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Abstract

Several prototype models are introduced here which are designed to elucidate the interaction between heteroclinic low-
dimensional chaos in the projected nonlinear dynamics and intrinsic stochasticity induced by energy exchange with a bath of fast
variables. These models are built by coupling a four-dimensional ODE with known analytical properties including heteroclinic
cycles with a suitable deterministic bath of fast variables. A systematic strategy for stochastic mode reduction is applied to these
models with 104 degrees of freedom to derive four-dimensional reduced stochastic equations for the slow variables. Due to the
internal chaotic dynamics of the slow variables the stochastic mode reduction strategy is very robust in this case and yields reduced
models which accurately capture the statistical behavior of the original deterministic system. Furthermore, it is also shown here
that even in the regime of a weak coupling between the slow variables and the fast heat bath, the detailed structure of the stochastic
terms derived through the mode-elimination procedure is essential for reproducing the statistical behavior of the slow dynamics.
© 2004 Published by Elsevier B.V.
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1. Introduction

During the last few decades a considerable attention has been given to the role of coherent structures in at-
mosphere/ocean modeling, turbulence, and other areas of nonlinear science. A dynamical systems approach and
bifurcation theory has been applied with some success to low-dimensional truncations of complex models to ex-
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Table 1
Interaction coefficients for the “additive” model

bx1|u1 = 1 bv1|x1w1 = −0.75 bw1|x1v1 = −0.25
by1|u1 = −0.7 bv1|y1w1 = 1 bw1|y1v1 = −0.3
bx2|u2 = 1 bv2|x2w2 = −0.6 bw2|x2v2 = −0.4
by2|u2 = −0.55 bv2|y2w2 = 1 bw2|y2v2 = −0.45

Table 2
Additive Model withλ = 2; one-point statistics of the slow variables computed from the DNS of the full system in(4) and reduced model in(8)

x1 y1 x2 y2

Mean DNS −0.000991 0.000238 −0.000631 −0.016588
Mean reduced 0.000902 0.000038 0.001741 −0.017342
Var DNS 0.01045 0.01057 0.01638 0.01638
Var reduced 0.01049 0.01052 0.01607 0.01682
Flatness DNS 2.1222 2.0514 2.4612 2.4886
Flatness reduced 2.1736 2.0612 2.4845 2.4507

plain complicated PDE phenomena. As regards the atmospheric sciences, this approach involves identifying stable
structures such as multiple equilibria, periodic orbits or homoclinic/heteroclinic connections in the phase space of
a low-dimensional projection[8,19,26,31,9,10]and then using observational or numerical data to search for the
“ghost” of this behavior in the full complex dynamics[25]. Low-dimensional systems have also been introduced
as simple prototype models of turbulent fluid boundary layers[4] and nonlinear optics[5]. In this approach, the

Fig. 1. Time series ofz1 = x1 + iy1 andz2 = x2 + iy2 for the simulations of the uncoupled system in(1) in the regime with stable heteroclinic
cycle.



A. Majda, I. Timofeyev / Physica D 199 (2004) 339–368 341

analytically tractable chaotic behavior of these low-dimensional models is usually credited for the complex turbulent
behavior of the full spatially extended systems[3,20]. Also, the effects of small random additive noises are often
introduced to model interactions with neglected scales[12,23].

Stochastic modeling and reduction of degrees of freedom is another important research topic in modern nonlinear
science. Often, the complexity of straightforward analytical models overwhelms computational capacity. To list a
few, the dynamics of coupled atmosphere/ocean systems[39], simulations of macromolecular dynamics[17], or
urban air-pollution studies[7]. The vast difference of time scales in the problem combined with large dimensionality
is, usually, the main factor which prevents performing well-resolved direct numerical simulations. Low-dimensional
reduced models where interactions with non-essential degrees of freedom are represented stochastically provide
a computationally feasible alternative. This approach has been successfully utilized in atmosphere/ocean science
starting with the pioneering work of Leith[30] and Hasselman[21]. Recent examples of reduced stochastic models
include development of linear stochastic models for the low-frequency variability of the extra-tropical atmosphere
[11,6,2,41], higher order Markov models for the angular momentum budget[14,15], and stochastic projection
techniques combined with Markov jump processes for reduced models of macromolecular dynamics[40].

Most of the examples mentioned above adapt an ad-hoc modeling approach where the non-essential degrees of
freedom are replaced by an assumed linear stochastic model of the additive type, and the unknown coefficients are
regression-fit using numerical or observational data. An alternative systematic approach to stochastic mode-reduction
has been recently developed by Vanden-Eijnden and the authors in[34,35]. This mode-elimination technique is a
two-step procedure exploiting the assumption that the variables in the system under consideration can be split
into two sets; a set of essential slow (resolved) variables, and a set of fast non-essential (unresolved) degrees of
freedom. In the first step of the mode-elimination procedure the nonlinear self-interactions of the fast degrees of

Fig. 2. Snapshots of the joint PDFx1, x2 for the Monte-Carlo simulations of the system in(1).
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freedom are represented stochastically. The motivation is that the self-interaction terms are responsible for the
sensitive dependence on small perturbations in the system and can be represented stochastically if a coarse-grained
description of the slow dynamics is the objective. In the second step of the procedure the fast unresolved degrees
of freedom are eliminated from the equations utilizing standard adiabatic elimination techniques[27,29,18]. The
adiabatic elimination is an asymptotic theory rigorous in the limit of infinite separation of time scales between the
slow and fast degrees of freedom.

The advantages of the mode-elimination technique developed in[34,35]have been demonstrated in two recent
papers[36,37]. Unlike most of the approaches mentioned in the above paragraph, the mode-elimination technique
systematically gives the structure of stochastic terms in the reduced model of the slow dynamics. It has been
demonstrated in[36,37]that multiplicative noises and nonlinear corrections play an important role in the nonlinear
dynamics of the slow variables and that the strength of additive noises and linear damping can be predicted a priori
by the theory. Another important practical issue is the separation of slow and fast variables in the system. The
mode-elimination procedure works surprisingly well for models where unresolved degrees of freedom are roughly
two times faster than the resolved ones and gives a qualitatively correct picture when the two time scales are the
same. In[37] the important question of interplay between stable dynamical structures in the phase space of the
resolved modes and stochastic terms was also addressed. Several special types of idealized systems were analyzed;
each of them was carefully constructed to mimic potential applications in atmospheric science. Examples of such
behavior include stable periodic motion and multiple equilibria in the truncated dynamics.

Recent interesting work for the low-frequency variability of the atmosphere[10,25] has suggested the role of
heteroclinic cycles as a potential transition mechanism among atmospheric regimes. In these situations, non-trivial
topography creates interactions which typically break the symmetries of heteroclinic cycles in a deterministic system

Fig. 3. Snapshots of the joint PDFx1, y2 for the Monte-Carlo simulations of the system in(1).
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with many degrees of freedom with additional chaos from the intrinsic stochastic noise due to back-scattering of
turbulent cascades. Also for simple ocean models, various interesting low-dimensional chaotic regimes have been
discovered recently with unrealistically high dissipation[13,38]. In more active mesoscale eddy resolving models,
the competition between such chaotic dynamics and intrinsic stochastic noise from the turbulence becomes very
interesting. Such effects are also likely to become prominent for midlatitude coupled atmosphere/ocean system.
For these and other potential applications for atmosphere/ocean science as well as other scientific disciplines, it is
interesting to develop unambiguous simplified models with both stable heteroclinic orbits in a truncated system and
intrinsic stochastic noise through the back-scattering interaction with many turbulent chaotic degrees of freedom.
The goal of the present work is to develop such a class of unambiguous models to address the question and to
apply the systematic stochastic mode-reduction techniques described above[34–37]to study the role of truncated
eteroclinic chaos in competition with intrinsic stochastic noise. Here the canonical system of four-dimensional
ordinary differential equations (ODEs) with stable heteroclinic cycles arising from 2:1 resonance[3,22] is coupled
to the Burgers–Hopf deterministic chaotic bath of modes[32,33,1]through a variety of energy conserving quadratic
nonlinear interactions to define the basic models. The coupling breaks the original symmetry of the four-dimensional
system; this situation is typical for geophysical fluid dynamics where low-dimensional projections typically have
very special properties compared with the full dynamics. The four variables in the heteroclinic ODE naturally serve
as slow resolved modes in the coupled systems and reduced stochastic differential equations are derived by the mode-
elimination procedure. In all examples the statistical behavior of the four reduced modes in the direct numerical
simulations of coupled systems with 104 degrees of freedom is compared with the statistics of the reduced systems
obtained by mode-elimination to address the fundamental role of low-dimensional heteroclinic chaos coupled with
intrinsic stochastic noise. In all the cases developed below, the agreement is excellent so the four mode reduced
stochastic equations provide simplified models for the interaction of heteroclinic chaos with intrinsic stochastic noise.

The rest of the paper is organized as follows. InSection 2we introduce the model and discuss its analytical
properties. InSection 3Monte-Carlo simulations of the four-dimensional dynamical system are performed and the

Fig. 4. Initial Transient Period in a single realization of the heteroclinic ODE in(1).
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statistical behavior of ensembles is analyzed. InSection 4.1we consider the first type of coupling. The heteroclinic
system is coupled to the Burgers–Hopf bath in an additive fashion, leading to Langevin-type corrections to the
heteroclinic ODE. Multiplicative coupling is analyzed in detail inSection 4.2. Multiplicative noises and nonlinear
corrections arise in the reduced equations and it is also emphasized that even a weak coupling can have a drastic
effect on the statistical behavior of the slow dynamics. Finally, inSection 5behavior of an additive type model is
analyzed as one of the parameters goes through the bifurcation sequence of the four-dimensional heteroclinic ODE.

2. The model

To investigate the interplay between low-dimensional heteroclinic chaos and intrinsic noise induced by the
coupling with the fast unresolved modes with many degrees of freedom prototype models are built in a simple
fashion. A four-dimensional system of ordinary differential equations with known dynamical properties including
stable heteroclinic connections is coupled to a deterministic heat bath. The coupling is selected to mimic possible
energy exchange scenarios in fluid dynamics; the interactions with the bath are constructed in an energy-preserving
fashion, but they break the original O(2) symmetry of the heteroclinic ODE. The following four-dimensional system
was shown to exhibit a wide variety of dynamical properties, including stable heteroclinic cycles[3,22]

ż1 = z∗
1z2 + (µ1 + e11|z1|2 + e12|z2|2)z1, ż2 = −z2

1 + (µ2 + e21|z1|2 + e22|z2|2)z2. (1)

The heat bath of unresolved modes is obtained by projecting the inviscid Burgers–Hopf equationut + uux = 0
in periodic geometry on a finite number of Fourier coefficients. This truncated Burgers–Hopf model has been

Fig. 5. Snapshots of the marginal PDF ofx1 for the Monte-Carlo simulations of the system in(1).
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investigated by the authors in a series of papers[32,33,1]and was shown to be highly chaotic and mixing and to
obey a simple scaling relationship for auto-correlation functions. The equations for the Fourier coefficients of the
expansionu = ∑

ûke
ikx, 1 ≤ |k| ≤ Λ with û∗

k = û−k read

v̇k = −Re
ik

2

∑
p+q+k=0

û∗
pû

∗
q, ẇk = −Im

ik

2

∑
p+q+k=0

û∗
pû

∗
q, (2)

whereûk = vk + iwk. As in [32,33,1], the valueΛ = 50 is utilized below so that these are 100 modes in the heat
bath. The paradigm models for the present study involve coupling the four modes in(1) with the 100 modes in(2)
through simple energy conserving triad interactions which break the O(2) symmetry in(1).

The equations in(1) have been throughly analyzed in[3] and the bifurcation diagram has been mapped out. As
parametersµ1 andµ2 change, the system goes through a series of bifurcations exhibiting a wide variety of dynamical
regimes. In particular, asµ1 is decreased, trivial solutions (fixed points) bifurcate to periodic solutions, then periodic
cycles becomes unstable and the dynamics is dominated by modulated periodic solutions. If the parameterµ1 is
decreased further, stable heteroclinic orbits emerge which connect diametrically opposite points on the circle|z2|2 =
−µ2/e22, z1 = 0. The phase of these two points is a free parameter which is determined by the initial conditions
in each particular realization. The stability of these orbits is guaranteed ifµ1 − µ2e12/e22 < 0 andµ2 > 0. Other
solutions such as periodic orbits and modulated traveling waves may coexist with heteroclinic cycles, but become
unstable.Fig. 1 shows time series ofz1 andz2 for a typical simulation in the regime with a stable heteroclinic
cycle. The values of the parameters utilized in this simulation are presented in(3). For this particular realization
the two equilibria connected by a heteroclinic cycle are (z1, z2) = (0,0,−0.3,0.1) and (z1, z2) = (0,0,0.3,−0.1).

Fig. 6. Snapshots of the marginal PDF ofx2 for the Monte-Carlo simulations of the system in(1)
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When only the quadratic terms in(1) remain (i.e. all the free parameters are zero), the systems becomes a pure 2:1
resonance interaction model. In this case the system in(1) conserves the energyE = |z1|2 + |z2|2 and is, in fact,
completely integrable (see, for example,[33]).

3. Statistical behavior of solutions of the heteroclinic ODE

When an attracting phase space structure such as a heteroclinic orbit is present, a generic solution of(1) has
two dynamical stages. During the short first stage solutions are not close to a heteroclinic connection and follow
paths which might be unstable, such as coexisting unstable periodic motion. Then, solutions are quickly attracted
onto a heteroclinic cycle and follow an irregular pattern of bursts out of thez1 = 0 plane. Monte-Carlo simulations
provide insight into the statistical behavior of ensembles of solutions for the uncoupled system in(1). The choice
of parameters

µ1 = 0.05, µ2 = 0.2, e11 = −4, e12 = −1, e21 = e22 = −2, (3)

guarantees the existence of stable heteroclinic cycles. An ensemble of 20,000 initial conditions was generated by
sampling the uniform distribution on a four-dimensional cube−0.5 ≤ Re, Im z1,2 ≤ 0.5 and integrated in time for
T = 600.

Since heteroclinic cycles are attracting all the trajectories in this regime, all solutions spend most of their time
near the circle of equilibria. Thus, we expect that the invariant measure forz1 andz2 will be concentrated mostly on
the circle of equilibriaz1 = 0, z2 = √−µ2/e22e

iφ with the uniform distribution for the phase,φ, on [0, . . . ,2π].

Fig. 7. Direct numerical simulations of the Additive Coupled Model withλ = 2; normalized correlation functions ofz1 (dashed line) andz2

(dash-dotted line) and normalized correlation functions of the modesu1 andu2 (solid lines).
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Fig. 8. Additive Model withλ = 2; marginal PDFs ofx1 = Rez1 andx2 = Rez2 for the direct numerical simulations (DNS) of the full equations
in (4) and reduced stochastic model in(8).

A small, but finite, probability also exists for the solution to be out of thez1 = 0 plane withz2 strictly inside
the circle of equilibria. This probability corresponds to the heteroclinic bursts. This is, indeed, the case for long
times. Surprisingly, different coherent structures in the Monte-Carlo probability density functions (PDFs) emerge on
intermediate time scales; these structures can not be predicted from the long-time properties of the system in(1). This

Fig. 9. Additive Model withλ = 2; joint PDF of thex1, x2 computed utilizing bin counting from the DNS of the full model in(4) (left part)
and reduced stochastic model in(8) (right part); the figure is color-coded on the interval [0, . . . ,13] with red color denoting the maximum of
the PDF and blue color denoting the minimum value.
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is best illustrated by the joint probability distributions ofz1 andz2. Utilizing running statistical averages we determine
that the simulations reach the expected statistical steady state for timest ≥ 300 and the timest ∈ [0, . . . ,300]
represent the transient state.Figs. 2 and 3show joint probability distributions of Rez1,Rez2 and Rez1, Im z2
for timest = 30,63,132,252. For timest ∈ [0, . . . ,100] prominent structures emerge in both distributions. The
heart-like shape with peaks at (x1, x2) = (±0.1,0), (0,0.3) is characteristic for the joint PDF Rez1,Rez2 (top part
of Fig. 2). While the second peak, (x1, x2) = (0,0.3) is related to the heteroclinic connections, the appearance of
the peaks (x1, x2) = (±0.1,0) can not be attributed to the presence of stable heteroclinic cycles. The diamond-like
shape in the distribution of Rez1, Im z2 with large peak at (x1, y2) = (0,0) also persists for a long time. Toward
the end of the transient period,t = 252, all PDFs converge to a uniform distribution on the circle|z2| = √−µ2/e22
with some residuals of the coherent structures discussed above, and by the end of the transient period all PDFs are
in a perfect agreement with the expected result. The appearance of the coherent structures is related to the non-
equilibrium properties of the uncoupled model, but below we observe similar shapes for the equilibrium statistics
of the coupled systems with 104 degrees of freedom. The initial transient behavior of the system can be understood
by analyzing the generic behavior of each individual trajectory. Time series of a single realization on time interval
[0, . . . ,600] are depicted inFig. 4. During the initial transientt ∈ [0, . . . ,100] the trajectory approaches the stable
heteroclinic cycle along a modulated periodic motion inx2 andy2 variables. This periodic motion is much faster than
the irregular spikes in thex1 andy1 variables, and it is not surprising that the distribution ofx2 andy2 is concentrated
at zero for short transient times. Marginal PDFs forx1 andx2 are depicted inFigs. 5 and 6. Marginal PDFs ofx1 for
short times (i.e.t = 30, 63) are much broader than the PDFs ofx1 for times corresponding to the heteroclinic regime
(t = 252). Thus, on averagex1 spends much more time away from zero during the transient regime than during the
later equilibrium phase. The situation withx2 is exactly the opposite. The heteroclinic regime is characterized byx2
staying away from zero for extended periods of time (seeFig. 1) which is manifested in two peaks in the marginal

Fig. 10. Additive Model; joint PDF forx1, x2; (a) full equations in(4) with λ = 1; (b) reduced model in(8) for λ = 1; (c) full equations in(4)
with λ = 4; (d) reduced model in(8) for λ = 4; the figure has the same color-coding asFig. 9.
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PDF ofx2 during the equilibrium heteroclinic phase. On the other hand, during the transient phase,x2 follows a
modulated periodic motion and, thus, crosses zero much more often compared with the equilibrium distribution.
The behavior ofy1 is analogous tox1, and the behavior ofy2 is analogous tox2. The corresponding data fory1 and
y2 is not presented here for brevity of presentation.

4. Intrinsic stochastic noise versus chaotic dynamics with homoclinic chaos

The systematic mode-reduction strategy developed in[34,35]has two steps. The first step consists of replacing
the original deterministic model by an intermediate stochastic system where the deterministic self-interactions of the
fast unresolved variables are replaced by stochastic terms. The stochastic mode reduction is the second step where
all the fast unresolved variables are eliminated and closed-form stochastic differential equations for the reduced
variables are derived. In this section we introduce two types of coupled models: “additive noise” and “multiplicative
noise” to systematically examine the interaction between the internal chaotic dynamics of the reduced variables
and the intrinsic stochasticity of the heat bath and to test the overall performance of the mode reduction strategy
in several different regimes. When the stochastic mode-reduction strategy is successful, we have a simplified low-
dimensional stochastic model for the interactions. For these purposes the first step of the mode-reduction strategy will
be addressed here only briefly. For detailed discussion of this procedure and various approaches for determining the
stochastic parameters see[36,37]. The equations in(2)withΛ = 50 are utilized as a heat bath in the examples below.

Fig. 11. Additive Model withλ = 2; conditional PDFs (the same as cross-sections of joint PDFs) of the slow variables; solid line – reduced
model in(8); dotted line – DNS of the full system in(4); (a) PDF ofx1 conditionalx2 = 0; (b) PDF ofx2 conditionalx1 = 0; (c) PDF ofx1

conditionaly2 = 0; (d) PDF ofy1 conditionalx1 = 0.
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Direct numerical simulations of the coupled systems are performed utilizing a standard pseudo-spectral method
in space and fourth order Runge–Kutta stepping in time. Unless otherwise specified the statistics are computed
utilizing time-averaging from a single realization. See[36,37] for a detailed discussion of this procedure.

4.1. Additive coupling

The first example considered here is the deterministic “additive” model with 104 degrees of freedom (1≤ k ≤ Λ)
given by

ż1 = z∗
1z2 + (µ1 + e11|z1|2 + e12|z2|2)z1 + λ

(
bx1|u1 + iby1|u1

)
v1w1,

ż2 = −z2
1 + (µ2 + e21|z1|2 + e22|z2|2)z2 + λ(bx2|u2 + iby2|u2)v2w2,

u̇1 = {TBH} + λ(bv1|x1w1x1w1 + bv1|y1w1y1w1) + iλ(bw1|x1v1x1v1 + bw1|y1v1y1v1),

u̇2 = {TBH} + λ(bv2|x2w2x2w2 + bv2|y2w2y2w2) + iλ(bw2|x2v2x2v2 + bw2|y2v2y2v2),

u̇k = {TBH} = − ik

2

∑
p+q+k=0

û∗
pû

∗
q, 2 < k ≤ Λ, (4)

where{TBH} denotes the Truncated Burgers–Hopf terms introduced in(2). The coupling is selected in such a way
that the modez1 is coupled only tou1 and modez2 is coupled tou2; the interactions considered in(4) produce

Fig. 12. Additive Model withλ = 2; normalized correlation functions forx1,2 andy1,2; solid lines – direct numerical simulations of the full
equations in(4); dashed lines – reduced stochastic model in(8).
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Fig. 13. Additive Model withλ = 2; normalized correlation of energy forx1,2 andy1,2; solid lines – direct numerical simulations of the full
equations in(4); dashed lines – reduced stochastic model in(8).

corrections of the Ornstein–Uhlenbeck type for the reduced variables. A particular simple choice of interaction
coefficients is presented inTable 1and the parameterλ is introduced explicitly to control the strength of interaction
betweenz1, z2 and the unresolved modes,uk.

Equations in(4)with λ = 2 were integrated forT = 100,000 with parameters in the equations forz1, z2 presented
previously in(3). Comparison of correlation functions forz1 andz2 with correlation functions foru1,2 is presented
in Fig. 7. Even with coupling, the heat bath of 100 modes has essentially equipartition of energy with variance
Var{Re, Im uk} ≈ 0.012 which according toTable 2is comparable to the variance ofz1, z2. Although average
energy of thez1, z2 variables is comparable with the average energy in the bath modes,uk, the modesz1 andz2 have
much longer correlations and, thus, are natural slow variables of the system. Moreover, the cross-correlations between
all possible combinations of the real and imaginary parts ofz1 andz2 are two orders of magnitude smaller than
their variances. Thus, (x1, y1) = (Rez1, Im z1) and (x2, y2) = (Rez2, Im z2) are also natural empirical orthogonal
functions of the systems in(4) with diagonal covariance matrix.

Table 3
Interaction coefficients for multiplicative models of Type I in(12) (first and second rows) and Type II in(15) (third and fourth rows)

bx1|y1v1 = −0.75 by1|x1v1 = −0.25 bv1|x1y1 = 1
bx2|y2v2 = −0.75 by2|x2v2 = −0.25 bv2|x2y2 = 1
bx1|y2v1 = −0.75 by2|x1v1 = −0.25 bv1|x1y2 = 1
bx2|y1v2 = −0.75 by1|x2v2 = −0.25 bv2|x2y1 = 1
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Table 4
Multiplicative Model of Type I withλ = 1; one-point statistics of the slow variables computed from the DNS of the full system in(12) and
reduced model in(13)

x1 y1 x2 y2

Mean DNS 0.00058 −0.00162 −0.00624 −0.0006
Mean reduced 0.00061 0.00012 −0.01191 −0.000061
Var DNS 0.01072 0.01064 0.01529 0.01754
Var reduced 0.01075 0.01105 0.01369 0.01994
Skewness DNS 0.0017 0.0124 −0.0671 −0.0069
Skewness reduced −0.0059 −0.0048 0.0055 −0.0012
Flatness DNS 1.98106 2.01715 2.66309 2.51052
Flatness reduced 1.94827 1.91961 2.71078 2.21453

In the first step of the stochastic modeling strategy, the deterministic self-interactions of the bath modes,uk, in
the equations foru1 andu2 are approximated by an Ornstein–Uhlenbeck process, i.e.,

− ik

2

∑
p+q+k=0

û∗
pû

∗
q ≈ −γkuk + σkẆk, (5)

σ2
k

γk
= Var{uk}. (6)

With the approximation in(5) the additive coupled system in(4) becomes, essentially, an eight-dimensional
stochastic differential equation, since the bath modesu1 andu2 decouple from the rest of the fast modes. Parameters

Fig. 14. Multiplicative Model; marginal PDFs ofx1 = Rez1 andx2 = Rez2 for the direct numerical simulations (DNS) of the full equations in
(12)and reduced stochastic model in(13).
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γk are determined crudely as the inverse of the area under the graph of the modulus of the correlation function for
uk (see[36,37]). As mentioned earlier the heat bath,uk, achieves an equipartition of energy with〈u2

k〉 ≈ 0.025 and
parametersσk are determined from the equation in(6). Estimates for these parameters are

γ1 = 0.7139, γ2 = 1.4083, σ1 = 0.1371, σ2 = 0.1929. (7)

Unlike for the conservative “additive” systems reported in[36], in this case the stochastic mode-reduction procedure
is insensitive to small changes inγk andσk. Small fluctuations in these parameters have essentially no effect on the
statistical behavior of the reduced system and we expect that the stochastic mode-elimination procedure applied
to any system with internal chaotic dynamics in the reduced variables will produce very robust results which do
not require any fine-tuning of the stochastic parametersγk andσk. Applying the stochastic mode-reduction step
developed in[35,36]to the stochastic equations forz1,2 andu1,2 we obtain the reduced model for the slow variables
z1 andz2 (written through the real and imaginary parts for explicit representation)(

x1

y1

)′
=
(
x1x2 + y1y2 + x1(µ1 + e11r

2
1 + e12r

2
2)

x1y2 − y1x2 + y1(µ1 + e11r
2
1 + e12r

2
2)

)
− A1(x1, y1)T + �1(W1,W2)T ,

(
x2

y2

)′
=
(

−(x2
1 − y2

1) + x2(µ2 + e21r
2
1 + e22r

2
2)

−2x1y1 + y2(µ2 + e21r
2
1 + e22r

2
2)

)
− A2(x2, y2)T + �2(W3,W4)T , (8)

Fig. 15. Multiplicative Model; joint PDF of thex1, x2 computed utilizing bin counting from the DNS of the full model in(12) (left part) and
reduced stochastic model in(13) (right part); the Figure is color-coded on the interval [0, . . . ,13] with red color denoting the maximum of the
PDF and blue color denoting the minimum value.
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wherer2
k = |zk|2 = x2

k + y2
k , Wj are independent Wiener processes and constant matricesA1,2 and�1,2 are ex-

pressed explicitly through the interaction coefficientsb·|·· and parametersγk andσk:

A1 = −λ2σ2
1

4γ2
1

(
bx1|u1(bv1|x1w1 + bw1|x1v1) bx1|u1(bv1|y1w1 + bw1|y1v1)

by1|u1(bv1|x1w1 + bw1|x1v1) by1|u1(bv1|y1w1 + bw1|y1v1)

)
, �2

1 = σ2
1

γ1
A1,

A2 = −λ2σ2
2

4γ2
2

(
bx2|u2(bv2|x2w2 + bw2|x2v2) bx2|u2(bv2|y2w2 + bw2|y2v2)

by2|u2(bv2|x2w2 + bw2|x2v2) by2|u2(bv2|y2w2 + bw2|y2v2)

)
, �2

2 = σ2
2

γ2
A2.

Substituting the interaction coefficients fromTable 1and computing
√
A1 and

√
A2 numerically we obtain

A1 = λ2σ2
1

4γ2
1

(
1 −0.7

−0.7 0.49

)
, �1 = λσ2

1

2γ1
√
γ1

(
0.8192 −0.5735

−0.5735 0.4014

)
, (9)

A2 = λ2σ2
2

4γ2
2

(
1 −0.55

−0.55 0.3025

)
, �2 = λσ2

2

2γ2
√
γ2

(
0.8762 −0.4819

−0.4819 0.2651

)
. (10)

The reduced equations in(8) with λ = 2 and the estimates forγk andσk from (7) were integrated forT = 1,000,000
using the second order Runge–Kutta method for the deterministic terms and a straightforward stochastic Euler

Fig. 16. Multiplicative Model; conditional PDFs (the same as cross-sections of joint PDFs) of the slow variables; solid line – reduced model in
(13); dotted line – DNS of the full system in(12); (a) PDF ofx1 conditionalx2 = 0; (b) PDF ofx2 conditionalx1 = 0; (c) PDF ofx1 conditional
y2 = 0; (d) PDF ofy1 conditionalx1 = 0.
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Fig. 17. Multiplicative Model; normalized correlation functions forx1,2 andy1,2; solid lines – direct numerical simulations of the full equations
in (12); dashed lines – reduced stochastic model in(13).

method (see[28]) to discretize the white noise terms. All statistics were computed as time averages from a single
realization.

Comparison of the PDFs of the slow variablesx1 = Rez1 andx2 = Rez2 from the direct numerical simulations
(DNS) of the full equations with 104 degrees of freedom in(4) and four-dimensional reduced stochastic model
in (8) is depicted inFig. 8. Results for the PDFs ofy1 = Im z1 andy2 = Im z2 are qualitatively similar and not
presented here. Comparison of the low order statistics for the slow variables is presented inTable 2. In addition to
obvious comparison of these statistical quantities we also performed a severe test for the one-point statistics where
we compared the joint PDFs of the slow variables.Fig. 9 shows comparison of the joint PDF ofx1, x2 computed
from the simulations of the full system with 104 degrees of freedom in(4)and reduced equations in(8). Comparison
of cross-sections of selected joint PDFs is depicted inFig. 11. The stochastic mode-reduction strategy reproduces
the statistics of the full system with remarkable accuracy, including the complicated structure and magnitude of
the peaks in the joint PDFs of the slow variables. Next, we present comparison of the two-point statistics for the

Table 5
Comparison of Multiplicative Models of Type I and II withλ = 0.25; one-point statistics of the slow variables computed from the DNS of the
full systems in(12) (Type I) and in(15) (Type II)

x1 y1 x2 y2

Var, Type I 0.00903 0.00902 0.01573 0.02943
Flatness, Type I 2.25 2.26 2.91 1.95

Var, Type II 0.00897 0.0089 0.0291 0.0166
Flatness, Type II 2.72 2.72 1.97 2.68
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slow variables. In addition to the usual test for the correlation functions depicted inFig. 12, we also compute the
normalized correlation of energy

Kq(s) = 〈q2(s)q2(t + s)〉
〈q2〉2 + 2〈q(s)q(t + s)〉2

. (11)

This quantity measures the correlation in time of the energy,q2(t), in the mode: it is appropriately normalized so
thatK(t) = 1 for all time for a Gaussianq [36,37]. The two-point statistics of the slow variables, including the
oscillations in the correlation functions and non-Gaussian behavior is captured extremely well by the reduced
four-dimensional stochastic model. Overall, there is a remarkable agreement between the statistical behavior of the
slow variables in the deterministic coupled system and in the reduced low-dimensional model. Moreover, we have
performed a systematic study of the model in(4) by varying the strength of couplingλ = 0.25, . . . ,7. Although,
this parameter enters asλ2 in the time-scale of the slow variables in the reduced equation (see(9) and (10)), for
the regimeλ = 2 the strength of the noise terms is roughly comparable with the cubic nonlinear terms and much
smaller than the quadratic terms in the reduced equation in(8). Of course, the non-dimensional form of the reduced
equations is needed to correctly assess the relative strength of various terms in the equation which confirm the above
statement; derivation of the non-dimensional form of the reduced model is presented inAppendix A. For other
references related to this issue see also the detailed discussion of the non-dimensionalization in[36]. The estimates
for the non-dimensionalization are not precise and serve only as guidelines for understanding the relative strength
of the noise. It is evident from the formulas forA1,2 and�1,2 in (9) and (10)that smaller values ofλ correspond
to cases with very weak noise. We obtained an extremely good agreement between the full equations in(4) and the
reduced model in(8) for the range of the coupling strengthλ = 0.25, . . . ,5. For larger values ofλ discrepancies

Fig. 18. Multiplicative Model; normalized correlation of energy forx1,2 andy1,2; solid lines – direct numerical simulations of the full equations
in (12); dashed lines – reduced stochastic model in(13).
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begin to appear first in the two-point statistics and then in the PDFs of the slow variables. To illustrate the drastic
effect the coupling has on the statistics of the slow variables we present the joint PDF ofx1, x2 for regimesλ = 1,4
in Fig. 10. This PDF has two disjoint peaks forλ = 1 with the overall structure closely resembling the statistics on
intermediate times of the Monte-Carlo simulation of the uncoupled model described inSection 3(seeFig. 2). Under
the stronger coupling (Fig. 9) the two peaks merge and form a complicated “boomerang” shape. Finally, forλ = 4
only one large peak remains in the joint PDF ofx1, x2. Other statistics of the slow variables also undergo nontrivial
transitions as the strength of the coupling is increased. We would like to emphasize that the reduced model captures
these transitions in all statistical quantities extremely well and these results are not presented here only for brevity of
presentation.

4.2. Multiplicative coupling

In the second example, the multiplicative type of coupling is examined more closely and the importance of
the noise is demonstrated on cases with very weak coupling. The multiplicative model is constructed in a manner
similar to the additive example inSection 4.1, except the interactions are chosen in such a way, that they produce
nonlinear corrections and multiplicative noises in the reduced model[34–37]. Written through complex notation
the multiplicative model with 104 degrees of freedom is given by

ż1 = z∗
1z2 + (µ1 + e11|z1|2 + e12|z2|2)z1 + λv1(bx1|y1v1y1 + iby1|x1v1x1),

ż2 = −z2
1 + (µ2 + e21|z1|2 + e22|z2|2)z2 + λv2(bx2|y2v2y2 + iby2|x2v2x2),

u̇k = − ik

2

∑
p+q+k=0

û∗
pû

∗
q + λδ1,kb

v1|x1y1x1y1 + λδ2,kb
v2|x2y2x2y2. (12)

Fig. 19. Comparison of Multiplicative Models of Type I and II withλ = 0.25; marginal PDFs ofx1 andx2; left column – simulations of the
multiplicative model of Type I in(12); right column – simulations of the multiplicative model of Type II in(15).
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Thus, in this examplex1 andy1 are coupled only tov1 = Reu1 andx2 andy2 are coupled only tov2 = Reu2. We will
refer to this model as the multiplicative system of Type I. This model is considered with the same parameter values
in (3) and interaction coefficients presented inTable 3. For a wide range of coupling strengths,λ, the average energy
distribution and difference in correlation times is qualitatively similar to the additive case discussed inSection 4.1
and modesz1 andz2 play the role of natural slow variables of the system in(12) with diagonal covariance matrix.
The stochastic mode-reduction procedure is carried out in a similar manner. With the approximation in(5) we apply
Theorem 4.3 from[35] to the six-dimensional system ofz1, z2, Reu1 and Reu2 and obtain the reduced stochastic
model for the slow variables alone

ẋ1 = x1x2 + y1y2 + x1(µ1 + e11r
2
1 + e12r

2
2) + N1y

2
1x1 + A1x1 + S1y1Ẇ1,

ẏ1 = x1y2 − y1x2 + y1(µ1 + e11r
2
1 + e12r

2
2) + N2y1x

2
1 + A1y1 + S2x1Ẇ1,

ẋ2 = −(x2
1 − y2

1) + x2(µ2 + e21r
2
1 + e22r

2
2) + N3y

2
2x2 + A2x2 + S3y2Ẇ2,

ẏ2 = −2x1y1 + y2(µ2 + e21r
2
1 + e22r

2
2) + N4y2x

2
2 + A2y2 + S4x2Ẇ2, (13)

where

N1 = λ2b
x1|y1v1bv1|x1y1

γ1
= −0.75

λ2

γ1
, N2 = λ2b

y1|x1v1bv1|x1y1

γ1
= −0.25

λ2

γ1
,

Fig. 20. Comparison of Multiplicative Models of Type I and II withλ = 0.25; joint PDFs ofx1, x2 andx1, y1; left column – simulations of the
multiplicative model of Type I in(12); right column – simulations of the multiplicative model of Type II in(15).
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N3 = λ2b
x2|y2v2bv2|x2y2

γ2
= −0.75

λ2

γ2
, N4 = λ2b

y2|x2v2bv2|x2y2

γ2
= −0.25

λ2

γ2
,

S1 = λσ1

γ1
bx1|y1v1 = −0.75

λσ1

γ1
, S2 = λσ1

γ1
by1|x1v1 = −0.25

λσ1

γ1
,

S3 = λσ2

γ2
bx2|y2v2 = −0.75

λσ2

γ2
, S4 = λσ2

γ2
by2|x2v2 = −0.25

λσ2

γ2
,

A1 = λ2σ
2
1

γ2
1

bx1|y1v1by1|x1v1 = 0.1875
λ2σ2

1

γ2
1

, A2 = λ2σ
2
2

γ2
2

bx2|y2v2by2|x2v2 = 0.1875
λ2σ2

2

γ2
2

.

In (13)and all equations below, the multiplicative noises are written in the Itô sense[18]. It is difficult to access the
exact strength of the noise in a multiplicative model; the non-dimensionalization for(13) presented inAppendix
A suggests that regime withλ = 1 has multiplicative noises which are comparable with the cubic terms in(13),
but smaller in magnitude than the quadratic terms. The system in(12) with λ = 1 was integrated forT = 100,000
and statistics of the slow variables,z1,2, and the heat bath were computed utilizing time-averaging from a single
realization. The heat bath,uk, is roughly equipartitioned with mean zero and〈v2

k〉 ≈ 〈w2
k〉 ≈ 0.011. Estimates for

the decay of correlations,γk, and magnitude of the noise,σk, in the approximation in(5) are computed in the same
manner as before; they are

γ1 = 0.613, γ2 = 1.3643, σ1 = 0.117, σ2 = 0.1745. (14)

Fig. 21. Marginal PDF ofx1; bifurcation with respect to the strength of the nonlinearly in the coupled Additive Model; solid line – full coupled
system; dashed – reduced model; two lines overlap on most of the graphs.
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The structure of the stochastic terms is entirely different from the additive model considered inSection 4.1. In addition
to the multiplicative noise, nonlinear correction also arise that play the role of nonlinear damping which balances the
noise. The non-dimensional balance of terms is also very different compared to the additive model discussed above.

Detailed comparison of the one-point statistics, including the selected joint PDFs is presented inTable 4and
Figs. 14–16. This regime does not correspond to a weak noise limit and we observe some minor discrepancies
in the joint PDFs of the slow variables. The rest of the statistical quantities computed from the reduced model in
(13) are in very good agreement with the direct numerical simulations of the full equations in(12). Comparison
of the two-point statistics is depicted inFigs. 17 and 18. The reduced model captures the non-trivial oscillatory
structure of correlations and non-Gaussian nature of the process extremely well. Non-Gaussian behavior of solutions
is manifested more strongly for the multiplicative model than for the additive case fromSection 4.1(cf. Figs. 13
and 18). Multiplicative noises and nonlinear corrections are essential for the correct reproduction of this behavior
in any reduced model and can not be reproduced by a linear stochastic model of the Ornstein–Uhlenbeck type.

4.2.1. Influence of intrinsic stochastic noise
To illustrate the importance of the exact structure of the noise in a reduced model we consider the slightly different

coupled multiplicative system

ż1 = z∗
1z2 + (µ1 + e11|z1|2 + e12|z2|2)z1 + λ(bx1|y2v1y2v1 + iby1|x2v2x2v2),

ż2 = −z2
1 + (µ2 + e21|z1|2 + e22|z2|2)z2 + λ(bx2|y1v2y1v2 + iby2|x1v1x1v1),

u̇k = − ik

2

∑
p+q+k=0

û∗
pû

∗
q + λδ1,kb

v1|x1y2x1y2 + λδ2,kb
v2|x2y1x2y1. (15)

Fig. 22. Marginal PDF ofx2; bifurcation with respect to the strength of the nonlinearly in the coupled Additive Model; solid line – full coupled
system; dashed – reduced model; two lines overlap on most of the graphs.
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Thus, in(15) the two triads which are coupled together arex1, y2, v1 andx2, y1, v2. The interaction coefficients for
the model in(15) are presented inTable 3. We will refer to the multiplicative model in(12) as Type I, and to the
multiplicative model in(15) as Type II. A weak noise regime is considered here withλ = 0.25 and parameters in
(3). In this case, the non-dimensional form of the reduced stochastic equations yields multiplicative noises smaller
in strength than the cubic terms (see the explicit non-dimensional form of the multiplicative reduced model of Type
I with λ = 0.25 in Appendix A). There are a lot of similarities in the statistical behavior of solutions for the two
types of multiplicative models, but there are also drastic differences, especially for the one-point statistics of the
slow variables,z1 andz2. Comparison of the one-point statistics for the two models is presented inTable 5and
comparison of selected marginal PDFs from two simulations is presented inFig. 19. While the one-point statistics
of x1 andy1 are almost the same for the two models, statistical behavior ofx2 andy2 is very different. The variance
of x2 is almost twice larger for the simulations of Type II model than for the Type I and flatness ofx2 is smaller
in the simulations of Type II. One-point statistics ofy2 exhibit the opposite trend. Although the one-point statistics
of x1 andy1 are nearly identical, the shapes of the marginal PDFs of these variables are very different between the
simulations of the two models (cf. left and right columns ofFig. 19). In the simulations of the Type II model the
marginal PDF ofx1 has a large peak atx1 = 0 and two secondary peaks atx1 ≈ ±0.2 while for the Type I model the
distribution ofx1 is broader with just one maximum atx1 = 0. Comparison of joint PDFs is presented inFig. 20.
Although the coupling is weak, there are significant differences between the joint PDFs for the two models. For
example, joint PDFx1, x2 for Type I multiplicative model in(12) has two peaks at (x1, x2) = (±0.15,0). These
peaks are absent in the same PDF for Type II model in(15); instead, there is a large peak at (x1, x2) = (0,−0.3).
The orientation of the “cross” in the joint PDFx1, y1 is very different for the two types of multiplicative models. In
the simulations of the multiplicative model of Type I the “cross” is oriented atx1 = ±y1, while in the simulations

Fig. 23. Joint PDF ofx1, x2; full coupled system.
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of the Type II model the orientation is alongx1 = 0, y1 = 0. These two examples demonstrate that even in a weak
coupling limit the detailed specific effects of intrinsic stochastic noise can alter the dynamics in the reduced variables
compared with the Monte-Carlo PDFs of the bare chaotic dynamical system presented inSection 3.

5. Behavior through the low-dimensional bifurcation sequence

To further address the relationship between the known properties of the projected system of ODEs in(1) and
properties of coupled systems we analyze the statistical behavior of the additive model in(4) as parametersµ1,2
andei,j go through a bifurcation sequence of the heteroclinic ODE in(1). We introduceα as an explicit bifurcation
parameter by substitutingµ′

1,2 = αµ1,2 ande′
i,j = αei,j in the equations forz1 andz2 in (4). We utilize the same

choice of the parameters and interaction coefficients as before (given in(3) andTable 1, respectively) with the
strength of coupling equal to one,λ = 1, and bifurcation parameter,α, varying from zero to one. Thus, regimeα = 1
coincides with the simulations described inSection 4.1with λ = 1. On the other hand, regimeα = 0 corresponds
to the integrable case for the projected system in(1) mentioned inSection 3. In this case the quadratic terms in(1)
conserve the energyE = |z1|2 + |z2|2 and, in fact, the system in(1) becomes integrable[33] whenµ1,2 = ei,j = 0.
Moreover, due to the special property of the coupling coefficients inTable 1, the coupled system in(4) with
µ1,2 = ei,j = 0 also conserves energy for the full system,E = |z1|2 + |z2|2 +∑ |uk|2. The system in(4) also has
the Liouville property (volume preserving flow) in this case. Therefore, we can apply the equilibrium statistical
mechanics formalism[32,33] and deduce that forα = 0 the most-probable equilibrium state should be Gaussian

Fig. 24. Joint PDF ofx1, x2; reduced model.
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with mean zero and equipartition of energy among all variables

P∗ = Ce−β(|z1|2+|z2|2+
∑ |uk |2), (16)

where parameterβ plays the role of the temperature andC is a normalization constant. Therefore, the limitα → 0 of
the additive system in(4) is singular in a statistical sense; the behavior of the limiting equations can not be predicted
from simulations withα > 0.

The parameterα can be easily incorporated into the existence and stability criteria for heteroclinic cycles and
periodic motions presented in[3]. For the choice of parameters in(3) heteroclinic cycles exist for all 0< α ≤ 1, but
become unstable forα � 1. Instead, periodic and quasi-periodic motion becomes stable for the system of heteroclinic
ODEs with smallα. In contrast with the decoupled heteroclinic system in (1), some statistics of the additive model
do not exhibit drastic changes when the parameterα is decreased. For example, the marginal PDFs of the slow
variables undergo a very smooth transition. To illustrate this, marginal PDFs ofx1 andx2 for α = 0,0.25,0.75,1
are depicted inFigs. 21 and 22. Following the existence and stability criteria for the heteroclinic cycles in[3] it is
easy to verify that heteroclinic orbits for the system of ODEs in(1) exist for all values ofα = 0.25, 0.75, 1, but for
α = 0.25 they are unstable. On the other hand, the stability criteria is satisfied forα = 0.75 and 1. Forα = 0, the
truncated system possess a completely different, conservative, behavior as discussed earlier.Figs. 23 and 24show
joint PDFs ofx1, x2 for the four values ofα (with the same limits and color-coding). Forα = 0, in agreement with the
analytical prediction this PDF is Gaussian for both the coupled system and the reduced model. Two-point statistics
do not change considerably throughout the bifurcation sequence and are captured by the stochastic mode-reduction
technique extremely accurately. While the statistics for simulations withα = 0.75 and 1 is nearly identical, the
shape of joint PDFs changes considerably fromα = 0.25 to 0.75. The stochastic mode-reduction strategy is able to
track the changes in the joint PDFs extremely accurately. Thus, the stochastic mode-reduction strategy can serve
as a powerful tool for studying the bifurcation diagrams of complicated high-dimensional models. Even very crude
estimates for the stochastic parametersγk andσk are usually sufficient for reproducing the qualitative behavior of
the system. Improved estimates for the stochastic parameters will lead to the correct quantitative picture.

6. Concluding remarks

Several prototype models have been introduced here to elucidate the interaction between heteroclinic low-
dimensional chaos in projected nonlinear dynamics and intrinsic stochasticity induced by energy exchange with
a bath of fast variables. In these models, the truncated nonlinear dynamics with stable heteroclinic cycles is the
canonical system of four ODEs arising from 2:1 resonance[3,22] while the chaotic bath of modes is defined by the
Galerkin truncated Burgers–Hopf model[32,33,1]with 100 degrees of freedom. These two basic component models
are coupled through a variety of elementary energy conserving quadratic nonlinear interactions to define the basic
models with both deterministic heteroclinic chaos and intrinsic stochastic chaos on the projected low-dimensional
dynamics; this second effect is induced by the back-scatter of energy onto the slow modes. Various types of elemen-
tary “additive” and “multiplicative” energy conserving couplings have been studied here which break the symmetry
of the heteroclinic chaos. The statistical behavior of the deterministic 104 degrees of freedom system projected on
the four-dimensional subspace of slow modes has been compared quantitatively with a four-dimensional stochastic
model derived through a systematic stochastic mode-reduction strategy[34–37]; the energy-conserving couplings are
classified as “additive” or “multiplicative” according to the nature of the stochastic noise predicted in the stochastic
mode reduction theory. More realistic systems in general involve combinations of both types of coupling[34–37].

The following main points have been developed inSections 3–5in the present paper:

(1) The stochastic mode-reduction theory[34–37] which yields a reduced systems of four stochastic DEs for
the slow modes reproduces the low-frequency statistical features of the deterministic 104 degrees of freedom
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system with remarkable accuracy for all of the parameter regimes and couplings considered in this paper.
These statistical features include highly non-Gaussian PDFs, oscillatory time-correlations, and highly non-
Gaussian energy-correlations in time as well as their bifurcations with parameters. In fact, the chaotic dynamics
in the projected variables enhances the robustness of the stochastic mode-reduction procedure compared with
the situation of stable deterministic dynamics for the projected variables[36,37]. Thus, the stochastic mode-
reduction technique supplies explicit simplified stochastic models for the nonlinear interaction of heteroclinic
chaos with intrinsic stochastic noise.

(2) The additive interaction models fromSection 4.1demonstrate that the transient behavior of statistical solutions
of the projected four-dimensional heteroclinic system is more significant in shadowing the effects of intrinsic
stochastic noise in these additive cases than the direct detailed structure of the heteroclinic cycles themselves.
It is important to note that while the additive noise levels derived in the stochastic mode-reduction theory are
quite small, they are much larger in magnitude non-dimensionally compared with the previous studies of weak
additive noise perturbations for heteroclinic ODEs[23,24].

(3) The multiplicative models inSection 4.2demonstrate that for these type of couplings, the statistical behavior
of ensembles of solutions of the four-dimensional heteroclinic ODEs can completely fail to mimic many of
the effects of intrinsic stochastic noise, even when these effects are quite small in magnitude (as forλ = 0.25).
Also properties of the PDFs for the projected variables depend quantitatively on the nature of coupling, even
for weak couplings. Nevertheless, these effects are largely captured quantitatively by the systematic reduced
stochastic model with four stochastic DEs in both smaller and larger coupling regimes for the deterministic
system with 104 degrees of freedom.

(4) The results inSection 5indicate that the stochastic mode-reduction techniques are robust through an entire
bifurcation sequence of behavior in the deterministic truncated ODEs. Moreover, the stochastic mode-reduction
procedure is insensitive to small changes in the statistical properties of the fast variables which makes it a
potentially useful tool for qualitative analysis of bifurcations in complex high-dimensional systems with modest
separation of time scales. Results ofSection 5demonstrate that it is sufficient to perform direct numerical
simulations of the full system only once to estimate statistics of the fast degrees of freedom. After that, the
reduced equations for the slow dynamics can be utilized to extrapolate the statistical behavior of the full system
for a wide range of parameters.

The models and results in the present paper should provide useful guidelines for the possible behavior in more
complex physical systems with many degrees of freedom where there is a competition in their low-frequency
variability between low-dimensional chaotic dynamics and intrinsic stochastic chaos due to back-scattering from
turbulent cascades. The scenario recently developed in[10] is an excellent starting point and one can envision similar
behavior for various regimes of ocean dynamics as well as coupled atmosphere-ocean systems. Recently, the basic
stochastic mode reduction strategy used here[34–37]has been simplified for direct practical application in complex
climate models and tested in a realistic barotropic model climate on the sphere with orography with very encouraging
results[16]. Thus, more practical applications of the strategy used for the paradigm model in the present paper are
likely to be developed in the very near future. These are all central topics of further investigation. It is also interesting
to study the detailed properties of the four-dimensional reduced stochastic models derived in the present paper.

Acknowledgments

The authors thank Eric Vanden-Eijnden for his helpful advice during the early stages of this work and Daan Crom-
melin for his interesting comments. The research of A. Majda is partially supported by NSF Grant DMS-9972865,
ONR Grant N00014-96-1-0043, and NSF-CMG Grant DMS02-22133. I. Timofeyev acknowledges support from
the NSF through Grant DMS-0405944.



A. Majda, I. Timofeyev / Physica D 199 (2004) 339–368 365

Appendix A. Non-dimensional reduced equations

A.1. Additive noise example

The non-dimensionalization of the reduced equations is required to assess the relative magnitude of the noise,
linear, and nonlinear terms. A particular example of the non-dimensionalization of the reduced system in(8) for
the additive noise coupling fromSection 4.1is presented below. In the first step, new dependent variables are
introduced with the requirement that their covariance matrix is the identity. Since in the example fromSection 4.1
the covariance matrix ofx1,2 andy1,2 is diagonal, this amounts to dividing the dependent variables by square roots
of their variances:

xnew
i = xi√

Var{xi}
, ynew

i = yi√
Var{yi}

. (A.1)

In order to avoid cumbersome notation and coefficients it is possible to utilize approximate values for the variances
instead of the exact ones fromTable 2, i.e.

Var{x1} ≈ 0.01 = V1, Var{y1} ≈ 0.01 = V1, Var{x2} ≈ 0.016= V2, Var{y2} ≈ 0.016= V2.

(A.2)

Substituting(A.1) with the particular values from(A.2) into the equation(8) from Section 4.1we obtain (the
superscript “new” is dropped)

(
x1

y1

)′
=
(√

V2x1x2 + √
V2y1y2 + x1(µ1 + V1e11r

2
1 + V2e12r

2
2)√

V2x1y2 − √
V2y1x2 + y1(µ1 + V1e11r

2
1 + V2e12r

2
2)

)
− A1(x1, y1)T + 1√

V1
�1(W1,W2)T ,

(
x2

y2

)′
=

− V1√

V2
(x2

1 − y2
1) + x2(µ2 + V1e21r

2
1 + V2e22r

2
2)

−2 V1√
V2

x1y1 + y2(µ2 + V1e21r
2
1 + V2e22r

2
2)


− A2(x2, y2)T + 1√

V2
�2(W3,W4)T .

(A.3)

Taking into account particular values ofV1, V2 we obtain the following system of equations:

(
x1

y1

)′
=
(

0.12x1x2 + 0.12y1y2 + x1(µ1 + 0.01e11r
2
1 + 0.016e12r

2
2)

0.12x1y2 − 0.12y1x2 + y1(µ1 + 0.01e11r
2
1 + 0.016e12r

2
2)

)
− A1(x1, y1)T + 10�1(W1,W2)T ,

(
x2

y2

)′
=
(

−0.08(x2
1 − y2

1) + x2(µ2 + 0.01e21r
2
1 + 0.016e22r

2
2)

−0.16x1y1 + y2(µ2 + 0.01e21r
2
1 + 0.016e22r

2
2)

)
− A2(x2, y2)T + 7.9�2(W3,W4)T ,

(A.4)

where the values of the damping and forcing matrices are estimated from the direct numerical simulations with
λ = 1
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Table A.1
Estimates for the variance, decay rate of correlations and noise level for the Burgers bath modesu1 andu2

λ Var{Reu1} Var{Reu2} γ1 γ2 σ1 σ2

0.25 0.01419 0.01412 0.7072 1.5007 0.1417 0.2059
0.5 0.01491 0.01486 0.7496 1.5039 0.1495 0.2115
1 0.01272 0.01275 0.7190 1.4687 0.1353 0.1936
2 0.01316 0.01320 0.7139 1.4083 0.1371 0.1929
3 0.01285 0.01309 0.8390 1.4616 0.1469 0.1956
4 0.01218 0.01256 0.9157 1.5359 0.1494 0.1964
5 0.01184 0.01221 0.9915 1.5637 0.1532 0.1954

A1 = λ2

(
0.0088 −0.006197

−0.006197 0.00433

)
, A2 = λ2

(
0.004344 −0.002389

−0.002389 0.001314

)
,

�1 = λ

(
0.012299 −0.008609

−0.008609 0.006027

)
, �2 = λ

(
0.009226 −0.005074

−0.005074 0.002791

)
.

Here we use the fact that properties of the fast unresolved modes,uk, do not change drastically withλ. This is
illustrated inTable A.1where we present estimates for the statistics ofuk for several values ofλ.

The last step is to rescale time to normalize some terms on the right-hand side to one on average. The form of
the reduced equations inA.4 already reveals that the linear, quadratic, cubic terms and noise might be very different
in magnitude. We choose to normalize the quadratic terms to be of order one. With this normalization all other
heteroclinic terms will be smaller or equal in order. To achieve this we introduce new time variable

τ = 0.1t

and keeping in mind that the white noise rescales as the square root of time, i.e., dW(τ) = √
0.1dW(t) we obtain

the non-dimensional form of the reduced equations:(
x1

y1

)′
=
(

1.2x1x2 + 1.2y1y2 + x1(10µ1 + 0.1e11r
2
1 + 0.16e12r

2
2)

1.2x1y2 − 1.2y1x2 + y1(10µ1 + 0.1e11r
2
1 + 0.16e12r

2
2)

)
− A1(x1, y1)T + �1(W1,W2)T ,

(
x2

y2

)′
=
(

−0.8(x2
1 − y2

1) + x2(10µ2 + 0.1e21r
2
1 + 0.16e22r

2
2)

−1.6x1y1 + y2(10µ2 + 0.1e21r
2
1 + 0.16e22r

2
2)

)
− A2(x2, y2)T + �2(W3,W4)T ,

(A.5)

A1 = λ2

(
0.088 −0.0619

−0.0619 0.0433

)
, A2 = λ2

(
0.0434 −0.0239

−0.0239 0.0131

)
,

�1 = λ

(
0.388 −0.272

−0.272 0.19

)
, �2 = λ

(
0.23 −0.127

−0.127 0.07

)
. (A.6)

In addition to just comparing the coefficients inEq. A.5, eigenvalues ofA1,2 and�1,2 provide another measure of
the noise strength in the reduced model. The eigenvalues of matrices in(A.6) are

Eig{A1} = 0.132λ2, Eig{A2} = 0.057λ2, Eig{�1} = 0.578λ, Eig{�2} = 0.3λ.



A. Majda, I. Timofeyev / Physica D 199 (2004) 339–368 367

A.2. Multiplicative noise example

Following a similar procedure, the nondimensional multiplicative noise equations from(13) in Section 4.2are
given by

ẋ1 = 1.2x1x2 + 1.2y1y2 + x1(10µ1 + 0.1e11r
2
1 + 0.16e12r

2
2) − 0.122λ2y2

1x1 + 0.068λ2x1 + 0.4528λy1Ẇ1,

ẏ1 = 1.2x1y2 − 1.2y1x2 + y1(10µ1 + 0.1e11r
2
1 + 0.16e12r

2
2) − 0.041λ2y1x

2
1 + 0.068λ2y1 + 0.1508λx1Ẇ1,

ẋ2 = −0.8(x2
1 − y2

1) + x2(10µ2 + 0.1e21r
2
1 + 0.16e22r

2
2) − 0.088λ2y2

2x2 + 0.031λ2x2 + 0.3032λy2Ẇ2,

ẏ2 = −1.6x1y1 + y2(10µ2 + 0.1e21r
2
1 + 0.16e22r

2
2) − 0.029λ2y2x

2
2 + 0.031λ2y2 + 0.1012λx2Ẇ2, (A.7)

where all coefficients in(A.7)are estimated from the direct numerical simulations withλ = 1. Recalling the values of
the free parameters given in(3) utilized in the simulations of the coupled systems, we deduce that the multiplicative
noise are roughly comparible in magnitude with the cubic terms for the regimeλ = 1.

To emphasize the weak noise limit for the simulations inSection 4.2.1we substitute values of the free parameters
in (3) andλ = 0.25 in the above equations to obtain the non-dimensional form of the multiplicative Type I model
with λ = 0.25

ẋ1 = 1.2x1x2 + 1.2y1y2 + x1(0.5 − 0.4r2
1 − 0.16r2

2) − 0.0076y2
1x1 + 0.0043x1 + 0.1132y1Ẇ1,

ẏ1 = 1.2x1y2 − 1.2y1x2 + y1(0.5 − 0.4r2
1 − 0.16r2

2) − 0.0026y1x
2
1 + 0.0043y1 + 0.0377x1Ẇ1,

ẋ2 = −0.8(x2
1 − y2

1) + x2(2 − 0.2r2
1 − 0.32r2

2) − 0.0055y2
2x2 + 0.0019x2 + 0.0758y2Ẇ2,

ẏ2 = −1.6x1y1 + y2(2 − 0.2r2
1 − 0.32r2

2) − 0.0018y2x
2
2 + 0.0019y2 + 0.0253x2Ẇ2. (A.8)

Non-dimensionalization for the multiplicative model of Type II yield qualitatively similar results for the simulations
with λ = 0.25.
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