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Abstract

Several a priori tests of a systematic stochastic mode reduction procedure recently devised by the authors [Proc. Natl. Acad.
Sci. 96 (1999) 14687; Commun. Pure Appl. Math. 54 (2001) 891] are developed here. In this procedure, reduced stochastic
equations for a smaller collections of resolved variables are derived systematically for complex nonlinear systems with many
degrees of freedom and a large collection of unresolved variables. While the above approach is mathematically rigorous in
the limit when the ratio of correlation times between the resolved and the unresolved variables is arbitrary small, it is shown
here on a systematic hierarchy of models that this ratio can be surprisingly big. Typically, the systematic reduced stochastic
modeling yields quantitatively realistic dynamics for ratios as large as 1/2. The examples studied here vary from instructive
stochastic triad models to prototype complex systems with many degrees of freedom utilizing the truncated Burgers–Hopf
equations as a nonlinear heat bath. Systematic quantitative tests for the stochastic modeling procedure are developed here
which involve the stationary distribution and the two-time correlations for the second and fourth moments including the
resolved variables and the energy in the resolved variables. In an important illustrative example presented here, the nonlinear
original system involves 102 degrees of freedom and the reduced stochastic model predicted by the theory for two resolved
variables involves both nonlinear interaction and multiplicative noises. Even for large value of the correlation time ratio of the
order of 1/2, the reduced stochastic model with two degrees of freedom captures the essentially nonlinear and non-Gaussian
statistics of the original nonlinear systems with 102 modes extremely well. Furthermore, it is shown here that the standard
regression fitting of the second-order correlations alone fails to reproduce the nonlinear stochastic dynamics in this example.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Despite the rapid improvement of computer performance, many problems of scientific and engineering interest
will not be amenable to direct numerical simulations in the foreseeable future. To list a few, the dynamics of
the coupled atmosphere/ocean system[1], the folding of a large protein in macromolecular dynamics[2], or the
epitaxial growth of a crystal in material science[3,4], each of these problems involves such a huge number of
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degrees of freedom interacting on so many different space–time-scales that they vastly overwhelm direct numerical
computations. On the other hand, while a complete description of the dynamics in these examples is impossible, it
is also not necessarily useful since one is typically interested only in a few more essential degrees of freedom in
the system which evolve slowly on the largest scales. In the above examples, these essential degrees of freedom
might be a few large scale telleconnection patterns in the atmosphere, a few angles describing large conformational
changes in the protein, or the position of a few steps edges on the crystal surface. There is therefore a real need for
modeling strategies able to provide closed simplified equations for the dynamics of essential degrees of freedom
alone by systematic elimination of all the other modes. Such a systematic mode elimination strategy was proposed
and developed in detail by the authors in[5,6] (for different approaches to this question, see, e.g.[7–10]). The aim
of the present work is to illustrate the method on a systematic family of non-trivial test cases which bear some of
the features of the motivating examples listed above and to asses their performance in regimes with large values of
the coupling parameters.

The mode elimination technique proposed in[5,6] is a two step procedure based on the assumption that the degrees
of freedom in the system under consideration have been split into a set of essential modes we wish to describe and
a set with all the other modes we wish to eliminate. The essential modes in the first set will be referred to as the
resolved ones, and the unessential modes in the other set as the unresolved ones. In the first step of the procedure,
the equations of motion for the unresolved modes are modified by representing the nonlinear self-interaction terms
between unresolved modes by stochastic terms. The motivation is that the self-interaction terms are responsible
for the sensitive dependence on small perturbations in the system on short time-scales and they can indeed be
represented adequately by stochastic terms if coarse-grained modeling on longer time-scales is the objective. In the
second step of the procedure, the equations of motion for the unresolved modes are then eliminated using standard
projection techniques for stochastic differential equations[11–14]. The elimination step is rigorous in the limit
where the stochastic terms are infinitely fast, corresponding to situations where the unresolved modes evolve much
faster than the resolved ones.

This mode elimination technique has two obvious advantages. First, the ad hoc simplification of the original
dynamics is made on the level of the equations for the unresolved modes and not the resolved ones. This is unlike
most modeling strategies found in the literature where one starts with the equations for the resolved modes, drops all
terms involving the unresolved modes in these equations, and replaces them by ad hoc stochastic terms, usually of
linear Langevin-type, with parameters obtained by regression fit (see the bibliography of[6] for several examples).
In contrast, our technique systematically gives the structure of the stochastic terms in the equations for the resolved
modes, and it was shown in[5,6] that this structure is surprisingly rich: nonlinear correction arise, linear Langevin
terms which can be both stabilizing or destabilizing, multiplicative noises, as well as the modification of such effects
through dispersion. The second advantage of the technique is its rigor in some appropriate limiting parameter range
which can be deduced a priori from the original equations. This provides a guideline for the applicability of the
method, which is also an important new feature.

In this paper, we shall illustrate both advantages of the approach on some non-trivial test cases which demonstrate
the feasibility and effectiveness of the method. At the same time, this will allow us to discuss some typical phenomena
we may expect for more general systems; they are related to the special structure of the reduced equations for the
resolved modes which is predicted.

In Section 2, we will first discuss simple triad systems. Triads have the generic nonlinear structure of any
larger system involving quadratic nonlinear interactions, and we will show that they fit into two types. The first
(studied inSection 2.1) will be referred to as the additive type and is such that the nonlinear interaction in the
equation for the (single) resolved mode involve two unresolved modes. In this case the reduced equations are linear
Langevin equations of Ornstein–Uhlenbeck type. The second type (studied inSection 2.2) will be refereed to as the
multiplicative type and is such that the nonlinear interaction in the equations for the (two) resolved modes involve
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one resolved and one unresolved modes. In this case the reduced equations contain nonlinear corrections in the
resolved modes as well as multiplicative noises, and these unusual features are shown to be crucial to reproduce
adequately the original dynamics. Beside discussing the phenomena in triad systems, we also show how to determine
explicitly the regime of validity of the mode elimination technique even though there is no small parameter explicit
in the original equations. The mode elimination technique turns out to be applicable on a surprisingly large range
of parameters which is a potentially important practical feature.

In the triad examples, we start with stochastic differential equations. Hence, these examples are void for the
stochastic modeling step in our technique. This step is illustrated and discussed in detail inSection 3where we
consider extensions of the truncated Burgers–Hopf system introduced in[15,16]by two of the authors. The truncated
Burgers–Hopf system is a purely deterministic system which displays features common with vastly more complicated
models such as the examples cited before and makes it an ideal test case for mode elimination technique. We use
extensions of the truncated Burgers–Hopf system where the original degrees of freedom in these equations, taken
as the unresolved ones, are coupled to one or two essential degrees of freedom. In these examples, the effectiveness
of the stochastic modeling step in our technique can be assessed in detail and we show that we can achieve very
good stochastic consistency between a suitable stochastic model and the original equations. A closed set of reduced
equations for the resolved modes alone is then obtained by suitable projection following the general strategy in[5,6].
As in the triad system, we consider extensions of the truncated Burgers–Hopf system in an additive (Section 3.2) and
a multiplicative (Section 3.3) settings. We also study an extension involving both types combined inSection 3.4.
We discuss in detail the phenomena described by the reduced equation and show that their specific structure is
essential to reproduce correctly non-trivial features of the original dynamics, including the stationary distribution
and two-time statistical moments of order up to 4. In fact, if the reader were to pick a single example in the paper
demonstrating the power of the methods developed in[5,6] as a preview, it should be the multiplicative one in
Section 3.3. In this example, there is only a moderate separation of time-scale between resolved and unresolved
modes. The stochastic model does an excellent job here, demonstrating almost complete stochastic consistency
with the original system both at the level of the resolved and the unresolved modes, even regarding tests involving
two-time fourth-order moments. The reduced equations obtained through mode elimination for only two resolved
modes out of the 102 modes in the original system also do very well. For instance, these reduced equations reproduce
the essentially nonlinear and non-Gaussian statistics of the original system extremely well. Furthermore, it is shown
there that a linear Langevin-type model based on standard regression fitting of the second-order correlations fails
to reproduce the nonlinear dynamics.

2. Elementary triad models

Triad systems where three modes interact through quadratic nonlinear interactions provide a nice simple test
case for our mode elimination strategy. The nonlinear coupling in triad systems is generic of nonlinear coupling
between any three modes in larger systems with quadratic nonlinearity[5,6]. In this section, we shall consider
the two generic cases where: (i) one of the three modes is identified as the resolved variable and the other two
as unresolved, and (ii) two of the modes are identified as resolved variables and the other one as unresolved. In
case (i), which we shall refer to as theadditive case, we will show that the reduced equation is a linear Langevin
equation of Ornstein–Uhlenbeck type which, surprisingly enough, can be both stable or unstable depending on
the parameters. In case (ii), which we shall refer to as themultiplicative case, the reduced equations involve
both nonlinear correcting terms and multiplicative noises. In this case, the stationary distribution for the system
(when it exists) is a quite complicated non-Gaussian distribution which will be exactly captured by the reduced
equations.
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In these examples we start from stochastic differential equations by adding appropriate forcing and damping
terms in the equations for the unresolved variables. As a result, these examples do not address the issue of stochastic
consistency but they clearly illustrate the main ideas behind the mode elimination theory as well as the role of the small
parameter,ε. Hereε is not explicit in the original equations but is identified through careful non-dimensionalization.
Numerical simulations show that the asymptotic theory is applicable and the solutions of the reduced equations and
the original triad equations agree quantitatively up toε ≈ 0.5.

2.1. Additive triad model

The additive triad model consists of one resolved mode,v1, and two unresolved modes,v2 andv3, satisfying

dv1

dt
= B1v2v3,

dv2

dt
= B2v1v3 − γ2v2 + σ2Ẇ2(t),

dv3

dt
= B3v1v2 − γ3v3 + σ3Ẇ3(t). (1)

We shall obtain a closed equation forv1 alone by suitable elimination ofv2, v3. As we will see, the reduced equation
for v1 is linear inv1 with an additive noise, i.e. it determines an Ornstein–Uhlenbeck process.

2.1.1. Stationary distribution
In order to apply the mode elimination strategy to(1) we first establish the order of magnitude of the

different terms in these equations. We do this by analyzing the stationary distribution for the dynamics in(1).
By non-dimensionalization we will then determineε in terms of the other parameters.

The Fokker–Planck operator associated with the Ornstein–Uhlenbeck part of the stochastic model (damping and
white-noise forcing only) in(1) annihilates exactly the Gaussian density distribution

p̄(v2, v3) = Z−1 exp

(
− γ2

σ 2
2

v2
2 − γ3

σ 2
3

v2
3

)
, (2)

where here and belowZ is a constant of normalization whose value may change from line to line. On the other
hand, the deterministic dynamics in(1) possess three Manley–Rowe relations as quadratic invariant:

M12 = B1v
2
2 − B2v

2
1, M13 = B1v

2
3 − B3v

2
1, M23 = B2v

2
3 − B3v

2
2. (3)

Any two quantities amongst those in(3) are linearly independent and the other one can be obtained as linear
combinations of these two. Under the additional assumption that the coupling constantsB1, B2, B3 satisfy

B1 + B2 + B3 = 0, (4)

the deterministic dynamics in(1) also conserves the energy

E = v2
1 + v2

2 + v2
3, (5)

which again can be expressed as a linear combination of two Manley–Rowe relations. Here, we consider the general
case where(4) is not necessarily satisfied.

Since the Manley–Rowe relations are conserved by the deterministic dynamics, it follows that the Liouville
operator associated with the quadratic nonlinear terms in(1) annihilates exactly any Gaussian distribution with a
density of the type

p(v1, v2, v3) = Z−1 exp(−β2M12 − β3M13). (6)

Hereβ1, β3 are arbitrary constants and for convenience we pickedM12, andM13 as the two primary Manley–Rowe
relations. In order that(6) be the unique stationary distribution for the full dynamics in(1) we must require the
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following two properties: (i)(6) must be consistent with(2), and (ii) (6) must be normalizable. Requirement (i) is∫
R p dv1 = p̄, and it is satisfied if

β2 = γ2

B1σ
2
2

, β3 = γ3

B1σ
2
3

. (7)

For requirement (ii), we use(7), and write(6) explicitly as

p(v1, v2, v3) = Z−1 exp

(
− v2

1

2C1
− v2

2

2C2
− v2

3

2C3

)
, (8)

where

C1 = − σ 2
2σ

2
3B1

2γ2γ3(B2γ2σ
2
3 + B3γ3σ

2
2 )
, C2 = σ 2

2

2γ2
, C3 = σ 2

3

2γ3
. (9)

(C1 can also be written asC1 = −B1C2C3/(B2C3 + B3C2).) The quantitiesC1, C2, andC3 are the respective
variances of the modesv1, v2, andv3 computed with the measure associated with(8), and requirement (ii) is satisfied
if and only if

C1 > 0. (10)

It is clear from(9) that (10) is not always satisfied. ForC1 ≤ 0, (8) cannot be the stationary distribution for the
dynamics in(1) and, in fact, our analysis suggests that there is no stationary distribution in this case (note that we
can haveC1 ≤ 0 even if(4) is satisfied, i.e. even if the deterministic dynamics in(1) conserves the energy(5)). The
non-existence of a stationary distribution for the dynamics in(1) for suitableB1, B2, andB3 means that in such
regimes the backscatter of energy from modev1 to modesv2 andv3 where the dissipation occurs is insufficient,
and the variance of modev1 then increases without bound. Both the existence of a stationary distribution with the
Gaussian density in(8) if C1 > 0 and the non-existence of a stationary distribution ifC1 ≤ 0 were confirmed
numerically. InFig. 1 the Gaussian density for modev1 alone obtained by projection of(8) is compared to the
density obtained from numerical simulations for a typical value of the parameters such thatC1 > 0. The agreement
is excellent. (Note that inFig. 1 and elsewhere in this paper, a logarithmic scale is utilized in plotting probability
density functions.)Fig. 2 shows the unaveragedv1(t) for a typical value of the parameters such thatC1 < 0. As
expectedv1(t) grows unboundedly in time. Let us point out finally that the reduced equation forv1 obtained below
by mode elimination leads to the correct Gaussian density ifC1 > 0 and confirms the non-existence of a stationary
distribution forC1 ≤ 0.

2.1.2. Non-dimensionalization and determination of ε
Unless explicitly stated otherwise from now on we focus on the situation where stationary distribution exists,

i.e.C1 > 0. We also focus on the statistical equilibrium solution of the equations in(1) where the memory of the
initial conditions is lost. We shall non-dimensionalize the equations in(1) in such a way that the small parameterε

necessary for the mode elimination procedure enters the equations and is explicitly determined in terms of the other
parameters. We proceed in two steps. First we normalize the modesvj by the square-root of their variance, i.e. we
substitute

vj → √
Cjvj , j = 1,2,3. (11)

In terms of the new variables the equations in(1) become

dv1

dt
= b1v2v3,

dv2

dt
= b2v1v3 − γ2v2 +

√
2γ2Ẇ2(t),

dv3

dt
= b3v1v2 − γ3v3 +

√
2γ3Ẇ3(t), (12)
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Fig. 1. Additive triad system. The Gaussian density in(8) compared with the density obtained from numerical simulations forC1 > 0.

where

b1 = B1

√
C2C3√
C1

, b2 = B2

√
C1C3√
C2

, b3 = B3

√
C1C2√
C3

. (13)

It can be checked by direct verification that

b1 + b2 + b3 = 0. (14)

By construction all the dependent variablesvj in (12) are in average of order 1. To proceed further we now
renormalize time in such a way that the nonlinear terms in(12) are of order 1, i.e. we substitute (using(14) to
representb1 = −b2 − b3)

t → t

b
, b = max(|b2 + b3|, |b2|, |b3|). (15)

Using the new time variable(15) and assuming without loss of generality thatγ2 ≥ γ3 (for γ2 < γ3 relabel modes
v2, v3), (12)becomes

dv1

dt
= b̄1v2v3,

dv2

dt
= b̄2v1v3 − 1

εδ
v2 +

√
2

εδ
Ẇ2(t),

dv3

dt
= b̄3v1v2 − 1

ε
v3 +

√
2

ε
Ẇ3(t), (16)

where we define

b̄j = bj

b
, j = 1,2,3, δ = γ3

γ2
∈ (0,1], ε = b

γ3
. (17)
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Fig. 2. Additive triad system. The unaveraged processv1(t) for a situation withC1 < 0 where there is no stationary distribution: the process
grows unboundedly in time.

Since all terms but the damping and forcing terms in(16) are on the average of order 1,ε as defined above is the
correct parameter which need to be small for mode elimination. The role ofε in terms of time-scales of the modes
v1, v2, andv3 will be explained in the next section. More explicitly,ε is

ε = γ−1
3 max

(
|B1|

√
C2C3√
C1

, |B2|
√
C1C3√
C1

, |B3|
√
C1C2√
C3

)
, (18)

where theCj ’s are given by(9).
In the remainder of this section, we may work with the dimensionless equations in(16) unless explicitly stated

otherwise. At statistical equilibrium the solutions of(16)define a three-parameter family,(b̄2, b̄3, δ, ε), with either
b̄2 or b̄3 or b̄2 + b̄3 equal to±1 by construction, the other two taking values in [−1,1], δ ∈ (0,1], andε > 0
arbitrary. Notice that the stationary distribution for(16) is a product of standard Gaussians with zero mean and unit
variance. (Recall that(16) make sense only if a stationary distribution for the original equations in(1) exists, i.e.
if (10) is satisfied, since otherwise we cannot change variables as in(11).) Of course, the two-time statistics of the
process defined by(16) is still undetermined; next we study it by mode elimination.

2.1.3. Mode elimination
The detailed calculations for mode elimination in general systems with quadratic nonlinearity have been presented

elsewhere[6]. The method is rigorously justified ifε in (18) is much smaller than 1. The rangeε � 1 actually
corresponds to situations where the maximum between the time-scales of the modesv2 andv3 is much smaller than
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the time-scale ofv1. This can be checked upon noting that to leading order inε � 1, (16)gives at statistical steady
state

〈v2(t + s)v2(s)〉 = e−|t |/εδ, 〈v3(t + s)v3(s)〉 = e−|t |/ε, (19)

whereas the time-correlation function forv1 will decay on a time-scale of the order ofε−1 (see(24)). Here we will
see if the predictions of the theory can be utilized for large values ofε like ε = 0.5.

To leading order inε, the mode elimination procedure (see[6]) gives the following equation forv1 alone:

dv1

dt
= −εγ v1 +

√
2εσẆ(t), (20)

where

γ = σ 2 = (b̄2 + b̄3)
2

1 + δ−1
. (21)

Note that coarse-graining time ast → t/ε as in[6] amounts to settingε = 1 in (20). In fact, the theorem used to
obtain(20) states that the solution of this equation converges to solution of the first equation in(16) for v1 in the
limit as ε → 0 on the coarse-grained time-scalet/ε.

It is also interesting to consider(20) in the original variables

dv1

dt
= −γ ′v1 + σ ′Ẇ (t), (22)

where

γ ′ = − B1

(γ2 + γ3)

(
B3σ

2
2

γ2
+ B2σ

2
3

γ3

)
, σ ′ = σ2σ3|B1|√

2γ2γ3(γ2 + γ3)
. (23)

The Ornstein–Uhlenbeck process defined by(22) has a statistical steady state if and only ifγ ′ > 0, which is
equivalent to the constraint in(10). If this criterion is satisfied, the stationary distribution for the process in(22) is
consistent with(8), and it reduces to the standard Gaussian for the non-dimensionalized process defined by(20)
sinceσ 2/γ = 1 from (21). For γ ′ < 0, the unresolved modesv2, v3 actually pump energy inv1. In fact, in the
unstable case, the estimate in(18) is valid provided that one replaces the variancesCj computed on the stationary
distribution by the instantaneous variances of the modes. Of course, in this case,ε becomes time dependent as well
and it can be checked from(18) thatε grows as the variance ofv1(t) grows. If theε computed by replacing theCj

by the initial conditionsv2
j (0) is small, the solution of(22) is a good approximation of the actualv1 solution of(1)

locally in time, but(22)eventually fails whenε becomes greater than 1.

2.1.4. Numerical simulations
We now compare the time-correlation function for the slow modev1 predicted from(20),

〈v1(t + s)v1(s)〉 = e−εγ |t | (24)

with the results of numerical integrations of the non-dimensional form of the triad equations in(16). We perform
the simulations with

b̄1 = −0.75, b̄2 = −0.25, b̄3 = 1, δ = 0.75 (25)

for which the constraint in(10)for existence of the stationary distribution is satisfied andγ = 0.24107, and consider
four values ofε

ε = 0.125,0.25,0.5,1. (26)
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To integrate the triad equations in(16)we use time-splitting and utilize a second-order Runge–Kutta algorithm for
the nonlinear coupling terms and the “exact solution” formula for the damping and forcing terms. The exact solution
formula is the discrete analog of the integral representation of the exact solution of the Ornstein–Uhlenbeck process

dx

dt
= −γ x + σẆ(t),

and is given by

x(t + �t) = e−γ�tx(t) + ση�t (t),

where theη�t (t)’s are independent Gaussian random variables with mean zero and variance

〈η2
�t (t)〉 = 1 − e−2γ�t

2γ
.

Finally, the statistics here and elsewhere are computed using time-averaging since the underlying stochastic model
is ergodic.

The time-correlation function for the slow mode,v1, is presented inFig. 3together with analytical prediction in
(24). The same is presented inFig. 4in logarithmic scale. The agreement is excellent forε = 0.125, 0.25, 0.5, though
(24) decays always faster than the actual time-correlation function forv1. For ε = 1, though the time-correlation
function forv1 remains exponential, the discrepancy in correlation time is more than 30%. This is of course natural
since we cannot expect the asymptotic procedure to work for all values ofε.

Fig. 3. Additive triad system. Time-correlation function of the resolved modev1. Solid line: prediction from mode elimination(20); dashed line:
ε = 0.125; dot-dashed line:ε = 0.25; dotted line:ε = 0.5; dotted-plus line:ε = 1.
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Fig. 4. Additive triad system. Same as inFig. 3 in logarithmic scale.

We also tested higher order statistics of the modev1 using the following two-time four-order moment:

K1(t) = 〈v2
1(t + s)v2

1(s)〉
〈v2

1〉2 + 2〈v1(t + s)v1(s)〉2
. (27)

This statistical quantity is very natural since it measures how much the “energy”v2
1(t) correlates with itself at later

time. The reduced equation in(20)predicts that the process is Gaussian, which implies thatK1(t) = 1 for all time.
The quantityK1(t) is plotted inFig. 5 for four values ofε. For ε = 0.125, 0.25 the process is fairly Gaussian,
but as the value ofε increased we observe departure from Gaussianity not captured by(20). At the large value of
ε = 0.5 the peak departure is still below 10%, but it exceeds 20% forε = 1. It should be pointed out that later
on inSection 2.2about multiplicative triad systems (and then again inSections 3.3 and 3.4for systems with many
degrees of freedom) we will observe systematic departure from Gaussianity even at smallε which are correctly
captured by the reduced equations. In fact,Fig. 5should be compared withFig. 12(the vertical scales are identical
on these two figures).

2.2. Multiplicative triad model

The multiplicative triad model consists of two resolved modes,v1 andv2, and one unresolved mode,v3, satisfying
(compare(1))

dv1

dt
= B1v2v3,

dv2

dt
= B2v1v3,

dv3

dt
= B3v1v2 − γ3v3 + σ3Ẇ3(t). (28)
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Fig. 5. Additive triad system. The two-time fourth-order momentK1(t) defined in(27). Dashed line:ε = 0.125; dot-dashed line:ε = 0.25;
dotted line:ε = 0.5; dotted-plus line:ε = 1. The reduced equation in(20)predicts a Gaussianv1(t) for whichK1(t) = 1.

A closed set of equations forv1 andv2 alone will be obtained by elimination ofv3 in the appropriate limit. Since
the right-hand sides of the equations forv1 andv2 in (28) contain the productsv1v3 andv2v3, we can expect that
the equation forv1 andv2 obtained by mode elimination will contain nonlinear corrections as well as multiplicative
noises. Below, we confirm this intuition.

2.2.1. Stationary distribution
We proceed as in the additive case and first evaluate the order of magnitude of the different terms in(28) on

the stationary distribution associated with these equations. This will again allow for non-dimensionalization of the
equations and will give usε in terms of the other parameters.

The important difference with the additive case which will actually lead to interesting new phenomena is that the
Manley–Rowe relation

M12 = B1v
2
2 − B2v

2
1, (29)

is conserved by the full dynamics (i.e. with damping and forcing onv3 included) in(28). Denote byM0
12 the initial

value ofM12. Conservation of(29) implies thatv1 andv2 move either on the ellipseB1v
2
2 − B2v

2
1 = M0

12 if
B1B2 < 0, or on the hyperbolaB1v

2
2 − B2v

2
1 = M0

12 if B1B2 > 0. In the latter case the motion is also restricted
on one branch of the hyperbola, since the sign ofv1 is conserved ifB1M

0
12 > 0, while the sign ofv2 is conserved

if B1M
0
12 < 0. Combining all this we deduce that the following density is conserved by the Liouville operator
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associated with the quadratic nonlinear terms in(28):

p(v1, v2, v3) = Z−1 exp(−βM13)δ(M12 − M0
12)G(v1, v2), (30)

where

G(v1, v2) = ((B1B2)− + (B1B2)+((B1M
0
12)+H(v1v

0
1) + (B1M

0
12)−H(v2v

0
2))). (31)

Herev0
1 = v1(0) andv0

2 = v2(0) are the initial conditions for the first two equations in(28), β is an arbitrary
constant,δ(·) the Dirac distribution,H(·) the Heaviside distribution,(z)+ = max(z,0), (z)− = min(z,0), and we
pickedM13 as the additional primary Manley–Rowe relation besidesM12 for (32). In (32), the Dirac distribution
concentrates the measure on the set where the Manley–Rowe relation in(29) has fixed value. The functionG is
unity if this set (projected on any planev3 = cst) is an ellipse, and simply picks the correct branch if this set is a
hyperbola. The density in(30) is explicitly

p(v1, v2, v3) = Z−1 exp(−β(B1v
2
3 − B3v

2
1))δ(B1v

2
2 − B2v

2
1 − M0

12)G(v1, v2), (32)

and it will be the stationary distribution for the dynamics in(28) if: (i) it can be made consistent for someβ with
the Gaussian density annihilated by the Fokker–Planck operator associated with the Ornstein–Uhlenbeck part of
the dynamics forv3

p̄(v3) = Z−1 exp

(
− γ3

σ 2
3

v2
3

)
, (33)

and (ii) it is normalizable. Consistency is achieved by taking

β = γ3

B1σ
2
3

, (34)

which leads to

p(v1, v2, v3) = Z−1 exp

(
− γ3

σ 2
3

v2
3 + γ3

σ 2
3

B3

B1
v2

1

)
δ(B1v

2
2 − B2v

2
1 − M0

12)G(v1, v2). (35)

Note that the factorγ3B3v
2
1/σ

2
3B1 can also be written asγ3B3v

2
2/σ

2
3B2 using the Dirac distribution, which shows

that (35) is symmetric in the indices 1 and 2 as it should be. Concerning normalizability of(35), if the Dirac
distribution picks an ellipse in the space(v1, v2), i.e. if B1B2 < 0, then(35) is obviously normalizable since it is
concentrated on a finite curve in any planev3 = cst. On the other hand, if the Dirac distribution picks a hyperbola in
the space(v1, v2), i.e. ifB1B2 > 0, then normalizability requires that the coefficient in front ofv2

1 in the exponential
in (35) is negative, i.e. we must haveB1B3 < 0. On the other hand, ifB1B2 > 0 andB1B3 > 0 (i.e. all threeBj

have the same sign),(35) is not normalizable and our analysis suggests that there is no stationary distribution in this
case. This was confirmed numerically (seeFig. 10). It is interesting to note that this cannot happen if the energy in
(5) is conserved since the constraint in(4) then precludes that all theBj ’s have the same sign. Thus, a stationary
distribution always exists if the energy is conserved.

Unlike in the additive case, the stationary distribution associated with(28)is not unique. Indeed, the Manley–Rowe
relation(29)(as well as the sign ofv0

1 or v0
2) is information about the initial conditions which is never lost and picks

exactly one amongst a family of possible stationary distributions with densities in(35) for the process defined by
(28).
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We checked the density in(35)by computing numerically the reduced densities for modesv1 andv2 and comparing
these results with the actual reduced densities obtained by integration of(35)

p(v1) = Z−1 exp

(
γ3

σ 2
3

B3

B1
v2

1

)
H(B1B2v

2
1 + B1M

0
12)√

B1B2v
2
1 + B1M

0
12

G1(v1),

p(v2) = Z−1 exp

(
γ3

σ 2
3

B3

B2
v2

2

)
H(B1B2v

2
2 − B2M

0
12)√

B1B2v
2
2 − B2M

0
12

G2(v2), (36)

where

G1(v1) = (B1B2)− + (B1B2)+((B1M
0
12)− + (B1M

0
12)+H(v1v

0
1)),

G2(v2) = (B1B2)− + (B1B2)+((B1M
0
12)+ + (B1M

0
12)−H(v2v

0
2)). (37)

As can be seen inFigs. 6 and 7for a typical situation whereB1B2 < 0 (motion restricted to an ellipse) and in
Figs. 8 and 9for a typical situation whereB1B2 > 0 (motion restricted to a hyperbola), the numerical results are in
excellent agreement with the theoretical predictions in(36). Finally, Fig. 10shows the unaveragedv1(t) andv2(t)

for a typical situation where the stationary distribution does not exist: as expected, they grow unbounded in time.
Reproducing the density in(35) (projected on the space(v1, v2), which amounts to settingv3 = 0 in (35)) with

the closed set of equations forv1 andv2 obtained by mode elimination is a severe test for any such mode elimination

Fig. 6. Multiplicative triad system. Probability density forv1 in (36)compared with the density obtained from numerical simulations forB1B2 < 0
(motion on an ellipse).
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Fig. 7. Multiplicative triad system. Probability density forv2 in (36)compared with the density obtained from numerical simulations forB1B2 < 0
(motion on an ellipse).

procedure. We shall show below that the stationary distribution for the reduced equations forv1 andv2 which we
obtain rigorously by the systematic procedure in[6] has a density given exactly by(35) (projected on the space
(v1, v2)).

2.2.2. Non-dimensionalization and determination of ε
We now non-dimensionalize the equations in(28) and determine explicitlyε in terms of the other parameters.

Throughout this section we assume that a stationary distribution for(28)exists, i.e.(35) is normalizable. We could
proceed as in the additive case and normalize all the modes according to their root mean square computed from

Cj =
∫

R3
v2
j p(v1, v2, v3)dv1 dv2 dv3, j = 1,2,3. (38)

The problem with this procedure is that, though convenient numerically, it leads to unpleasant analytical formulae
because the second moments of the densities in(36) have rather involved expressions. For simplicity, we shall
slightly modify the procedure in such a way that the parameterε appearing in the non-dimensional equations
obtained below is always an upper bound for the actualε which would be obtained by normalizing the modes by
their exact root mean squares (the actualε is in fact given by(18)with theCj ’s computed from(38)). For modev3,
we simply use its variance, i.e. we substitute

v3 →
√
C3v3, C3 = σ 2

3

2γ3
. (39)
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Fig. 8. Multiplicative triad system. Probability density forv1 in (36)compared with the density obtained from numerical simulations forB1B2 > 0
(motion on one branch of a hyperbola).

For modesv1, v2, we always substitute

v1 →
√
C1v1, v2 →

√
C2v2, (40)

but we use differentC1, C2 if the motion is restricted to an ellipse or to a hyperbola. In the case of an ellipse, i.e. if
B1B2 < 0, we simply take the tips of the ellipse as normalizing factors, i.e. we use

C1 = |M0
12|

|B2| , C2 = |M0
12|

|B1| if B1B2 < 0. (41)

The exponential factors in(36) might actually restrictv1(t), v2(t) to some portion of the ellipse, but obviously
C1 andC2 boundv2

1(t) andv2
2(t) for all times. In the case of a hyperbola, i.e. ifB1B2 > 0, we use the variance

computed from the Gaussian densities in(36)alone, but we add the square value of the tip of the hyperbola for the
mode whose motion is restricted to the right or left of that tip. Thus, we use

C1 = |B3|σ 2
3

2|B1|γ3
+ |M0

12|
|B2| , C2 = |B3|σ 2

3

2|B2|γ3
if B1B2 > 0 and B1M

0
12 < 0, (42)

or

C1 = |B3|σ 2
3

2|B1|γ3
, C2 = |B3|σ 2

3

2|B2|γ3
+ |M0

12|
|B1| if B1B2 > 0 and B1M

0
12 > 0. (43)
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Fig. 9. Multiplicative triad system. Probability density forv2 in (36)compared with the density obtained from numerical simulations forB1B2 > 0
(motion on one branch of a hyperbola).

Again, on the average theseC1,C2 overestimate the dynamical values forv2
1(t), v

2
2(t). In terms of the new variables,

the system in(28)becomes

dv1

dt
= b1v2v3,

dv2

dt
= b2v1v3,

dv3

dt
= b3v1v2 − γ3v3 +

√
2γ3Ẇ3(t), (44)

where thebj ’s are defined as in(13) with theCj ’s given above (meaning that they do not satisfy(14) in general).
By construction all the dependent variablesvj in (44) are of order 1 or smaller. Next, we renormalize time as in
(15), i.e. we substitute

t → t

b
, b = max(|b1|, |b2|, |b3|). (45)

The system in(44) then becomes

dv1

dt
= b̄1v2v3,

dv2

dt
= b̄2v1v3,

dv3

dt
= b̄3v1v2 − 1

ε
v3 +

√
2

ε
Ẇ3(t), (46)

where we define

b̄j = bj

b
, j = 1,2,3, ε = b

γ3
. (47)

Since the three linear terms in(46) are of order 1 or smaller, we can conclude that the parameterε entering(46)
is an upper bound for the parameter which must be small for mode elimination. A more explicit expression forε
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Fig. 10. Multiplicative triad system. The unaveraged processesv1(t), v2(t) in a situation withB1B2 > 0, B1B3 > 0 where no stationary
distribution exists. Both processes grow unboundedly very fast in time.

is given in(18) with theCj ’s given by(39), (41) and (42)or (43). The only additional difficulty with(46) is that
the change of variable leading to this non-dimensional system of equations also depends of the initial condition
through the values ofM0

12 and sgn(v0
1) or sgn(v0

2). Consistency with(28) thus leads to some additional constraint
on the initial condition for(46) which can be satisfied, e.g. by taking the initial condition for(46) at the tips of the
ellipse or the hyperbola on which the motion ofv1, v2 is restricted, i.e.

v0
1= 1, v0

2 = 0 if B1B2 < 0, v0
1 =

(
1 + |B3B2|σ 2

3

2|B1M
0
12|

)−1/2

, v0
2= 0 if B1B2 > 0 and B1M

0
12 < 0,

v0
1 = 0, v0

2 =
(

1 + |B3B1|σ 2
3

2|B2M
0
12|

)−1/2

if B1B2 > 0 and B1M
0
12 > 0. (48)

From now on we work with(46)unless explicitly stated otherwise. The initial condition for(46)can be taken as

v0
1 = 1, v0

2 = 0 if b̄1b̄2 < 0, v0
1 = δ, v0

2 = 0 if b̄1b̄2 > 0 and b̄1 > 0,

v0
1 = 0, v0

2 = δ if b̄1b̄2 > 0 and b̄1 < 0 (49)

with δ ∈ [−1,1], and the solution of(46) with the initial condition in(49) defines a four parameter family,
(b̄1, b̄2, b̄3, ε), on the ellipses, and a five parameter family,(b̄1, b̄2, b̄3, ε, δ), on the hyperbola. Here recall that one
of the b̄j is ±1 by construction, the other two take values in [−1,1], δ ∈ (0,1], andε > 0 is arbitrary.
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2.2.3. Mode elimination
As explained in the additive triad case, the method for mode elimination in[6] applies rigorously ifε � 1. Here,

it corresponds to situations where the time-scale of the modev3 is much smaller than the time-scales of the modes
v1, v2, since at statistical steady state(46)gives to leading order inε � 1

〈v3(t + s)v3(s)〉 = e−|t |/ε, (50)

whereas the time-correlation functions forv1, v2 will decay on a time-scale of the order ofε−1 (see(52)).
As extensively developed in[6] by the authors, the mode elimination procedure is actually simpler in the multi-

plicative triad case because the equation forv3 in (16)can be solved explicitly as

v3(t) = v0
3 e−t/ε + b̄3

∫ t

0
e−(t−s)/εv1(s)v2(s)ds +

√
2

ε

∫ t

0
e−(t−s)/ε dW3(s). (51)

Inserting this expression in the equations forv1, v2 in (46)and performing asymptotic expansion inε � 1 gives to
leading order the following equations forv1, v2 alone:

dv1

dt
= εb̄1b̄2v1 + εb̄3b̄1v

2
2v1 +

√
2εb̄1v2Ẇ (t),

dv2

dt
= εb̄1b̄2v2 + εb̄3b̄2v

2
1v2 +

√
2εb̄2v1Ẇ (t). (52)

The initial condition for these equations is given in(49). Coarse-graining time ast → t/ε in this equation amounts
to settingε = 1, and in fact the solution of(52)converges to the solution of the first two equations in(46)asε → 0
in the coarse-grained time-scalet/ε.

In the original variables,(52) reads

dv1

dt
= σ 2

3B1B2

γ 2
3

v1 + B1B3

γ3
v2

2v1 + σ3B1

γ3
v2Ẇ (t),

dv2

dt
= σ 2

3B1B2

γ 2
3

v2 + B2B3

γ3
v2

1v2+ σ3B2

γ3
v1Ẇ (t). (53)

These equations conserve the Manley–Rowe relationM12, (29), in each realization. (Thus,(53) could be further
reduced into a single equation forv1, say, by using the constraintM12 = M0

12.) Furthermore, it can be checked
by direct verification that the density in(35) projected in the(v1, v2) is the density of the stationary distribution
associated with(52). Thus, we have full consistency between the original triad system in(28) and (46)and the
reduced equations in(52) and (53). As in the additive case, if the parameters are such that there is no stationary
distribution for the dynamics in(28), then(53) remains valid locally in time provided that the initialε is small
enough.

2.2.4. Numerical simulations
We now compare the statistics of the slow modesv1 andv2 predicted either from(52)or from the non-dimensional

form of the triad equations in(46). Since the solution of the reduced equations in(52) is not available, we use
numerical methods for both the equations in(28) and (52). We perform the simulations with

b̄1 = 0.4384, b̄2 = 0.5616, b̄3 = −1, δ = 0.7254 (54)

for the more difficult case in which the motion is restricted on a hyperbola and the stationary distribution exists, and
consider four values ofε:

ε = 0.1,0.2,0.4,1. (55)

The triad equations in(28) are integrated as in the additive case. The reduced equations for thev1 andv2 in (52)
are integrated by a split step algorithm utilizing the combination of the fourth-order Runge–Kutta algorithm and
the “exact solution” formula for the multiplicative noise part of the equations. The exact solution of the stochastic
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Fig. 11. Multiplicative triad system. Comparison of the correlation functions forv1 andv2 for the multiplicative triad equations in(46) and the
reduced equations in(52) with different values ofε. Solid line: reduced equations; dashed line:ε = 0.1; dot-dashed line:ε = 0.2; dotted line:
ε = 0.4; dotted-plus line:ε = 1.

part for the right-hand side of(52) can be obtained in closed form as an integral over white-noise (see[17]).
Similar to the Ornstein–Uhlenbeck process discussed earlier, the numerical scheme for the stochastic terms is
a suitable discretization of the exact solution formula. Statistics are obtained by time-averaging in this ergodic
system.

In Fig. 11, we first compare the time-correlation functions of(v1, v2) predicted either from(28) and (52). We
obtain excellent agreement between the predictions of the triad equations and effective equations for all values of
ε includingε = 0.4, except for the very large valueε = 1.

We also checked higher order statistics of the resolved modesv1, v2. For simplicity we focus on modev2 which,
unlikev1, has zero mean for the range of parameter which we consider. As in the additive case, we used

K2(t) = 〈v2
2(t + s)v2

2(s)〉
〈v2

2〉2 + 2〈v2(t + s)v2(t)〉2
, (56)

which represents how the energy in modev2 correlated with itself. From the densities in(36) we know that the
process is already non-Gaussian on the stationary distribution (one-time statistics), i.e.K2(0) �= 1. The results
presented inFig. 12show that the departure from Gaussianity is even more pronounced for two times averaged
quantities such asK2(t) for t > 0. The reduced equations in(46) reproduce this non-Gaussian behavior very
accurately for all values ofε, exceptε = 1. It should be stressed that it is essential that the reduced equations in
(52) are of multiplicative type in order to reproduce such departure from Gaussianity. In particular, itcannot be
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Fig. 12. Multiplicative triad system. The two-time fourth-order momentK2(t) defined in(56). Solid line: reduced equations; dashed line:ε = 0.1;
dot-dashed line:ε = 0.2; dotted line:ε = 0.4; dotted-plus line:ε = 1.

reproduced by a linear Langevin equation of Ornstein–Uhlenbeck type (compareFigs. 5 and 12) which is the form
assumed in a posteriori regression fitting procedures of the second-order correlations inFig. 11.

3. Stochastic modeling in systems with many degrees of freedom

The truncated Burgers–Hopf system was introduced in[15,16]by two of the authors as a simple test model for
various statistical theories and stochastic modeling procedures. The truncated Burgers–Hopf system is defined by
the following system of nonlinear ordinary differential equations for the complex modesûk, satisfyingû∗

k = û−k:

dûk
dt

= − ik

2

∑
k+p+q=0
|p|,|q|≤Λ

û∗
pû

∗
q, 1 ≤ k ≤ Λ, Λ ∈ N. (57)

The truncated Burgers–Hopf system displays features in common with vastly more complicated systems: it is
deterministic but chaotic and mixing, it is ergodic on suitably defined equi-energy surfaces, and the time correlations
for the various degrees of freedom are different but obey a simple scaling law. These properties make the truncated
Burgers–Hopf system an ideal candidate for a stochastic heat bath.

In this paper we consider a simple extension of the truncated Burgers–Hopf system obtained by coupling the
equations in(57) to one or two additional modes. The coupled truncated Burgers–Hopf system is constructed in
such a way that there is a free parameter in the problem which controls the time-scale for the additional modes.
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The coupling can also be adjusted in various ways so that the nonlinear interaction between the additional modes
and the Burgers bath be of additive type, multiplicative type, or both types at once. Here we use the terminology
introduced for the triad systems. In this way the coupled truncated Burgers–Hopf system provides a simple but
highly non-trivial test case for the mode elimination procedure developed in[5,6] which yields a closed system of
equations for the additional modes alone.

After recalling the main properties of the system in(57)we shall investigate the coupled truncated Burgers–Hopf
system in various settings. First, inSection 3.2, we shall consider a coupled system with one additional mode
for which the reduced equation is of additive type. InSection 3.2we discuss in detail our stochastic modeling
assumption, which leads us to the issue of stochastic consistency. In particular, we show how to determine the
various parameters entering the stochastic model. We also give both an empirical and an a priori criterion to
quantify the mode elimination procedure (i.e. we obtain what is the appropriateε for the model). These results are
used inSections 3.3 and 3.4where we discuss the coupled truncated Burgers–Hopf system in two different settings,
one of multiplicative type and one which combines both additive and multiplicative types.

3.1. The truncated Burgers–Hopf system

The model is defined as a finite-dimensional Fourier Galerkin truncation of the inviscid Burgers–Hopf equations
on the periodic [0,2π ] domain

(uΛ)t + 1
2PΛ(u

2
Λ)x = 0, (58)

wherePΛ, Λ ∈ N, is the projection operator in Fourier space

PΛf (x) = fΛ(x) =
∑
k≤Λ

f̂k eikx, f̂k = 1

2π

∫ 2π

0
f (x)e−ikx dx. (59)

In terms of the Fourier modeŝuk,

uΛ(x) =
∑
k≤Λ

ûk eikx, (60)

the equations in(58)reduce to(57). The equations in(57)satisfy the Liouville property and conserve the momentum

M = 1

2π

∫ 2π

0
uΛ dx = û0, (61)

and the energy

E = 1

4π

∫ 2π

0
u2
Λ dx = 1

2
|û0|2 +

Λ∑
k=1

|ûk|2. (62)

The momentum constraint is trivial and without loss of generality we consider solutions withM = û0 = 0. In
addition to the conserved quantities in(61) and (62)the discrete analog

H =
∫ 2π

0
u3
Λ dx, (63)

is also conserved[16,18]. For a typical initial condition,H ≈ 0 for largeΛ by the central limit theorem. As a
result the conservation ofH does not affect the statistical behavior of the solutions for most initial data ifΛ is large
enough (for a precise discussion of this issue, see[18]).
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The Liouville property together with the conservation of energy implies that the canonical Gibbs measure with
density

pβ = Z−1 exp

(
−β

Λ∑
k=1

|uk|2
)
, β > 0 (64)

is a stationary distribution for the dynamics in(57). In fact, the numerical results reported in[15,16] suggest that
the Gibbs measure is the appropriate (at fixedβ) stationary distribution for(57), at least for large enough values of
Λ such asΛ = 50 utilized here, with a very fast convergence inΛ. More precisely, for almost all initial conditions,
the dynamics in(57)will eventually span(64) in the sense that

1

T

∫ T

0
f (yi1(t), zi1(t), . . . , yi′Λ(t), zi

′
Λ
(t))dt ≈

∫
R2Λ

f (yi1, zi1, . . . , yi′Λ, zi
′
Λ
)pβ dy1 dz1, . . . ,dyΛ dzΛ,

(65)

whereûk = yk + izk, and{yi1, zi1, . . . , yi′Λ, zi′Λ} is an arbitrary subset of the original variables withΛ′ � Λ. For a
given valueE0 of the energy in(62)computed from the initial conditions,β is given by

β = Λ

E0
. (66)

Thus, the canonical Gibbs measure predicts equipartition of energy among all modes 1≤ k ≤ Λ with

cov(ûk) = β−1 = E0

Λ
. (67)

These statistical predictions were confirmed in[15,16] with surprising accuracy. Furthermore, the model in(57)
has a very high rate of mixing and achieves the statistical steady state rather quickly.

A simple dimensional argument for the decorrelation rate of the modesûk(t) was also presented and confirmed
numerically in[15,16]. Under the assumption that the energy per mode,E0/Λ = β−1, with units length2/time2,
and the wavenumber,k, with units length−1, are the only relevant dimensional parameters for modek, it follows
that this mode must decorrelate on a time-scale proportional to the eddy turnover time defined as

Tk = C0
√
β

k
, 1 ≤ k ≤ Λ, (68)

whereC0 is a universal constant of proportionality independent ofβ andk. Thus, we expect∫ ∞

0
〈ûk(t + s)û∗

k(s)〉 dt = β−1Tk = C0

k
√
β
. (69)

The numerical experiments[15,16]confirm the scaling in(69), with a constant of proportionality,C0, only weakly
dependent on the size of the truncation,Λ. It was observed that, to numerical accuracy, the correlation functions
for the real and imaginary parts ofûk, yk = Reûk, andzk = Im ûk, are equal

〈yk(t + s)yk(s)〉 = 〈zk(t + s)zk(s)〉, (70)

while the cross-correlation functions betweenyk andzk are zero,

〈yk(t + s)zk(s)〉 = 0. (71)
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3.2. Coupled truncated Burgers–Hopf system with one additional mode: additive case

Now we shall consider the following extension of the truncated Burgers–Hopf system (1≤ k, |p|, |q| ≤ Λ):

dx1

dt
= λ

∑
k

b
1|yz
k ykzk,

dyk
dt

= −Re
ik

2

∑
p+q+k=0

û∗
pû

∗
q + λb

y|1z
k x1zk,

dzk
dt

= −Im
ik

2

∑
p+q+k=0

û∗
pû

∗
q + λb

z|1y
k x1yk, (72)

whereuk = yk + izk. The interaction coefficientsb·|··
k are of order 1 and satisfy

b
1|yz
k + b

y|1z
k + b

z|1y
k = 0. (73)

The parameterλ is a measure of the strength of coupling between the additional mode,x1, and the Burgers bath
(yk, zk). Forλ = 0, the system in(72) reduces to the truncated Burgers–Hopf system in(57). Forλ �= 0, one can
think of modex1 as being driven by the Burgers bath. We will derive a closed stochastic differential equation for
x1 alone by suitable elimination of the bath modes(yk, zk) using the theory from Majda et al.[5,6]. Note that the
nonlinear terms containing any given triple,(x1, yk, zk), k fixed, in the right-hand side of the equations in(72) are
of the same type as in the additive triad model. Thus we can expect that the reduced equation forx1 alone obtained
from (72)will be linear inx1 with an additive noise. This is confirmed below.

Throughout this section, we shall consider(72) in the regime

Λ = 50, λ = 4 (74)

with the first five interaction coefficients non-zero and picked at random as listed inTable 1. These coefficients were
generated randomly in the range [−1,1] with the constraint that they satisfy(73). The initial conditions were taken
such that the parameterβ, measuring the energy per mode and defined through

1

2β
= E0

1 + 2Λ
, E0 = x2

1(0) +
Λ∑
k=1

(y2
k (0) + z2

k(0)), (75)

has value

β = 50. (76)

We show below that the energy,E0, is conserved in time for(72), so thatβ is well defined independent of time. In
the numerical simulations, the equations in(72)are integrated using a pseudo-spectral method for the evaluation of
the nonlinear terms of the Burgers bath and a fourth-order Runge–Kutta scheme for time-stepping. All the statistics
in the deterministic system are computed through time-averaging in a standard fashion[15,16].

Table 1
Coupled truncated Burgers–Hopf system: additive case. The interaction coefficients

k b
1|yz
k b

y|1z
k b

z|1y
k

1 0.2810 −0.6675 0.3865
2 0.3923 −0.9356 0.5433
3 0.3953 −0.6975 0.3023
4 0.3523 −0.6520 0.2997
5 0.5245 −0.8272 0.3027
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Unlike the triad systems, the system in(72) is deterministic. To proceed, we shall approximate the system in(72)
by a stochastic model following the method developed in[5,6]. We will discuss in detail the stochastic consistency
between the original system and the stochastic model. Next, we determine the small parameterε in terms of the
other parameters in the system. Finally, we perform mode elimination on the stochastic model and obtain a closed
equation for the modex1 alone. Before doing all this, though, we determine some properties of(72).

3.2.1. Stationary distribution
Due to the constraint(73)on the coupling coefficientsb·|··

k , the system in(72)conserves the energy

E = x2
1 +

Λ∑
k=1

|uk|2 = x2
1 +

Λ∑
k=1

(y2
k + z2

k). (77)

(The coupling destroys the other invariantM, andH , see(61) and (63).) It can also be checked by direct calculation
that the system in(72)satisfies the Liouville property

0 = ∂Fx1

∂x1
+

Λ∑
k=1

(
∂Fyk

∂yk
+ ∂Fzk

∂zk

)
, (78)

whereFx1, . . . denote the respective right-hand sides of the equations in(72). The conservation of energy together
with the Liouville property imply that the Gibbs measure with density

pβ = Z−1 exp(−βE) = Z−1 exp

(
−β

(
x2

1 +
Λ∑
k=1

(y2
k + z2

k)

))
, (79)

is a stationary distribution for the dynamics in(72). In fact, the numerical results support that, for a large number
of degrees of freedom likeΛ = 50, (79) is the density of the unique (for fixed energy) stationary distribution for
the system in(72), i.e. for almost all initial conditions for(72), the dynamics will eventually span(79)similarly as
in (65). The density in(79) implies equipartition of energy among modex1 and the bath variables(yk, zk)

cov(x1) = cov(yk) = cov(zk) = 1

2β
, (80)

and the parameterβ is uniquely determined by the energy in(77)computed on the initial condition,E0, through(75).
With the above parameters as in[15,16], the numerical simulations strongly confirm(79) and (80). The numerical
values for the first few moments ofx1 which are consistent with these predictions are given inTable 2.

It is worth noting that the parameterλ in (72)does not affect the one-time statistical properties of the system. Of
course, this parameter will influence the two-time statistics, as investigated below.

3.2.2. Stochastic modeling and stochastic consistency
As mentioned before, the mode elimination technique developed in[5,6] applies to stochastic differential equa-

tions, not deterministic systems as in(72). Thus, in a first step we need to approximate(72) by some stochastic

Table 2
Coupled truncated Burgers–Hopf system: additive case. One point statistics for modex1

Stat Mech DNS

〈x1〉 0 0.0015

〈x2
1〉 0.01 0.010025

〈x4
1〉 0.0003 0.0003004
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model. Withx1 declared as the only resolved mode, the strategy in[5,6] is to replace the nonlinear self-interaction
terms in the equation for the unresolved modes,(yk, zk), by some stochastic model. Specifically, we shall make the
following stochastic modeling assumption (also used inSections 3.3 and 3.4):

ik

2

∑
p+q+k=0

û∗
pû

∗
q ≈ −γkuk + σk(Ẇ

y
k (t) + iẆ z

k (t)), (81)

whereWy
k (t),W

z
k (t)are independent Wiener processes. Thus, we replace the original system in(72)by the stochastic

model

dx1

dt
= λ

∑
k

b
1|yz
k ykzk,

dyk
dt

= λb
y|1z
k x1zk − γkyk + σkẆ

y
k (t),

dzk
dt

= λb
z|1y
k x1yk − γkzk + σkẆ

z
k (t). (82)

Note that this stochastic model might already involve a smaller number of equations since we only need to consider
those(yk, zk) such thatb1|yz

k �= 0 (recall that thoughΛ = 50, we tookb1|yz
k �= 0 for the first five modes only, see

Table 1).
The parametersγk, σk must be chosen so as to optimize stochastic consistency between the approximated model

in (82)and the original coupled truncated Burgers–Hopf system in(72). In fact, there is a first obvious criterion for
consistency which fixes the ratioσ 2

k /γk: the stationary distribution for(82)will be exactly(64) if

σ 2
k

γk
= 1

β
. (83)

Thus it only remains to determineγk (say), and we now discuss this issue in some detail using numerical experiments.
The stochastic model in(82) was integrated using time-splitting with a second-order Runge–Kutta algorithm for
the nonlinear coupling terms and the “exact solution” formula for the Ornstein–Uhlenbeck process for the damping
and forcing terms in(82).

There are various different strategies to determineγk, which are all based on optimizing the matching between
the time-correlation functions of the unresolved modes

〈yk(t + s)yk(s)〉 = 〈zk(t + s)zk(s)〉, (84)

predicted by the original system in(72) and by the stochastic model in(82). (We shall also use these strategies in
Sections 3.3 and 3.4for other variants of the coupled truncated Burgers–Hopf system.) A common difficulty faced
by all the strategies given below and others in the literature (see the applied references in[6]), is that it is not possible
to reproduce all the details of the actual correlation functions for the original model in(72) by such a first-order
Markov model. We can only expect to capture some coarse-grained information about these functions, and the
natural choice in these first-order Markov models is to approximate the actual correlation functions by exponentials

exp(−γ dns
k |t |), (85)

whereγ dns
k is the area below〈yk(t + s)yk(s)〉, 〈zk(t + s)zk(s)〉 normalized by 2β:

γ dns
k = (2β × area under the actual correlation function of modek)−1. (86)

The values ofγ dns
k are given inTable 3and the functions exp(−γ dns

k |t |)/2β and the actual correlation functions are
compared inFig. 13. We now pick theγk in the stochastic model so as to optimize consistency with(85)using one
of the following three different procedures:
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Table 3
Coupled truncated Burgers–Hopf system: additive case. Comparison between theγ scal

k obtained from the scaling law in(87), theγ dns
k obtained

from (86), and the adjustedγ adj
k used in the stochastic model with procedure 2

k γ scal
k γ dns

k γ
adj
k

1 0.7107 0.7147 0.6027
2 1.4213 1.4160 1.1543
3 2.1320 2.0637 2.0637
4 2.8427 2.7069 2.7069
5 3.5534 3.3176 3.3176

(P1) The most a priori strategy consists in using the scaling law in(68) for the uncoupled truncated Burgers–Hopf
dynamics and identifyγk with

γ scal
k = T −1

k = C1k√
β
. (87)

HereC1 = 1/C0 is the only numerical constant left to determine; this can be done once and for all, e.g., by
measuringγk=1 from the numerical simulations for the uncoupled truncated Burgers–Hopf system. For the
parameters used in the simulations this gives

C1 = 5.03, (88)

Fig. 13. Coupled truncated Burgers–Hopf system: additive case. Comparison between the actual correlation functions for modes(yk, zk) from
the original system in(72) (full line) and the functions exp(−γ dns

k |t |)/2β (dashed line).
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Fig. 14. Coupled truncated Burgers–Hopf system: additive case. Comparison between the correlation functions obtained from the stochastic
model in(82)with γk = γ scal

k (full line), the functions exp(−γ dns
k |t |)/2β (dashed line), exp(−γ scal

k |t |)/2β (dot-dashed line).

and the correspondingγ scal
k are listed inTable 3. The underlying assumption behind(87) is that the coupling

with x1 in both (72) and (82)does not affect very much the correlation functions of the unresolved modes
(yk, zk). As explained inSection 3.2.3, this is justified in the range of parameters where mode elimination
applies because to leading order in the appropriateε there is separation of time-scales between the fast
unresolved modes(yk, zk) and the slow resolved modex1. Thus, in first approximation the fast dynamics
on which the unresolved modes decorrelate is governed solely by the nonlinear self-interactions between
yk andzk ’s in (72) or, equivalently through the stochastic modeling assumption in(81), by the forcing and
damping terms in(82). In Fig. 14, we compare on the logarithmic scale the functions exp(−γ dns

k |t |)/2β,
exp(−γ scal

k |t |)/2β, and the correlation functions for(yk, zk) obtained by integration of the stochastic model
in (82)with γk = γ scal

k . This figure clearly shows the potential problem with procedure P1. The coupling with
x1 might not be completely negligible and may actually change the correlation functions.Fig. 14shows that
the decay rates for the correlation functions predicted by both the original system and the stochastic model are
not γ scal

k in the example at hand. The stochastic model tends to overestimate the decay rateγ scal
k , especially

for the first two modes withk = 1,2.
(P2) We show inSection 3.2.3that when the parameters are such that mode elimination is justified, to leading order in

the appropriateε the correlation functions of the stochastic model in(82)display an exponential decay given by

〈yk(t + s)yk(s)〉 = 〈zk(t + s)zk(s)〉 ≈ e−γk |t |

2β
. (89)
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Fig. 15. Coupled truncated Burgers–Hopf system: additive case. Comparison between the functions exp(−γ dns
k |t |)/2β (dashed line) and the

correlation functions obtained from the stochastic model in(82)with γk = γ dns
k (full line).

This automatically leads us to identifyγk with theγ dns
k obtained from(86). The potential problem with pro-

cedure P2 is that the decay in(89) is only approximately true for the solution of the stochastic model in(82)
(this is again due to coupling with modex1). This can be seen inFig. 15where we compare on the logarithm
scale the functions exp(−γ dns

k |t |)/2β with the correlation functions for(yk, zk) obtained by integration of
the stochastic model in(82) with γk = γ dns

k . Thus, for the example at hand, the stochastic model tends to
overestimate the decay rateγk, especially for the first two modes withk = 1,2. (Procedure P2 does in fact
much better for the examples presented inSections 3.3 and 3.4where it give results as good as those obtained
by the more refined procedure P3.)

(P3) Better results are expected if theγk ’s are picked in such a way that the correlation functions for the unresolved
modes solution of the stochastic model in(82) reproduce the functions exp(−γ dns

k |t |)/2β as closely as possi-

ble. As we just explained, generally this amounts to takingγk = γ
adj
k �= γ dns

k . The values for theγ adj
k given in

Table 3were used in the stochastic model to obtain the correlation functions depicted inFig. 16. The agreement
is now quasi-perfect for all the modes, though we only adjusted the value ofγk for the first two modes,k = 1,2.

Note that none of the procedures P1–P3 make adjustment at the level of the correlation function for the resolved
mode,x1. In this sense they are all a priori procedures. How good the stochastic model does (both forγ scal

k ,

γ dns
k andγ adj

k ) at the level of the resolved mode (herex1) will be discussed below inSection 3.2.4about mode
elimination (see alsoSections 3.3.3 and 3.4.2for the coupled truncated Burgers system in different settings). Notice
that procedures P1–P3 are actually much more a priori than what disciplinary people in, say, the atmosphere/ocean
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Fig. 16. Coupled truncated Burgers–Hopf system: additive case. Comparison between the correlation functions obtained from the stochastic
model in(82)with γk = γ

adj
k (full line) and the functions exp(−γ dns

k |t |)/2β (dashed line).

science community might be willing to use in a stochastic modeling strategy (see the references in[6]). In fact, a
purely empirical procedure, which we shall not discuss in this paper (see[19]) but is expected to give the best results,
would be to forget altogether about consistency for the unresolved modes and simply require optimal matching for
the correlation function of the resolved modes,x1 here or(x1, x2) in Sections 3.3 and 3.4. In fact, this procedure
gives truly excellent agreement between the reduced equations obtained by mode elimination and the coupled
truncated Burgers–Hopf system in the various settings which we discuss, even in parameter regimes where the a
priori procedures P1–P3 do not apply (i.e. even forε of the order of 1)[19].

3.2.3. Determination of ε
In a last step before applying mode elimination to the stochastic model in(82)we determine when the procedure

is supposed to apply or, in other words, what isε. We give two ways to estimateε. The first is empirical and pretty
simple to obtain, though it might be fairly imprecise. The second estimate is a priori and more accurate though more
complicated to obtain.

The empirical estimate forε is obtained if one remembers that, in appropriate dimensionless units, the slower
time-scale of the unresolved modes is of the order ofε, whereas the time-scale of the resolved mode is of the order
ε−1 (see the discussion for the triad models and(92)). Thus, we can estimate

εemp =
√

slowest time-scale of the unresolved modes, yk, zk

time-scale of the resolved mode, x1
. (90)
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Using this formula with the data from numerical simulations gives

εemp = 0.24.

Of course, the empirical estimate in(90)should be considered with care since it might miss a numerical factor (see
(95)). For instance, applied to the additive triad system, the estimate in(90)givesεemp = ε

√
γ �= ε for smallε (we

used(19) and (24), andγ is given by(21)).
For a more precise a priori estimate ofε, we proceed as in the triad systems and write the equations in(82) in

appropriate non-dimensional variables. Specifically, we substitute

x1 → x1√
2β

, yk → yk√
2β

, zk → zk√
2β

, t → t
√

2β

λ
, (91)

which amounts to rescaling all modes according to their (common) variance and time so that the nonlinear coupling
terms betweenx1 and(yk, zk) are all of order 1. Using(83), this leads to

dx1

dt
=
∑
k

b
1|yz
k ykzk,

dyk
dt

= b
y|1z
k x1zk − 1

δkε
yk +

√
2

δkε
Ẇ

y
k (t),

dzk
dt

= b
z|1y
k x1yk − 1

δkε
zk +

√
2

δkε
Ẇ z

k (t), (92)

where using the generic property that theγk ’s increase withk (i.e. higher order mode decorrelate faster, see(68)),
we define

δk=1 = 1, δk = γk=1

γk
∈ (0,1) for |k| > 1. (93)

Since all the terms but the forcing and damping terms in(92) are of order 1 or smaller (recall that theb·|··
k are of

order 1 by construction), we identifiedε by

ε = λ

γk=1
√

2β
. (94)

Using the parameters in the numerical simulations (seeSection 3.2.2), (94)gives forγk=1 = γ
adj
k=1

ε = 0.63.

This estimate is in fair agreement with the empirical estimate from(90). In fact, using(97), we see that

εemp ≈ ε

√∑
k

δk(b
1|yz
k )2, (95)

which accounts indeed for the discrepancy between(90) and (94). Note also that the estimate in(94)gives a rather
big value forε in the example at hand: this should be kept in mind considering how good mode elimination does.

In what follows it will be more convenient to work with the dimensional equations in(72), and give the reduced
equations obtained from(72) by mode elimination in their dimensional form as well. Thus, though noε will be
apparent in these equations, we will remember thatε is computed from(94).
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3.2.4. Mode elimination
Following [6] a closed equation forx1 alone can be obtained from the stochastic model in(82)by elimination of

the unresolved variables(yk, zk), in the appropriate limit much in the same way as we obtained the reduced equation
in (22) for the additive triad model. The equation is given by

dx1

dt
= −γ1x1 + σ1Ẇ (t) (96)

with

γ1 = λ2

4β

Λ∑
k=1

(b
1|yk
k )2

γk
, σ1 =

√
γ1

β
. (97)

Thus mode elimination predicts thatx1 is an Ornstein–Uhlenbeck process with a stationary distribution which
always exists (γ1 > 0) and coincides with the stationary distribution in(79) (projected in thex1-space) of the
original coupled truncated Burgers system in(72). We now further check the relevance of the reduced stochastic
equations in(96) for the original dynamics in(72) by using the time-correlation function forx1 and an indicator
function for the departure from Gaussianity of this process.

The time-correlation function predicted from the reduced stochastic model in(96) is

〈x1(t + s)x1(s)〉 = e−γ1|t |

2β
. (98)

We compare this function usingγ scal
k , γ dns

k , or γ adj
k in (97) (corresponding to procedures P1, P2, or P3) with the

time-correlation functions obtained by numerical integration of both the original coupled truncated Burgers–Hopf
system in(72) and the stochastic model in(82) using alsoγ scal

k , γ dns
k , or γ adj

k . The simulations use the parameters
listed inSection 3.2.2and the results are presented inFig. 17. Clearly, both the stochastic model and the reduced
equation forx1 in (96) reproduce rather well the actual correlation function for this mode, especially if theγ

adj
k ’s

are used. In fact, the analytical predictions forγ1 from (97)usingγ scal
k , γ dns

k , andγ adj
k are, respectively

γ scal
1 = 0.033, γ dns

1 = 0.034, γ
adj
1 = 0.039, (99)

while the value obtained from the original coupled truncated Burgers–Hopf system in(72) is

γ1 = 0.04. (100)

Notice thatγ scal
1 is almost identical withγ dns

1 .
As a further check, we used the following indicator function for the departure from Gaussianity ofx1:

K1(t) = 〈x2
1(t + s)x2

1(s)〉
〈x2

1〉2 + 2〈x1(t + s)x1(s)〉2
. (101)

This quantity measures correlation in time of the energy,x2
1(t), in the mode: it is appropriately normalized so that

K1(t) = 1 for all time for a Gaussianx1. The reduced equation in(96) precisely implies thatx1 is a Gaussian
process, andFig. 18 shows that this prediction is in very good agreement, within 5% accuracy, with the actual
value forK1(t) obtained both from the original dynamics in(72) and the stochastic model in(82) (here we used
γk = γ

adj
k ). In fact, systematic departures from Gaussianity which are well reproduced by the reduced equations

will be observed in the examples considered inSections 3.3 and 3.4, which involve multiplicative noises, andFig. 18
should be compared withFigs. 22 and 26.
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Fig. 17. Coupled truncated Burgers–Hopf system: additive case. Correlation function ofx1. Solid line: original system; dash-dotted line: stochastic
model; dashed line: effective equations. The figures on top useγk = γ dns

k ; and the bottom figures useγk = γ
adj
k . The graphs withγk = γ scal

k in
are not shown since they are barely different than the one withγk = γ dns

k (see(99)).

3.3. Coupled truncated Burgers–Hopf system with two additional modes: multiplicative case

The next extension of the truncated Burgers–Hopf system which we shall study is (1≤ k, |p|, |q| ≤ Λ)

dx1

dt
= λ

∑
k

(b
1|2y
k x2yk + b

1|2z
k x2zk),

dx2

dt
= λ

∑
k

(b
2|1y
k x1yk + b

2|1z
k x2zk),

dyk
dt

= −Re
ik

2

∑
p+q+k=0

û∗
pû

∗
q + λb

y|12
k x1x2,

dzk
dt

= −Im
ik

2

∑
p+q+k=0

û∗
pû

∗
q + λb

z|12
k x1x2, (102)

where the interaction coefficients are of order 1 and satisfy

b
1|2y
k + b

2|1y
k + b

y|12
k = 0, b

1|2z
k + b

2|1z
k + b

z|12
k = 0. (103)

Here modes(x1, x2) are driven by the Burgers–Hopf bath,(yk, zk), and we will derive a closed set of stochastic
differential equations for(x1, x2) alone by suitable elimination of the bath using the theory from Majda et al.[5,6].
Note that the nonlinear terms containing any given triple,(x1,2, yk, zk),k fixed, in the right-hand side of the equations
in (102)are of the same type as in the multiplicative triad model. Thus we can expect that the reduced equations for
(x1, x2) alone obtained from(102)will contain nonlinear corrections in(x1, x2) as well as multiplicative noises.
We confirm this below by studying the equations in(102)in the regime where

β = 50, Λ = 50, λ = 3 (104)
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Fig. 18. Coupled truncated Burgers–Hopf system: additive case. The two-time fourth-order momentK1(t) defined in(101)and measuring the
time-correlation of the energyx2

1(t) in modex1(t). A Gaussian process implies no correlation in energy andK1(t) = 1. This figure has the same
vertical scale as, and should be compared to,Figs. 22 and 26.

(β is again related to the constant energy in the system, see(109)) and with the interaction coefficientsb·|··
k as listed

in Table 4. As in the additive case, these coefficients were generated randomly within [−1,1] under the constraint
(103). The equations in(102)were integrated numerically as the equations in(72).

3.3.1. Stationary distribution
The system in(72)conserves the following energy because of the constraints in(103):

E = x2
1 + x2

2 +
Λ∑
k=1

|uk|2 = x2
1 + x2

2 +
Λ∑
k=1

(y2
k + z2

k), (105)

Table 4
Coupled truncated Burgers–Hopf system: multiplicative case. Interaction coefficients

k b
y|12
k b

1|2y
k b

2|1y
k b

z|12
k b

1|2z
k b

2|1z
k

1 0.2498 −0.5933 0.3435 0.4205 0.4979 −0.9183
2 0.3488 −0.8316 0.4829 0.2268 0.2461 −0.4729
3 0.3514 −0.6200 0.2687 0.3240 0.4440 −0.7680
4 0.3131 −0.5795 0.2664 0.3719 0.2741 −0.6459
5 0.4662 −0.7353 0.2690 0.4359 0.3450 −0.7809
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and has the Liouville property,

0 = ∂Fx1

∂x1
+ ∂Fx2

∂x2
+

Λ∑
k=1

(
∂Fyk

∂yk
+ ∂Fzk

∂zk

)
, (106)

whereFx1, . . . denote the respective right-hand sides of the equations in(102). As a result the Gaussian Gibbs
measure with density

pβ = Z−1 exp(−βE) = Z−1 exp

(
−β

(
x2

1 + x2
2 +

Λ∑
k=1

(y2
k + z2

k)

))
, (107)

is a stationary distribution for the dynamics in(102)and, as for(79)in the additive case, the numerical results support
that (107) is in fact the appropriate stationary distribution for the system in(102)at fixed energy. The density in
(106)implies equipartition of energy among modes(x1, x2) and the bath variables(yk, zk)

cov(x1) = cov(x2) = cov(yk) = cov(zk) = 1

2β
, (108)

and the parameterβ is uniquely determined by the energy in(105)computed on the initial condition,E0

1

2β
= E0

2 + 2Λ
. (109)

As in [15,16], the numerical experiments confirm the predictions in(107) and (108). The first few moments ofx1,
andx2 consistent with these predictions are listed inTable 5.

3.3.2. Stochastic modeling and stochastic consistency
Following [5,6], we apply the same stochastic modeling assumption as in the additive case, i.e. we use(81) to

represent the nonlinear self-interaction of the bath modes,(yk, zk), in (102). Thus we replace the original system in
(102)by the stochastic model

dx1

dt
= λ

∑
k

(b
1|2y
k x2yk + b

1|2z
k x2zk),

dx2

dt
= λ

∑
k

(b
2|1y
k x1yk + b

2|1z
k x2zk),

dyk
dt

= λb
y|12
k x1x2 − γkyk + σkẆ

y
k (t),

dzk
dt

= λb
z|12
k x1x2 − γkzk + σkẆ

z
k (t). (110)

Depending on the number ofb1|2· andb2|1· that are non-zero, the stochastic model in(110)may involve a smaller
number of equations than the original system in(102). Recall that in our simulations, we tookΛ = 50, butb1|2·,
andb2|1· non-zero for the first five modes only. The equations in(110)were integrated numerically using the same
procedure as in the additive case.

Table 5
Coupled truncated Burgers–Hopf system: multiplicative case. One point statistics ofx1 andx2

Stat Mech DNS

〈x1〉 0 −0.0008

〈x2〉 0 −0.0005

〈x2
1〉 0.01 0.0099

〈x2
2〉 0.01 0.0099

〈x4
1〉 0.0003 0.000304

〈x4
2〉 0.0003 0.000302
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The parametersσk andγk are determined as in the additive case so as to achieve optimal stochastic consistency
between(102) and (110). We take the ratioσ 2

k /γk equal to 1/β as in(83) in order that the stationary distribution
for (102)has the density in(107). It remains to determineγk, say, and here we only consider procedure P2 based
on taking theγk = γ dns

k whereγ dns
k is the normalized area below the actual correlation functions obtained by direct

numerical simulations of the original system in(102). In fact, for the range of parameters we considered, in this
example procedure P2 produces essentially the same values as procedure P3. Recall that for P3 one picks theγ

adj
k

for which the correlation functions of the bath modes predicted by the stochastic model in(110)reproduce best the
exponential functions

e−γ dns
k t

2β
. (111)

Also recall that in generalγ adj
k �= γ dns

k (see the discussion inSection 3.2.2) but in the present case the difference

was not noticeable, i.e.γ adj
k ≈ γ dns

k . This can be seen inFig. 19. The corresponding values ofγ dns
k are listed in

Table 6.
The value ofε can be estimated similarly as in the additive case using the two procedures explained inSection 3.2.3.

The empiricalεemp obtained from the decay rates of the resolved modes(x1, x2) and the modes from the bath

εemp =
√

slowest time-scale of the unresolved modes, (yk, zk)

fastest time-scale of the resolved modes, (x1, x2)
, (112)

Fig. 19. Coupled truncated Burgers–Hopf system: multiplicative case. Comparison of correlation functions ofyk = Reuk , k = 1, . . . ,4 predicted

by the stochastic model (solid line) and the functions e−γ dns
k

t /2β (dashed line).
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Table 6
Coupled truncated Burgers–Hopf system: multiplicative case. Estimates for the decay rates of the correlation functions of the bath

k γ dns
k

1 0.668
2 1.355
3 2.037
4 2.678
5 3.319

gives using the data from numerical simulations

εemp = 0.53.

On the other hand, the a prioriε,

ε = λ

γk=1
√

2β
, (113)

gives

ε = 0.41.

Both values agree fairly well in this example, and, considering how big they are, mode elimination works surprisingly
well as we show next.

3.3.3. Mode elimination
The following closed system of equations for(x1, x2) is obtained from the stochastic model in(82)by elimination

of the unresolved variables,(yk, zk) [6]:

dx1

dt
= −λ2γ̄ x1 − λ2N1x

2
2x1 + λσ̄11x2Ẇ1(t) + λσ̄12x2Ẇ2(t),

dx2

dt
= −λ2γ̄ x2 − λ2N2x

2
1x2 + λσ̄21x1Ẇ1(t) + λσ̄22x1Ẇ2(t). (114)

As for the multiplicative triad system, these equations can be obtained by solving the equations for(yk, zk) in (110)
at given(x1, x2), substituting these solutions in the equations for(x1, x2), and performing asymptotic expansion in
ε. HereW1(t) andW2(t) are independent Wiener processes and the various parameters are defined as follows. Let

A = β−1
Λ∑
k=1

γ−1
k ((b

1|2y
k )2 + (b

1|2z
k )2), B = β−1

Λ∑
k=1

γ−1
k ((b

2|1y
k )2 + (b

2|1z
k )2),

C = β−1
Λ∑
k=1

γ−1
k (b

1|2y
k b

2|1y
k + b

1|2z
k b

2|1z
k ). (115)

Then

γ̄ = −1
2C, N1 = β(A + C), N2 = β(B + C), (116)

and the matrix̄σ , which is defined as

σ̄ =
(
σ̄11 σ̄12

σ̄21 σ̄22

)
, (117)
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is such that

σ̄ σ̄T =
(
A C

C B

)
. (118)

Using Cauchy–Schwartz, it is easy to see that the matrix in(118)is positive definite, hence its square-rootσ̄ exists.
Of courseσ̄ is not unique, and it is always possible to make it symmetric,σ̄ = σ̄T, i.e. σ̄12 = σ̄21.

Though the solution of the equations in(114)is not available, the stationary distribution for the process(x1, x2)

has a density given precisely by the Gaussian in(107) (projected on modes(x1, x2)). This can be seen[6] upon
noting that(107)is annihilated by the adjoint of the Fokker–Planck operator associated with(114)

L = −λ2(γ̄ x1 + N1x
2
2x1)

∂

∂x1
− λ2(γ̄ x2 + N2x

2
1x2)

∂

∂x2
+ λ2Ax2

2
∂2

∂x2
1

+ λ2Bx2
1
∂2

∂x2
2

+ 2λ2Cx1x2
∂2

∂x1∂x2
.

(119)

To further check the relevance of the reduced stochastic model in(114) for the original dynamics in(102), we
compute averaged quantities involving two times. The reduced equations in(114)were integrated by time-splitting,
using a second-order Runge–Kutta algorithm for the nonlinear terms, and the strong Milstein scheme of order 1 for
the stochastic terms[20]. The parameters used in the simulations give the following values forA, B, andC:

A = 0.3762, B = 0.4478, C = −0.3392.

Fig. 20. Coupled truncated Burgers–Hopf system: multiplicative case. Comparison of the time-correlation functions ofx1 andx2 predicted by
the original system (solid line) and the stochastic model (dash-dotted line).
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This gives

γ̄ = 0.17, N1 = 1.85, N2 = 5.43, (120)

and we selected̄σ consistent with(117)as

σ̄11 = 0.241, σ̄12 = −0.564, σ̄22 = 0.360. (121)

We computed first the time-correlation functions

C1(t) = 〈x1(t + s)x1(s)〉, C2(t) = 〈x2(t + s)x2(s)〉.
It can be seen inFig. 20 that the agreement between the predictions of the original system in(102) and the
stochastic model in(110) is excellent. The agreement between the predictions of the original system in(102)
and the reduced equations in(114) is also very good, as can be seen inFig. 21. The reduced equations (but not
the stochastic model) actually miss the fact that the time-correlation functions are smooth at timet = 0. This is
understandable and is a general feature of first-order Markov models, since those short time effects happen in fact
on a (dimensionless) time-scale of orderε which is not captured by the reduced equations. On the other hand,
these equations (as the stochastic model) actually reproduce very well the long-time decay of these functions.
After the short transient, the correlation functions are in fact very close to exponentials with decay rates given in
Table 7.

Fig. 21. Coupled truncated Burgers–Hopf system: multiplicative case. Comparison of the time-correlation functions ofx1 andx2 predicted by
the original system (solid line) and the reduced equations (dashed line).
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Table 7
Coupled truncated Burgers–Hopf system: multiplicative case. Long-time decay rates for modes(x1, x2)

Original system Stochastic model Reduced equations

γx1 0.165 0.171 0.183
γx2 0.179 0.182 0.215

We also computed the following quantities involving two-time fourth-order moments displayed inFig. 22:

Kj(t) =
〈x2

j (t + s)x2
j (s)〉

〈x2
j 〉2 + 2〈xj (t + s)xj (s)〉2

, j = 1,2. (122)

These quantities actually measure the time-correlation of the energyx2
j (t) in modej = 1,2. For Gaussian processes,

Kj = 1 for all times, implying in fact that there is no correlation between the energy computed at successive time.
In contrast, in the present example, there is a significant departure from Gaussianity, in the order of 50%, for the
original system in(102)and this departure is reproduced very well by both the stochastic model in(110)and the
reduced equations in(114). It should be stressed that such departurecannot be obtained from linear Langevin
models of Ornstein–Uhlenbeck type usually adopted in standard modeling procedures, and we must conclude that
the multiplicative nature of the reduced equations in(114)is essential.

Fig. 22. Coupled truncated Burgers–Hopf system: multiplicative case. The two-time fourth-order momentsKj (t), j = 1,2 defined in(122)and
measuring the time-correlation of the energyx2

j (t), j = 1,2. The departure from Gaussianity observed in the original system (solid line) are
well reproduced by both the stochastic model (dot-dashed line, top figures) and the reduced equations (dashed line, bottom figures).
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3.4. Coupled truncated Burgers–Hopf system with two additional modes: combined case

The last extension of the truncated Burgers–Hopf system which we shall consider here is the following
(1 ≤ k, |p|, |q| ≤ Λ):

dx1

dt
= λa

∑
k

b
1|yz
k ykzk + λm

∑
k

(b
1|2y
k x2yk + b

1|2z
k x2zk),

dx2

dt
= λa

∑
k

b
2|yz
k ykzk + λm

∑
k

(b
2|1y
k x1yk + b

2|1z
k x2zk),

dyk
dt

= −Re
ik

2

∑
p+q+k=0

û∗
pû

∗
q + λab

y|1z
k x1zk + λab

y|2z
k x2zk + λmb

y|12
k x1x2,

dzk
dt

= −Im
ik

2

∑
p+q+k=0

û∗
pû

∗
q + λab

z|1y
k x1yk + λab

z|2y
k x2yk + λmb

z|12
k x1x2, (123)

whereuk = yk + izk. This system is a combination of the additive model considered inSection 3.2(with two
resolved modes instead of one) and the multiplicative model considered inSection 3.3. The parameterλa is in
front of the terms involved in coupling of additive type, while the parameterλm is in front of the terms involved
in coupling of multiplicative type. The coupling coefficientsb·|··

k are all of order 1 and satisfy (compare(73) and
(103))

b
1|yz
k + b

y|1z
k + b

z|1y
k = 0, b

2|yz
k + b

y|2z
k + b

z|2y
k = 0,

b
1|2y
k + b

2|1y
k + b

y|12
k = 0, b

1|2z
k + b

2|1z
k + b

z|12
k = 0. (124)

Since the system in(123)combines additive and multiplicative features we expect that the reduced equations for
modes(x1, x2) provided by mode elimination will involve both linear Langevin terms of Ornstein–Uhlenbeck type
and nonlinear correction with multiplicative noise. This is indeed what we obtain below.

We shall study the system in(123)in the parameter regime

β = 50, Λ = 50, λa = 4, λm = 3 (125)

(β is related to the constant energy in the system, see(109)) and with the interaction coefficientsb·|··
k as listed in

Tables 4 (multiplicative interaction terms) and 8 (additive interaction terms). Theλm and theb·|··
k ’s involved in the

multiplicative interaction terms are in fact exactly the same as the ones we took inSection 3.3. The equations in
(123)were integrated numerically using the same scheme as inSection 3.3.

The system in(123)conserves the energy in(105)and has the Liouville property in(106)due to the constraints
in (124). As a result, the measure with the Gaussian density in(107)is a stationary distribution for the dynamics in

Table 8
Coupled truncated Burgers–Hopf system: combined case. Interaction coefficients for the additive interaction terms

k b
1|yz
k b

y|1z
k b

z|1y
k b

2|yz
k b

y|2z
k b

z|2y
k

1 −0.4094 0.2894 0.1200 −0.3862 0.3325 0.0537
2 −0.3906 0.3438 0.0469 0.4963 0.4253 −0.9216
3 −0.6562 0.1500 0.5062 −0.5344 0.4219 0.1125
4 −0.4125 0.7303 −0.3178 0.6200 −0.2525 −0.3675
5 0.5275 0.4603 −0.9878 0.5925 0.1953 −0.7878
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Table 9
Coupled truncated Burgers–Hopf system: combined case. One point statistics for the modes(x1, x2)

Stat Mech DNS

〈x1〉 0 −0.001

〈x2〉 0 −0.00007

〈x2
1〉 0.01 0.00966

〈x2
2〉 0.01 0.00965

〈x4
1〉 0.0003 0.0003008

〈x4
1〉 0.0003 0.0002977

(123), and the numerical results confirm that it is the appropriate (at fixed energy, see(109)) stationary distribution
for this dynamics. Thus, at equilibrium we have again equipartition of energy as in(108). This is confirmed in
Table 9where we list the first few moments of(x1, x2) obtained from numerics.

3.4.1. Stochastic modeling and stochastic consistency
The stochastic modeling assumption is the same as in the additive and multiplicative cases. Thus we use(81) to

represent the nonlinear self-interaction of the bath modes,(yk, zk), in the original system in(123)and we replace

Fig. 23. Coupled truncated Burgers–Hopf system: combined case. Comparison of the correlation functions of the bath predicted by the stochastic
model in(126)with γk = γ dns

k (full lines) and the functions e−γk t (dashed lines).
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Table 10
Coupled truncated Burgers–Hopf system: combined case. Estimates for the decay rates of the correlation functions of the bath

k γ dns
k

1 0.6786
2 1.3513
3 2.0219
4 2.6740
5 3.2512

this system by

dx1

dt
= λa

∑
k

b
1|yz
k ykzk + λm

∑
k

(b
1|2y
k x2yk + b

1|2z
k x2zk),

dx2

dt
= λa

∑
k

b
2|yz
k ykzk + λm

∑
k

(b
2|1y
k x1yk + b

2|1z
k x2zk),

dyk
dt

= λab
y|1z
k x1zk + λab

y|2z
k x2zk + λmb

y|12
k x1x2 − γkyk + σkẆ

y
k (t),

dzk
dt

= λab
z|1y
k x1yk + λab

z|2y
k x2yk + λmb

z|12
k x1x2 − γkzk + σkẆ

z
k (t). (126)

In the parameter regime we consider, the stochastic model in(126) involves a smaller number of equations than
the original system in(123)since we tookΛ = 50, but theb·|··

k ’s are non-zero for the first five modes only. The
equations in(126)were integrated numerically as the equations in(82) in the additive case.

The parametersσk andγk are again determined so as to achieve optimal stochastic consistency between(123) and
(126). The ratioσ 2

k /γk is taken to be equal to 1/β as in (83) in order that the stationary distribution for(102)
has the density in(107). We determineγk through procedure P2 based on taking theγk = γ dns

k whereγ dns
k

is the normalized area below the actual correlation functions obtained by direct numerical simulations of the
original system in(123). As in the multiplicative case, for the range of parameters we considered, procedure P2
is essentially equivalent to the more refined procedure P3. The time-correlation functions predicted either by the
original system in(123)or the stochastic model in(126)are compared inFig. 23. The correspondingγ dns

k ’s are listed
in Table 10.

The value ofε can be estimated exactly as in the multiplicative case. The empiricalεempobtained from the decay
rates of the resolved modes(x1, x2) and the modes from the bath (see(112)) gives using the data from numerical
simulations

εemp = 0.54.

On the other hand, the a prioriε defined as

ε = max(λa, λm)

γk=1
√

2β
, (127)

gives

ε = 0.49.

Mode elimination will again work surprisingly well despite this large value ofε.
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3.4.2. Mode elimination
Mode elimination produces the following closed system of equations for the two resolved variables(x1, x2) from

the stochastic model in(126) [6]:

dx1

dt
= −λ2

mγ̄ x1 − λ2
mN1x

2
2x1 + λmσ̄11x2Ẇ1(t) + λmσ̄12x2Ẇ2(t)

− λ2
aγ11x1 − λ2

aγ12x2 + λaσ11Ẇ3(t) + λaσ12Ẇ4(t),

dx2

dt
= −λ2

mγ̄ x2 − λ2
mN2x

2
1x2 + λmσ̄21x1Ẇ1(t) + λmσ̄22x1Ẇ2(t) − λ2

aγ12x1

− λ2
aγ22x2 + λaσ12Ẇ3(t) + λaσ22Ẇ4(t). (128)

The terms involvingλm arise because of the interactions of multiplicative type in the stochastic model in(126). In
fact, the coefficient̄γ , N1, N2, andσ̄ entering(126)are identical with the ones entering(114) (see(115)–(118))
and their numerical values in the parameter regime we consider are given by

γ̄ = 0.17, N1 = 1.89, N2 = 5.39, σ̄11 = 0.241, σ̄12 = σ̄21 = −0.563, σ̄22 = 0.358. (129)

(Those values are slightly different from the ones in(120) and (121)because theγ dns
k are slightly different.) The

Fig. 24. Coupled truncated Burgers–Hopf system: combined case. Comparison of the time-correlation functions ofx1 andx2 predicted by
the original system (solid line) and the stochastic model (dash-dotted line). The dotted lines are the predictions from the coupled truncated
Burgers–Hopf system in the multiplicative case alone fromFig. 20.
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terms involvingλa arise because of the interactions of additive type in the stochastic model in(126). They are of
Ornstein–Uhlenbeck type, though non-diagonal, with

γ11 = λ2
a

4β

Λ∑
k=1

γ−1
k (b

1|yz
k )2, γ22 = λ2

a

4β

Λ∑
k=1

γ−1
k (b

2|yz
k )2, γ12 = λ2

a

4β

Λ∑
k=1

γ−1
k b

1|yz
k b

2|yz
k . (130)

The matrixσ , defined as

σ =
(
σ11 σ12

σ21 σ22

)
, (131)

is such that

σσT = β−1
(
γ11 γ12

γ12 γ22

)
. (132)

The matrix at the right-hand side of(132)is positive definite as it should be, as can be seen using Cauchy–Schwartz.
The matrixσ is not uniquely defined by(132)and we can always make it symmetric,σ = σT, i.e.σ12 = σ21. For
the parameter regime we consider, we obtain

γ11 = 0.0370, γ22 = 0.0407, γ12 = 0.0135, σ11 = 0.0267,

σ22 = 0.0281, σ12 = 0.0049. (133)

Fig. 25. Coupled truncated Burgers–Hopf system: combined case. Comparison of the time-correlation functions ofx1 andx2 predicted by the
original system (solid line) and the reduced equations (dashed line). The dotted lines are the predictions from the coupled truncated Burgers–Hopf
system in the multiplicative case alone fromFig. 21.
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Table 11
Coupled truncated Burgers–Hopf system: combined case. Long-time decay rates for modes(x1, x2)

Original system Stochastic model Reduced equations

γx1 0.178 0.185 0.233
γx2 0.197 0.202 0.254

The solution of equations in(126) is not available but it can be checked that the stationary distribution for this
process has the Gaussian density in(107). This can be seen upon noting that this density is annihilated by the adjoint
of the Fokker–Planck operator associated with(128). The part of this operator associated with the multiplicative
terms is(119)with λm substituted forλ; the part associated with the additive terms is

L′= − λ2
a(γ11x1+ γ12x2)

∂

∂x1
− λ2

a(γ12x1 + γ22x2)
∂

∂x2
+ λ2

aγ11
∂2

∂x2
1

+ λ2
aγ22

∂2

∂x2
2

+ 2λ2
aγ12

∂2

∂x1∂x2
. (134)

To check the relevance of the reduced equations in(128), we perform the same numerical tests involving two-time
averages as the ones we used in the multiplicative case, and we utilize the same integration technique. The

Fig. 26. Coupled truncated Burgers–Hopf system: combined case. The two-time fourth-order momentsKj (t), j = 1,2 defined in(122)and
measuring the time-correlation of the energyx2

j (t), j = 1,2. The departure from Gaussianity observed in the original system (solid line) are
well reproduced by both the stochastic model (dot-dashed line, top figures) and the reduced equations (dashed line, bottom figures). The dotted
lines are the predictions from the coupled truncated Burgers–Hopf system in the multiplicative case alone fromFig. 22.
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time-correlation functions

C1(t) = 〈x1(t + s)x1(s)〉, C2(t) = 〈x2(t + s)x2(s)〉,

are shown inFigs. 24 and 25. For comparison, we also present the results for the multiplicative system ofSection 3.3
where all the additive interactions are set to zero. The agreement between the predictions of the original system in
(102)and both the stochastic model in(126)and the reduced equations in(128)is very good. As in the multiplicative
case, the reduced equations (but not the stochastic model) miss the smooth start of the time-correlation functions but
they actually reproduce very well the long-time decay of these functions. After the short transient, the correlation
functions are very close to exponentials with decay rates given inTable 11. Notice that these rates indicate that the
time-correlation functions decay faster in the combined than in the multiplicative case. This is due to the additional
damping produced by the linear Langevin terms representing the additive interaction terms in the original system.

We also computed the two-time fourth-order moments given in(122)with the results presented inFig. 26. Recall
that these quantities actually measure the time-correlation of the energyx2

j (t) in modej = 1,2, andKj = 1
for all times for a Gaussian process. In contrast, the original system in(123) produces significant departures
from Gaussianity of over 25%, which are reproduced well both by the stochastic model in(126)and the reduced
equations in(128). Here the multiplicative nature of the equations in(128)is again essential. Notice, however, that
these departures are lower than in the multiplicative case, indicating that the linear Langevin terms actually deplete
the non-Gaussian corrections in the process.

4. Concluding remarks

To recapitulate the highlights of this paper, we have shown that the stochastic modeling strategy proposed
in [5,6] is applicable to non-trivial test cases which display features of vastly more complex systems. It was
shown that a suitable stochastic modeling assumption on the original system gives a stochastic model which can
achieve very good stochastic consistency with the original dynamics. Besides, the range of parameters where such
stochastic consistency is observed can be determined a priori with consistent surprisingly large values of the coupling
coefficients. We have also shown that the reduced equations for the essential degrees of freedom which are obtained
by suitable projection of the stochastic model quantitatively capture non-trivial statistical features of the original
dynamics, like the stationary distribution, or two-time statistical averages involving second and fourth moments.
The structure of the reduced equations is unusual since, besides linear Langevin terms of Orstein–Ulhenbeck type,
these equations may also involve nonlinear corrections in the essential modes and multiplicative noises. Yet, these
features proved to be crucial for an adequate description of the original dynamics by the reduced equations as
confirmed by the quantitative tests developed in this paper. As demonstrated here the reduced stochastic models are
quantitatively capable of approximating the original problem with many degrees of freedom with surprisingly large
values for the small parameter. We certainly hope that the techniques described here will be useful for stochastic
modeling in many problems of scientific and engineering interest.
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