truncated Burgers—Hopf system in the various settings which we discuss, even in parameter regimes where the :
priori procedures P1-P3 do not apply (i.e. evensfof the order of 1]19].

3.2.3. Determination of ¢

In a last step before applying mode elimination to the stochastic mo¢#2jmve determine when the procedure
is supposed to apply or, in other words, what.i$Ve give two ways to estimate The first is empirical and pretty
simple to obtain, though it might be fairly imprecise. The second estimate is a priori and more accurate though more
complicated to obtain.

The empirical estimate far is obtained if one remembers that, in appropriate dimensionless units, the slower
time-scale of the unresolved modes is of the order, @fhereas the time-scale of the resolved mode is of the order
¢~1 (see the discussion for the triad models §9®)). Thus, we can estimate

(90)

emp slowest time-scale of the unresolved mades zx
& = . .
time-scale of the resolved modg
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Using this formula with the data from numerical simulations gives
e®MP = 0.24.

Of course, the empirical estimate(0) should be considered with care since it might miss a numerical factor (see
(95)). For instance, applied to the additive triad system, the estimg@®)givess®™P = ¢,/ # ¢ for smalle (we
used(19) and (24)andy is given by(21)).

For a more precise a priori estimatesgfwe proceed as in the triad systems and write the equatiof@2)nn
appropriate non-dimensional variables. Specifically, we substitute

Ve Nz Ve r
which amounts to rescaling all modes according to their (common) variance and time so that the nonlinear coupling
terms betweenr; and(yy, zx) are all of order 1. Using83), this leads to

X1 —

(91)

dxy 1lyz dyx 1 1 2 .

it b , B piE - — W),

dr zk: ko kT dr ko M1k Sk & Vi Sk & k ®)

dzx 1 1 2 .

o b;il X1k — 6k—£Zk + Sk_sW]f(t)’ (92)

where using the generic property that thés increase withk (i.e. higher order mode decorrelate faster, (&),
we define

Sie1=1, s =2Lc©1 for k| > 1 (93)

Yk

Since all the terms but the forcing and damping term@R) are of order 1 or smaller (recall that tbé" are of
order 1 by construction), we identifiedby

A
" =1V’

€ (94)

Using the parameters in the numerical simulations &esaion 3.2.2 (94) gives fory;—1 = y,ffjl
¢ =0.63

This estimate is in fair agreement with the empirical estimate f{@d) In fact, using(97), we see that

P e 13552, (95)
k

which accounts indeed for the discrepancy betw@é) and (94) Note also that the estimate (84) gives a rather

big value fore in the example at hand: this should be kept in mind considering how good mode elimination does.
In what follows it will be more convenient to work with the dimensional equatior{32), and give the reduced

equations obtained frorfv2) by mode elimination in their dimensional form as well. Thus, though mall be

apparent in these equations, we will remember ¢hatcomputed fron{94).
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3.2.4. Mode élimination

Following [6] a closed equation for; alone can be obtained from the stochastic modés#) by elimination of
the unresolved variablé€sy, zx), in the appropriate limit much in the same way as we obtained the reduced equation
in (22) for the additive triad model. The equation is given by

dx .
d_tl =—yix1 +o1W(@) (96)
with
22 & 1My VI
Y11= s o1= [—. (97)
TTap oy TV B

Thus mode elimination predicts that is an Ornstein—Uhlenbeck process with a stationary distribution which
always exists 1 > 0) and coincides with the stationary distribution(if®) (projected in thex;-space) of the
original coupled truncated Burgers systen{i2). We now further check the relevance of the reduced stochastic
equations in96) for the original dynamics irf72) by using the time-correlation function faf and an indicator
function for the departure from Gaussianity of this process.

The time-correlation function predicted from the reduced stochastic mo¢iés)is

e—)/lm

2

(x1(t + 5)x1(s)) = (98)

We compare this function usm;gfca' dns or y lin (97) (corresponding to procedures P1, P2, or P3) with the
time-correlation functions obtained by numerlcal integration of both the original coupled truncated Burgers—Hopf
system in(72) and the stochastic model {82) using also;/sca' dns or ya | The simulations use the parameters
listed in Section 3.2.2and the results are presentedig. 17. Clearly, both the stochastic model and the reduced
equation forxy in (96) reproduce rather well the actual correlation function for this mode, especiallyj/fkaﬁ‘\’e

are used. In fact, the analytical predictions fgrfrom (97) usingy ¢, s, andykadj are, respectively
psl=0033  yINS=0.034 y29 = 0,039 (99)
while the value obtained from the original coupled truncated Burgers—Hopf syst@id)iis
1 = 0.04. (100)

Notice thaty$¢@is almost identical with"S.
As a further check, we used the following indicator function for the departure from Gaussianity of

(x2(t + 5)x3(s))

K = .
{0 = 27 2000 4 9m0))?

(101)

This quantity measures correlation in time of the eneréyl;), in the mode: it is appropriately normalized so that
K1(t) = 1 for all time for a Gaussiam;. The reduced equation {96) precisely implies that1 is a Gaussian
process, andrig. 18 shows that this prediction is in very good agreement, within 5% accuracy, with the actual
value forKl(t) obtained both from the original dynamics(n2) and the stochastic model {82) (here we used

Yk =V, J) In fact, systematic departures from Gaussianity which are well reproduced by the reduced equations
will be observed in the examples considere8attions 3.3 and 3,4vhich involve multiplicative noises, aridg. 18

should be compared witkigs. 22 and 26
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Fig. 17. Coupled truncated Burgers—Hopf system: additive case. Correlation functiosofid line: original system; dash-dotted line: stochastic

model; dashed line: effective equations. The figures on to;wseykdns, and the bottom figures usg = y,fdj. The graphs withy, = y,f“a' in

are not shown since they are barely different than the oneyita ykd”S(see(QQ)).

3.3. Coupled truncated Burgers—Hopf system with two additional modes: multiplicative case

The next extension of the truncated Burgers—Hopf system which we shall studyig,(I|, |g| < A)

dxq

12 12 dx2 211 211

o = X:(bk| Y xayk + b 2 xazk), o = Z(bk‘ Yxvk + b xaze),

k k

d ik o n , dz ik kA

% = —RGE Z u;u; + Abilllexz, d_tk = —Im > Z u;u(’; + Ab;lllexz, (102)
p+q+k=0 p+q+k=0

where the interaction coefficients are of order 1 and satisfy
B2+ =0, B o P =0, (103)

Here modesx1, x2) are driven by the Burgers—Hopf bathy, zx), and we will derive a closed set of stochastic
differential equations fofx1, x2) alone by suitable elimination of the bath using the theory from Majda §,al-

Note that the nonlinear terms containing any given tripte, yk, zx), k fixed, in the right-hand side of the equations

in (102)are of the same type as in the multiplicative triad model. Thus we can expect that the reduced equations for
(x1, x2) alone obtained fronf102) will contain nonlinear corrections ifx1, x2) as well as multiplicative noises.

We confirm this below by studying the equationg182)in the regime where

B=50, A=50, A=3 (104)
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Fig. 18. Coupled truncated Burgers—Hopf system: additive case. The two-time fourth-order norg¢mtefined in(101) and measuring the
time-correlation of the energgf(t) in modex (¢). A Gaussian process implies no correlation in energyn@) = 1. This figure has the same
vertical scale as, and should be comparedFigs. 22 and 26

(B is again related to the constant energy in the systen{1€89 and with the interaction coefficiem%’ as listed
in Table 4 As in the additive case, these coefficients were generated randomly withid] under the constraint
(103). The equations i102)were integrated numerically as the equation§/i).

3.3.1. Sationary distribution

The system ir{72) conserves the following energy because of the constrairfiiBy)

A A
E:x%—l—x%—l—Zlqu:x%+x§+2(yk2+zf),

(105)
k=1 k=1

Table 4
Coupled truncated Burgers—Hopf system: multiplicative case. Interaction coefficients
k b}("lz bi.\Zy b]f\ly b]z(_\lz bi\zz b]f\lz
1 0.2498 —0.5933 0.3435 0.4205 0.4979 —0.9183
2 0.3488 —0.8316 0.4829 0.2268 0.2461 —0.4729
3 0.3514 —0.6200 0.2687 0.3240 0.4440 —0.7680
4 0.3131 —0.5795 0.2664 0.3719 0.2741 —0.6459
5 0.4662 —0.7353 0.2690 0.4359 0.3450 —0.7809
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and has the Liouville property,

A
aF, oF, aF aF,
0= iy (G4 0, 106

ax1 dx2 = 0Vk 0Zk ( )

whereFy,, ... denote the respective right-hand sides of the equatios08) As a result the Gaussian Gibbs
measure with density

A
pp=Z texpq—BE) = Z texp (—ﬁ (xf +x5+ ) OF + zf))) : (107)
k=1
is a stationary distribution for the dynamicqr02)and, as fo(79)in the additive case, the numerical results support
that(107)is in fact the appropriate stationary distribution for the systerf10?) at fixed energy. The density in
(106)implies equipartition of energy among modes, x2) and the bath variablesy, zx)

COV(x1) = COV(x2) = COM(yx) = COV(zx) = ﬁ (108)
and the parametet is uniquely determined by the energy(itD5) computed on the initial conditiorkg
1 Eo
— = . 1
28 2424 (109)

As in [15,16] the numerical experiments confirm the predictionglid7) and (108)The first few moments of4,
andxz consistent with these predictions are listedable 5

3.3.2. Sochastic modeling and stochastic consistency

Following [5,6], we apply the same stochastic modeling assumption as in the additive case, i.e.(8®) ize
represent the nonlinear self-interaction of the bath mo@eszx), in (102). Thus we replace the original system in
(102) by the stochastic model

dxg 112y 112 dxz 2|1y 2|1z

el A Ek (b, ™ x2yk + by x2zk), e A Ek (b, xayx + by " x2zk),

dye . y12 y dzxy 712 -

E = )\.bk X1X2 — Vi Vk + Uka ([), E = )\'bk X1X2 — YkZk + Uka (t) (110)

Depending on the number 62 andb?® that are non-zero, the stochastic mode(lii0) may involve a smaller
number of equations than the original systen(lifi2). Recall that in our simulations, we took = 50, butb!2,
andb?! non-zero for the first five modes only. The equationélibO) were integrated numerically using the same
procedure as in the additive case.

Table 5

Coupled truncated Burgers—Hopf system: multiplicative case. One point statisticaod.x,
Stat Mech DNS

(x1) 0 —0.0008

(x2) 0 —0.0005

(x2) 0.01 0.0099

(x2) 0.01 0.0099

(x$) 0.0003 0.000304

(x3) 0.0003 0.000302
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The parameters;, andy; are determined as in the additive case so as to achieve optimal stochastic consistency
between(102) and (11Q)We take the rati@kz/yk equal to ¥8 as in(83) in order that the stationary distribution
for (102) has the density i1107). It remains to determingy, say, and here we only consider procedure P2 based
on taking they, = ykd”swherey,?”sis the normalized area below the actual correlation functions obtained by direct
numerical simulations of the original system(itD2) In fact, for the range of parameters we considered, in this
example procedure P2 produces essentially the same values as procedure P3. Recall that for P3 ona,ﬁcks the
for which the correlation functions of the bath modes predicted by the stochastic mé¢ti&d)meproduce best the
exponential functions

e
2f

Also recall that in genera}kadj #+ y,?”s (see the discussion iBection 3.2.2but in the present case the difference

was not noticeable, i.e/.,f‘dj A ykdns. This can be seen iRig. 19 The corresponding values pf“s are listed in
Table 6
The value ot can be estimated similarly as in the additive case using the two procedures expl&aetion 3.2.3

The empiricak®™P obtained from the decay rates of the resolved magest,) and the modes from the bath

(111)

emp slowest time-scale of the unresolved mades, zx) (112)
I = "
fastest time-scale of the resolved modes, x2)
0 k=1 . k=2
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Fig. 19. Coupled truncated Burgers—Hopf system: multiplicative case. Comparison of correlation functioas®éu,, k = 1, . . ., 4 predicted
by the stochastic model (solid line) and the functioﬁ?ﬁés’/z;s (dashed line).
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Table 6

Coupled truncated Burgers—Hopf system: multiplicative case. Estimates for the decay rates of the correlation functions of the bath
k ykdns

1 0.668

2 1.355

3 2.037

4 2.678

5 3.319

gives using the data from numerical simulations
£*MP=0.53,

On the other hand, the a priofj

A
£= ——n, (113)
Yk=1/2P
gives
e =041

Both values agree fairly well in this example, and, considering how big they are, mode elimination works surprisingly
well as we show next.

3.3.3. Mode elimination
The following closed system of equations fef, x2) is obtained from the stochastic mode(&2) by elimination
of the unresolved variableéyy, zx) [6]:

dxy 25 25,2 = i = i

o —A“yx1 — A°N1xoxy + Ao11x2Wi(t) + AoroxaWa(t),

dxz 25 207,42 = i = i

@ = —A%yx2 — A°Nox{x2 + Ao21x1 W1(t) + Ao2ox1 Wa(2). (114)

As for the multiplicative triad system, these equations can be obtained by solving the equatigpszgrin (110)
at given(x1, x2), substituting these solutions in the equations(fat x2), and performing asymptotic expansion in
¢. HereWy(r) andWa(¢) are independent Wiener processes and the various parameters are defined as follows. Let

A A
A=Yy r @2+ 0. B =Yy M+ 0],
k=1 k=1

A
C =gy e 2o + 50, (115)
k=1

Then
p=-1C, Ni=B(A+C), Na=BB+O), (116)

and the matrixs, which is defined as

5 — (511 512) ’ (117)

021 022
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is such that

55T = (2 g) (118)

Using Cauchy—Schwartz, it is easy to see that the mati(kiB)is positive definite, hence its square-réogxists.
Of courses is not unique, and it is always possible to make it symmefrie; 57, i.e. 512 = 621.

Though the solution of the equations(itil4)is not available, the stationary distribution for the prooagsxz)
has a density given precisely by the Gaussia(iLDV) (projected on modeér1, x2)). This can be seefb] upon
noting that(107)is annihilated by the adjoint of the Fokker—Planck operator associatedMi)

2

9 9 92 82
L = —A2(x1 + N1x2x1) — — 22(7x2 4+ Nox2x2)— + A2AXS— + A2Bxe— + 2A2Cx )
(yxa 1X5X1) o1 (yx2 2X7X2) oz 5 92 1 92 1X2 371072

(119)
To further check the relevance of the reduced stochastic modéllig) for the original dynamics ir{102), we
compute averaged quantities involving two times. The reduced equatifiisiiywere integrated by time-splitting,

using a second-order Runge—Kautta algorithm for the nonlinear terms, and the strong Milstein scheme of order 1 for
the stochastic ternf&0]. The parameters used in the simulations give the following values f@r, andC:

A =0.3762 B =0.4478 C =-0.3392

X1 X2
1 1 :
0.8 0.8
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\
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\‘ \
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Fig. 20. Coupled truncated Burgers—Hopf system: multiplicative case. Comparison of the time-correlation funatjcsrsdaf, predicted by
the original system (solid line) and the stochastic model (dash-dotted line).
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This gives
7 =0.17, N1 =185, N2 =5.43,
and we selected consistent with(117)as
611 = 0.241,

o012 = —0.564, o22 = 0.360.

We computed first the time-correlation functions

C1(0) = (x1(t + 5)x1(s)), Ca(1) = (x2(t + 5)x2(s)).

243

(120)

(121)

It can be seen irrig. 20 that the agreement between the predictions of the original systgiiOR) and the
stochastic model ir{110) is excellent. The agreement between the predictions of the original syst€ho2n

and the reduced equations(ihl4)is also very good, as can be seerFig. 21 The reduced equations (but not

the stochastic model) actually miss the fact that the time-correlation functions are smooth atideThis is
understandable and is a general feature of first-order Markov models, since those short time effects happen in fact
on a (dimensionless) time-scale of ordewhich is not captured by the reduced equations. On the other hand,

these equations (as the stochastic model) actually reproduce very well the long-time decay of these functions.
After the short transient, the correlation functions are in fact very close to exponentials with decay rates given in

Table 7
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Fig. 21. Coupled truncated Burgers—Hopf system: multiplicative case. Comparison of the time-correlation funatjcarsdaf, predicted by
the original system (solid line) and the reduced equations (dashed line).
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Table 7

Coupled truncated Burgers—Hopf system: multiplicative case. Long-time decay rates for(mgdes
Original system Stochastic model Reduced equations

Va1 0.165 0.171 0.183

Yo 0.179 0.182 0.215

We also computed the following quantities involving two-time fourth-order moments displayeégd.ig2
(X2t + 5)x%(s))
(X9)2 4 2(xj (1 + 5)xj ()2

Kj(t) = ji=12 (122)

These quantities actually measure the time-correlation of the em%(rgyn modej = 1, 2. For Gaussian processes,

K; = 1forall times, implying in fact that there is no correlation between the energy computed at successive time.
In contrast, in the present example, there is a significant departure from Gaussianity, in the order of 50%, for the
original system in102) and this departure is reproduced very well by both the stochastic mo¢ELdand the

reduced equations ifl14). It should be stressed that such departarenot be obtained from linear Langevin
models of Ornstein—Uhlenbeck type usually adopted in standard modeling procedures, and we must conclude tha
the multiplicative nature of the reduced equationglii¥)is essential.

1.8 " 1.8

0 10 20 30 0 10 20 30

Fig. 22. Coupled truncated Burgers—Hopf system: multiplicative case. The two-time fourth-order m&ments = 1, 2 defined in(122)and
measuring the time-correlation of the enev@fjt}, j = 1, 2. The departure from Gaussianity observed in the original system (solid line) are
well reproduced by both the stochastic model (dot-dashed line, top figures) and the reduced equations (dashed line, bottom figures).
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3.4. Coupled truncated Burgers—Hopf system with two additional modes: combined case

The last extension of the truncated Burgers—Hopf system which we shall consider here is the following
(L =<k, lpl, lql = A):

dxs 1lyz 112y 1j2:

ol Xazk: by ykzk + Am Xk:(bk X2y + b, x22k),

dxz 2yz 21y 212

5= Aanjbk Yezk + m ;(bk X1y + b xozk).

dre _ —Rei—k Z 0% 4 rab) M x1zx + Aab) Fxozk + Amby PPxix

ar pHyq abp 13k abp 2%k mOy 1X2,
p+q+k=0

dzx ik A X i

o = —Im > Z u;u(’; + )Lab,ill“ X1yk + )»ablzclzyxzyk + Ambilllexz, (123)
p+q+k=0

whereu, = yx + izx. This system is a combination of the additive model considereseition 3.2(with two
resolved modes instead of one) and the multiplicative model consider@dcition 3.3 The parametekg is in
front of the terms involved in coupling of additive type, while the paramgters in front of the terms involved
in coupling of multiplicative type. The coupling coeﬁicierﬁg' are all of order 1 and satisfy (compaf&3) and
(103)

bilyz—l— bz’\lz + bi\ly =0, bi\yl + bi’IZz + blz<|2y =0,
N A A R R AR ) (124)

Since the system ifil23) combines additive and multiplicative features we expect that the reduced equations for
modes(x1, x2) provided by mode elimination will involve both linear Langevin terms of Ornstein—Uhlenbeck type
and nonlinear correction with multiplicative noise. This is indeed what we obtain below.

We shall study the system {fi23)in the parameter regime

=50, A=50, Ara=4,  rm=3 (125)

(B is related to the constant energy in the system,($68) and with the interaction coefficienté" as listed in
Tables 4 (multiplicative interaction terms) and 8 (additive interaction terit®i, and theb;(‘”’s involved in the
multiplicative interaction terms are in fact exactly the same as the ones we t&m@ction 3.3 The equations in
(123)were integrated numerically using the same scheme &sétion 3.3

The system ir{123)conserves the energy {f105)and has the Liouville property if106)due to the constraints
in (124) As a result, the measure with the Gaussian density0i)is a stationary distribution for the dynamics in

Table 8

Coupled truncated Burgers—Hopf system: combined case. Interaction coefficients for the additive interaction terms

k bi\yz b]):\lz bz\l.v blf\yl b.;\Zz blilZy

1 —0.4094 0.2894 0.1200 —0.3862 0.3325 0.0537
2 —0.3906 0.3438 0.0469 0.4963 0.4253 —0.9216
3 —0.6562 0.1500 0.5062 —0.5344 0.4219 0.1125
4 —0.4125 0.7303 —0.3178 0.6200 —0.2525 —0.3675
5 0.5275 0.4603 —0.9878 0.5925 0.1953 —0.7878
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Table 9
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Coupled truncated Burgers—Hopf system: combined case. One point statistics for the(moggs

Stat Mech
{x1) 0 —0.001
(x2) 0 —0.00007
(x2) 0.01
(x2) 0.01
(x 0.0003 0.0003008
(x 0.0003 0.0002977

(123), and the numerical results confirm that it is the appropriate (at fixed enerdil,G#pstationary distribution
for this dynamics. Thus, at equilibrium we have again equipartition of energy @98). This is confirmed in
Table 9where we list the first few moments 6f1, x») obtained from numerics.

3.4.1. Sochastic modeling and stochastic consistency

The stochastic modeling assumption is the same as in the additive and multiplicative cases. Thu@ldase
represent the nonlinear self-interaction of the bath modegszy), in the original system ii123)and we replace
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2 4

6

Fig. 23. Coupled truncated Burgers—Hopf system: combined case. Comparison of the correlation functions of the bath predicted by the stochastic
model in(126)with y; = ¥ (full lines) and the functions@*' (dashed lines).
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Table 10

Coupled truncated Burgers—Hopf system: combined case. Estimates for the decay rates of the correlation functions of the bath
k 7/kdns

1 0.6786

2 1.3513

3 2.0219

4 2.6740

5 3.2512

this system by

dxy 1lyz 112y 12

i ?»azk: b, Yizk + Am Zk:(bk x2yk + by T x2z2k),

dxz 2yz 21y 2/1;

e Aan:bk YkZk + Am Xk:(bk X1yk + by x2zk),

dyk ) 2 |12 -

e kab,{lllezk + hab} Zxozk + dmb) Pxixz — vy + o W] (1),

dzx 1 2y 12 ;

rrie )Lab,i‘ Y xivk + )Lablzcl Y xXovk + Amb,il xX1x2 — ik + ok Wi (). (126)

In the parameter regime we consider, the stochastic modéPig) involves a smaller number of equations than
the original system ir§123) since we tookA = 50, but theb}(‘"’s are non-zero for the first five modes only. The
equations in(126)were integrated numerically as the equationg8i2) in the additive case.

The parameters, andy; are again determined so as to achieve optimal stochastic consistency bgt#®eand
(126). The ratiOUkZ/yk is taken to be equal to/B as in(83) in order that the stationary distribution f¢t02)
has the density irf107). We determiney; through procedure P2 based on taking the= ykd”s where ykd”s
is the normalized area below the actual correlation functions obtained by direct numerical simulations of the
original system in123). As in the multiplicative case, for the range of parameters we considered, procedure P2
is essentially equivalent to the more refined procedure P3. The time-correlation functions predicted either by the
original system ir{123)or the stochastic model {126)are compared iRig. 23 The correspondingkdnss are listed
in Table 10

The value of: can be estimated exactly as in the multiplicative case. The empifi€Bbbtained from the decay
rates of the resolved modés,, x2) and the modes from the bath (§84.2)) gives using the data from numerical
simulations

e®MP = 0.54.

On the other hand, the a prieridefined as

max(Aa, Am)
- Maf4a, ~m) 127
Vi=1+/2B (az7)
gives
e = 0.49.

Mode elimination will again work surprisingly well despite this large value.of
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3.4.2. Mode €limination

Mode elimination produces the following closed system of equations for the two resolved vatiables from
the stochastic model if126) [6]:

dxg 2 5 2 2 = i = i
o —AmY X1 — Al N1x5x1 + Amo11x2W1(t) + Amoz2x2Wa(t)
- )~§V11X1 - K§V12X2 + 22011 W3 (1) + ao12Wa(?),
dxz 42 - 2 2 - ; - ; 2
o —AmYX2 — A N2x1x2 + Amo21x1 W1(t) + Amo22xa Wa(t) — Agyi2x1

— M3y22x2 + Aao12Wa(t) + Aao22Wa(?). (128)

The terms involving.,, arise because of the interactions of multiplicative type in the stochastic mod&l6n In
fact, the coefficieny, N1, N2, andé entering(126) are identical with the ones enterilityLl4) (see(115)—(118)
and their numerical values in the parameter regime we consider are given by

y =017, N; =189,

N> =539 011=0.241 o012 =021 = —0.563 622 = 0.358 (129)

(Those values are slightly different from the onegi20) and (121pecause th<§afkdns are slightly different.) The

X1 X2
1c 1r
\. \
0.8 \ 0.8
0.6 0.6
0.4 0.4
\.
0.2 0.2
0 = 0 :
0 5 10 15 0 5 10 15
2
10° 10°
107" . 107" N
N N\
- .
N
&
AN
-
N
107 ‘ : 107 * '
0 5 10 15 0 5 10 15

Fig. 24. Coupled truncated Burgers—Hopf system: combined case. Comparison of the time-correlation funaticasdof, predicted by
the original system (solid line) and the stochastic model (dash-dotted line). The dotted lines are the predictions from the coupled truncated

Burgers—Hopf system in the multiplicative case alone fi@igy 20
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terms involvingi, arise because of the interactions of additive type in the stochastic mod&lGip They are of
Ornstein—Uhlenbeck type, though non-diagonal, with

32 & 1 32 & 2 32 & 1yz, 2
== yk—l(bklyZ)Z’ Y2 =2 yk—l(bk\yZ)Z’ yi2= = Vk_lbklyzbklyz- (130)
4B 4B 4B
k=1 k=1 k=1
The matrixo, defined as
o — <611 012> ’ (131)
021 022
is such that
5ol = g1 < yi1 m) . (132)
V12 Y22

The matrix at the right-hand side (#f32)is positive definite as it should be, as can be seen using Cauchy—Schwartz.
The matrixo is not uniquely defined b§132)and we can always make it symmetric= o ', i.e.o12 = o21. For
the parameter regime we consider, we obtain

y11 = 0.037Q y22 = 0.0407, y12 = 0.0135 o011 = 0.0267,
o922 = 0.0281], o012 = 0.0049 (133)
X1 X2
1 1 .
\'~_»
0.8 '\" 0.8}
\ .
\
06f 0.6t
\
\
0.4 \ 0.41 \
N\ \
N
0.2 0.2}
0 — 0 : : e
0 5 10 15 0 5 10 15
X
1 2
10° = 10°
AN
NG
N .
N N
N N
1 > _1
10 AN 107t
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N
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N N
~N N
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N
107 : 10 : ‘ ‘
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Fig. 25. Coupled truncated Burgers—Hopf system: combined case. Comparison of the time-correlation funetiamsie$ predicted by the

original system (solid line) and the reduced equations (dashed line). The dotted lines are the predictions from the coupled truncated Burgers—Hopf
system in the multiplicative case alone fréfiy. 21
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Table 11
Coupled truncated Burgers—Hopf system: combined case. Long-time decay rates formoggs
Original system Stochastic model Reduced equations
Va1 0.178 0.185 0.233
Vx2 0.197 0.202 0.254

The solution of equations ifiL26) is not available but it can be checked that the stationary distribution for this
process has the Gaussian densitfdidi7). This can be seen upon noting that this density is annihilated by the adjoint
of the Fokker—Planck operator associated WitB8) The part of this operator associated with the multiplicative
terms is(119)with A, substituted foi; the part associated with the additive terms is

2 2 2

L'=— 22(y1x1+ 1/12162)i — A2(y1ox1 + )/22362)i + )»21/118— + )»27/228— + 22915
a dx1 a dx2 a 8x]2_ a 3x§ ar e 9x19x2

(134)

To check the relevance of the reduced equatior{$28), we perform the same numerical tests involving two-time
averages as the ones we used in the multiplicative case, and we utilize the same integration technique. The

1 2
1.8 1.8
1.6 1 1.6
1.4 14}

Fig. 26. Coupled truncated Burgers—Hopf system: combined case. The two-time fourth-order mkinientg = 1, 2 defined in(122) and

measuring the time-correlation of the enevgfyt), Jj =1, 2. The departure from Gaussianity observed in the original system (solid line) are

well reproduced by both the stochastic model (dot-dashed line, top figures) and the reduced equations (dashed line, bottom figures). The dotte
lines are the predictions from the coupled truncated Burgers—Hopf system in the multiplicative case aldfig.f@#n
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time-correlation functions
C1(t) = (x1(t + 5)x1(5)), Ca(t) = (x2(t + 5)x2(s5)),

are shown irFigs. 24 and 25~or comparison, we also present the results for the multiplicative syst8ettbn 3.3

where all the additive interactions are set to zero. The agreement between the predictions of the original system in

(102)and both the stochastic mode[it26)and the reduced equationqit28)is very good. As in the multiplicative

case, the reduced equations (but not the stochastic model) miss the smooth start of the time-correlation functions but

they actually reproduce very well the long-time decay of these functions. After the short transient, the correlation

functions are very close to exponentials with decay rates givéalhie 11 Notice that these rates indicate that the

time-correlation functions decay faster in the combined than in the multiplicative case. This is due to the additional

damping produced by the linear Langevin terms representing the additive interaction terms in the original system.
We also computed the two-time fourth-order moments givd22)with the results presented iig. 26 Recall

that these quantities actually measure the time-correlation of the em%(rgyin mode;j = 1,2, andK; =1

for all times for a Gaussian process. In contrast, the original systefh2iB) produces significant departures

from Gaussianity of over 25%, which are reproduced well both by the stochastic mddé6yand the reduced

equations if(128). Here the multiplicative nature of the equationgi28)is again essential. Notice, however, that

these departures are lower than in the multiplicative case, indicating that the linear Langevin terms actually deplete

the non-Gaussian corrections in the process.

4. Concluding remarks

To recapitulate the highlights of this paper, we have shown that the stochastic modeling strategy proposed
in [5,6] is applicable to non-trivial test cases which display features of vastly more complex systems. It was
shown that a suitable stochastic modeling assumption on the original system gives a stochastic model which can
achieve very good stochastic consistency with the original dynamics. Besides, the range of parameters where such
stochastic consistency is observed can be determined a priori with consistent surprisingly large values of the coupling
coefficients. We have also shown that the reduced equations for the essential degrees of freedom which are obtainec
by suitable projection of the stochastic model quantitatively capture non-trivial statistical features of the original
dynamics, like the stationary distribution, or two-time statistical averages involving second and fourth moments.
The structure of the reduced equations is unusual since, besides linear Langevin terms of Orstein—Ulhenbeck type,
these equations may also involve nonlinear corrections in the essential modes and multiplicative noises. Yet, these
features proved to be crucial for an adequate description of the original dynamics by the reduced equations as
confirmed by the quantitative tests developed in this paper. As demonstrated here the reduced stochastic models are
quantitatively capable of approximating the original problem with many degrees of freedom with surprisingly large
values for the small parameter. We certainly hope that the techniques described here will be useful for stochastic
modeling in many problems of scientific and engineering interest.
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