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Abstract

Several prototype models are introduced here which are designed to elucidate the interaction between heteroclinic low-
dimensional chaos in the projected nonlinear dynamics and intrinsic stochasticity induced by energy exchange with a bath of fast
variables. These models are built by coupling a four-dimensional ODE with known analytical properties including heteroclinic
cycles with a suitable deterministic bath of fast variables. A systematic strategy for stochastic mode reduction is applied to these
models with 104 degrees of freedom to derive four-dimensional reduced stochastic equations for the slow variables. Due to the
internal chaotic dynamics of the slow variables the stochastic mode reduction strategy is very robust in this case and yields reduced
models which accurately capture the statistical behavior of the original deterministic system. Furthermore, it is also shown here
that even in the regime of a weak coupling between the slow variables and the fast heat bath, the detailed structure of the stochastic
terms derived through the mode-elimination procedure is essential for reproducing the statistical behavior of the slow dynamics.
© 2004 Published by Elsevier B.V.

PACS:02.50-r; 02.70.Rw; 05.20-y; 05.70.Ln

Keywords:Stochastic modeling; Mode reduction; Non-Gaussian statistics; Heteroclinic orbit

1. Introduction

During the last few decades a considerable attention has been given to the role of coherent structures in at-
mosphere/ocean modeling, turbulence, and other areas of nonlinear science. A dynamical systems approach anc
bifurcation theory has been applied with some success to low-dimensional truncations of complex models to ex-
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Table 1

Interaction coefficients for the “additive” model

prlur — 1 priwl — .75 pwibivt — _ .25

pyiur — 07 prilyiws — 1 pwilyivt — 0.3

praluz — 1 pr2law2 — _ 0.6 pw2lxav2 — 04

pr2luz — _0.55 pralyawz — 1 pwaly2v2 — _0.45

Table 2

Additive Model with. = 2; one-point statistics of the slow variables computed from the DNS of the full syst@fhand reduced model i8)
X1 Y1 X2 y2

Mean DNS —0.000991 0.000238 —0.000631 —0.016588

Mean reduced 000902 0.000038 .001741 —0.017342

Var DNS 001045 0.01057 01638 001638

Var reduced 1049 0.01052 01607 001682

Flatness DNS 2222 2.0514 2612 24886

Flatness reduced 2736 2.0612 2845 24507

plain complicated PDE phenomena. As regards the atmospheric sciences, this approach involves identifying stable
structures such as multiple equilibria, periodic orbits or homoclinic/heteroclinic connections in the phase space of
a low-dimensional projectiof8,19,26,31,9,10and then using observational or numerical data to search for the
“ghost” of this behavior in the full complex dynami25]. Low-dimensional systems have also been introduced

as simple prototype models of turbulent fluid boundary layéysand nonlinear opticfS]. In this approach, the
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Fig. 1. Time series of; = x1 + iy1 andzz = x2 + iy» for the simulations of the uncoupled systen{inin the regime with stable heteroclinic
cycle.
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analytically tractable chaotic behavior of these low-dimensional models is usually credited for the complex turbulent
behavior of the full spatially extended systefB20]. Also, the effects of small random additive noises are often
introduced to model interactions with neglected scfl@®3]

Stochastic modeling and reduction of degrees of freedom is another important research topic in modern nonlinear
science. Often, the complexity of straightforward analytical models overwhelms computational capacity. To list a
few, the dynamics of coupled atmosphere/ocean sysfg@jssimulations of macromolecular dynamids’], or
urban air-pollution studi€l§']. The vast difference of time scales in the problem combined with large dimensionality
is, usually, the main factor which prevents performing well-resolved direct numerical simulations. Low-dimensional
reduced models where interactions with non-essential degrees of freedom are represented stochastically provide
a computationally feasible alternative. This approach has been successfully utilized in atmosphere/ocean science
starting with the pioneering work of Lei{f80] and Hasselmaf21]. Recent examples of reduced stochastic models
include development of linear stochastic models for the low-frequency variability of the extra-tropical atmosphere
[11,6,2,41] higher order Markov models for the angular momentum bud&tl5] and stochastic projection
techniques combined with Markov jump processes for reduced models of macromolecular dya@inics

Most of the examples mentioned above adapt an ad-hoc modeling approach where the non-essential degrees o
freedom are replaced by an assumed linear stochastic model of the additive type, and the unknown coefficients are
regression-fitusing numerical or observational data. An alternative systematic approach to stochastic mode-reduction
has been recently developed by Vanden-Eijnden and the authf®4,85] This mode-elimination technique is a
two-step procedure exploiting the assumption that the variables in the system under consideration can be split
into two sets; a set of essential slow (resolved) variables, and a set of fast non-essential (unresolved) degrees of
freedom. In the first step of the mode-elimination procedure the nonlinear self-interactions of the fast degrees of
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Fig. 2. Snapshots of the joint PDfz, x; for the Monte-Carlo simulations of the system(ir).
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freedom are represented stochastically. The motivation is that the self-interaction terms are responsible for the
sensitive dependence on small perturbations in the system and can be represented stochastically if a coarse-grain
description of the slow dynamics is the objective. In the second step of the procedure the fast unresolved degree:
of freedom are eliminated from the equations utilizing standard adiabatic elimination techjdd@2%18] The
adiabatic elimination is an asymptotic theory rigorous in the limit of infinite separation of time scales between the
slow and fast degrees of freedom.

The advantages of the mode-elimination technique developd ja5]have been demonstrated in two recent
paperq36,37] Unlike most of the approaches mentioned in the above paragraph, the mode-elimination technique
systematically gives the structure of stochastic terms in the reduced model of the slow dynamics. It has been
demonstrated if86,37]that multiplicative noises and nonlinear corrections play an important role in the nonlinear
dynamics of the slow variables and that the strength of additive noises and linear damping can be predicted a priori
by the theory. Another important practical issue is the separation of slow and fast variables in the system. The
mode-elimination procedure works surprisingly well for models where unresolved degrees of freedom are roughly
two times faster than the resolved ones and gives a qualitatively correct picture when the two time scales are the
same. IN[37] the important question of interplay between stable dynamical structures in the phase space of the
resolved modes and stochastic terms was also addressed. Several special types of idealized systems were analyz
each of them was carefully constructed to mimic potential applications in atmospheric science. Examples of such
behavior include stable periodic motion and multiple equilibria in the truncated dynamics.

Recent interesting work for the low-frequency variability of the atmosp[i¥€5] has suggested the role of
heteroclinic cycles as a potential transition mechanism among atmospheric regimes. In these situations, non-trivial
topography creates interactions which typically break the symmetries of heteroclinic cycles in a deterministic system

-0.3

Fig. 3. Snapshots of the joint PDft, y, for the Monte-Carlo simulations of the system(in).
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with many degrees of freedom with additional chaos from the intrinsic stochastic noise due to back-scattering of
turbulent cascades. Also for simple ocean models, various interesting low-dimensional chaotic regimes have been
discovered recently with unrealistically high dissipatj@B8,38] In more active mesoscale eddy resolving models,
the competition between such chaotic dynamics and intrinsic stochastic noise from the turbulence becomes very
interesting. Such effects are also likely to become prominent for midlatitude coupled atmosphere/ocean system.
For these and other potential applications for atmosphere/ocean science as well as other scientific disciplines, it is
interesting to develop unambiguous simplified models with both stable heteroclinic orbits in a truncated system and
intrinsic stochastic noise through the back-scattering interaction with many turbulent chaotic degrees of freedom.
The goal of the present work is to develop such a class of unambiguous models to address the question and to
apply the systematic stochastic mode-reduction techniques describeda#e8&]to study the role of truncated
eteroclinic chaos in competition with intrinsic stochastic noise. Here the canonical system of four-dimensional
ordinary differential equations (ODESs) with stable heteroclinic cycles arising from 2:1 resdBs@®s coupled
to the Burgers—Hopf deterministic chaotic bath of md@2s33,1]through a variety of energy conserving quadratic
nonlinear interactions to define the basic models. The coupling breaks the original symmetry of the four-dimensional
system; this situation is typical for geophysical fluid dynamics where low-dimensional projections typically have
very special properties compared with the full dynamics. The four variables in the heteroclinic ODE naturally serve
as slow resolved modes in the coupled systems and reduced stochastic differential equations are derived by the mode
elimination procedure. In all examples the statistical behavior of the four reduced modes in the direct numerical
simulations of coupled systems with 104 degrees of freedom is compared with the statistics of the reduced systems
obtained by mode-elimination to address the fundamental role of low-dimensional heteroclinic chaos coupled with
intrinsic stochastic noise. In all the cases developed below, the agreement is excellent so the four mode reduced
stochastic equations provide simplified models for the interaction of heteroclinic chaos with intrinsic stochastic noise.
The rest of the paper is organized as followsSkction 2we introduce the model and discuss its analytical
properties. IrSection 3Vionte-Carlo simulations of the four-dimensional dynamical system are performed and the
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Fig. 4. Initial Transient Period in a single realization of the heteroclinic OD@)n
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statistical behavior of ensembles is analyzeddation 4..we consider the first type of coupling. The heteroclinic
system is coupled to the Burgers—Hopf bath in an additive fashion, leading to Langevin-type corrections to the
heteroclinic ODE. Multiplicative coupling is analyzed in detailSection 4.2Multiplicative noises and nonlinear
corrections arise in the reduced equations and it is also emphasized that even a weak coupling can have a drast
effect on the statistical behavior of the slow dynamics. Finall\Gégtion Sbehavior of an additive type model is
analyzed as one of the parameters goes through the bifurcation sequence of the four-dimensional heteroclinic ODE

2. The model

To investigate the interplay between low-dimensional heteroclinic chaos and intrinsic noise induced by the
coupling with the fast unresolved modes with many degrees of freedom prototype models are built in a simple
fashion. A four-dimensional system of ordinary differential equations with known dynamical properties including
stable heteroclinic connections is coupled to a deterministic heat bath. The coupling is selected to mimic possible
energy exchange scenarios in fluid dynamics; the interactions with the bath are constructed in an energy-preservin
fashion, but they break the original O(2) symmetry of the heteroclinic ODE. The following four-dimensional system
was shown to exhibit a wide variety of dynamical properties, including stable heteroclinic {3@2f

71 = 2iz2 + (u1 + enlzal® + er2lz2l?)z1, 72 = —z5 + (u2 + e21lz11? + e22lz219)z2. 1)

The heat bath of unresolved modes is obtained by projecting the inviscid Burgers—Hopf eguation, = 0
in periodic geometry on a finite number of Fourier coefficients. This truncated Burgers—Hopf model has been
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Fig. 5. Snapshots of the marginal PDFxaffor the Monte-Carlo simulations of the system(fr).
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investigated by the authors in a series of pafjg2s33,1]and was shown to be highly chaotic and mixing and to
obey a simple scaling relationship for auto-correlation functions. The equations for the Fourier coefficients of the
expansion: = Y iixe’®, 1 < |k| < A with it} = ii_4 read

. ik n . ik A
Vg = —ReE E iyl wr = —Im > E iy, (2)
p+q+k=0 p+q+k=0

whereu), = v + iwg. As in[32,33,1] the valueA = 50 is utilized below so that these are 100 modes in the heat
bath. The paradigm models for the present study involve coupling the four mo@Bsnaith the 100 modes if2)
through simple energy conserving triad interactions which break the O(2) symmé¢ty in

The equations iif1) have been throughly analyzed[B] and the bifurcation diagram has been mapped out. As
parameters1 andu, change, the system goes through a series of bifurcations exhibiting a wide variety of dynamical
regimes. In particular, gs; is decreased, trivial solutions (fixed points) bifurcate to periodic solutions, then periodic
cycles becomes unstable and the dynamics is dominated by modulated periodic solutions. If the paraimeter
decreased further, stable heteroclinic orbits emerge which connect diametrically opposite points on thg|itcle
—u2/e22, z1 = 0. The phase of these two points is a free parameter which is determined by the initial conditions
in each particular realization. The stability of these orbits is guarantged- poe12/e22 < 0 andus > 0. Other
solutions such as periodic orbits and modulated traveling waves may coexist with heteroclinic cycles, but become
unstable Fig. 1 shows time series aof; andz, for a typical simulation in the regime with a stable heteroclinic
cycle. The values of the parameters utilized in this simulation are presen{8i For this particular realization
the two equilibria connected by a heteroclinic cycle ae £2) = (0, 0, —0.3, 0.1) and ¢1, z2) = (0, 0, 0.3, —0.1).
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Fig. 6. Snapshots of the marginal PDFxgffor the Monte-Carlo simulations of the system(ir)



346 A. Majda, I. Timofeyev / Physica D 199 (2004) 339-368

When only the quadratic terms {ft) remain (i.e. all the free parameters are zero), the systems becomes a pure 2:1
resonance interaction model. In this case the systefh)iconserves the energy = |z1|2 + |z2|2 and is, in fact,
completely integrable (see, for examle3]).

3. Statistical behavior of solutions of the heteroclinic ODE

When an attracting phase space structure such as a heteroclinic orbit is present, a generic s¢ljtioasof
two dynamical stages. During the short first stage solutions are not close to a heteroclinic connection and follow
paths which might be unstable, such as coexisting unstable periodic motion. Then, solutions are quickly attracted
onto a heteroclinic cycle and follow an irregular pattern of bursts out afthe O plane. Monte-Carlo simulations
provide insight into the statistical behavior of ensembles of solutions for the uncoupled sygtimTime choice
of parameters

u1 = 0.05, u2 = 0.2, e11 = —4, e12=—1, €21 = e = —2, 3

guarantees the existence of stable heteroclinic cycles. An ensemble of 20,000 initial conditions was generated by
sampling the uniform distribution on a four-dimensional culie5 < Re Im z1 2 < 0.5 and integrated in time for
T = 600.

Since heteroclinic cycles are attracting all the trajectories in this regime, all solutions spend most of their time
near the circle of equilibria. Thus, we expect that the invariant measure émdz, will be concentrated mostly on
the circle of equilibriazy = 0, zo = «/—J12/e22¢'® with the uniform distribution for the phase, on [0, ..., 27].
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Fig. 8. Additive Model with. = 2; marginal PDFs af; = Rez; andx; = Rez; for the direct numerical simulations (DNS) of the full equations
in (4) and reduced stochastic model(8).

A small, but finite, probability also exists for the solution to be out of #he= 0 plane withz; strictly inside

the circle of equilibria. This probability corresponds to the heteroclinic bursts. This is, indeed, the case for long
times. Surprisingly, different coherent structures in the Monte-Carlo probability density functions (PDFs) emerge on
intermediate time scales; these structures can not be predicted from the long-time properties of the &l)stEnisin
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Fig. 9. Additive Model withA = 2; joint PDF of thex;, x, computed utilizing bin counting from the DNS of the full model(#) (left part)
and reduced stochastic model(B) (right part); the figure is color-coded on the interval [0., 13] with red color denoting the maximum of
the PDF and blue color denoting the minimum value.
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is bestillustrated by the joint probability distributionsefindz,. Utilizing running statistical averages we determine

that the simulations reach the expected statistical steady state for:tmn880 and the times € [0, ..., 300]
represent the transient statéigs. 2 and 3show joint probability distributions of Ra, Rezo and Rezg, Im z2

for timesr = 30, 63, 132 252. For timeg € [0, ..., 100] prominent structures emerge in both distributions. The
heart-like shape with peaks at( x) = (£0.1, 0), (0, 0.3) is characteristic for the joint PDF Re, Rez» (top part

of Fig. 2). While the second peaky{, x2) = (0, 0.3) is related to the heteroclinic connections, the appearance of
the peaksx1, x2) = (0.1, 0) can not be attributed to the presence of stable heteroclinic cycles. The diamond-like
shape in the distribution of Rg, Im z> with large peak atx1, y2) = (0, 0) also persists for a long time. Toward

the end of the transient periad= 252, all PDFs converge to a uniform distribution on the cite¢ = /—u2/e22

with some residuals of the coherent structures discussed above, and by the end of the transient period all PDFs at
in a perfect agreement with the expected result. The appearance of the coherent structures is related to the nor
equilibrium properties of the uncoupled model, but below we observe similar shapes for the equilibrium statistics
of the coupled systems with 104 degrees of freedom. The initial transient behavior of the system can be understooc
by analyzing the generic behavior of each individual trajectory. Time series of a single realization on time interval
[0, ..., 600] are depicted ifrig. 4. During the initial transient € [0, .. ., 100] the trajectory approaches the stable
heteroclinic cycle along a modulated periodic motionimandy, variables. This periodic motion is much faster than

the irregular spikes in they andys variables, and it is not surprising that the distributionpéndy, is concentrated

at zero for short transient times. Marginal PDFsifpandx; are depicted ifrigs. 5 and 6Marginal PDFs ofc; for
shorttimes (i.er = 30, 63) are much broader than the PDFsdbr times corresponding to the heteroclinic regime

(t = 252). Thus, on averagq spends much more time away from zero during the transient regime than during the
later equilibrium phase. The situation withis exactly the opposite. The heteroclinic regime is characterized by
staying away from zero for extended periods of time (Sige 1) which is manifested in two peaks in the marginal

(c)

Fig. 10. Additive Model; joint PDF fok1, x2; (a) full equations in(4) with » = 1; (b) reduced model i(8) for » = 1; (c) full equations in(4)
with A = 4; (d) reduced model itB) for » = 4; the figure has the same color-codind=&g. 9.
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PDF of xo during the equilibrium heteroclinic phase. On the other hand, during the transient phésiéws a
modulated periodic motion and, thus, crosses zero much more often compared with the equilibrium distribution.
The behavior ofy; is analogous ta, and the behavior of; is analogous ta,. The corresponding data feg and

yo2 is not presented here for brevity of presentation.

4. Intrinsic stochastic noise versus chaotic dynamics with homoclinic chaos

The systematic mode-reduction strategy developg84r85] has two steps. The first step consists of replacing
the original deterministic model by an intermediate stochastic system where the deterministic self-interactions of the
fast unresolved variables are replaced by stochastic terms. The stochastic mode reduction is the second step wher:
all the fast unresolved variables are eliminated and closed-form stochastic differential equations for the reduced
variables are derived. In this section we introduce two types of coupled models: “additive noise” and “multiplicative
noise” to systematically examine the interaction between the internal chaotic dynamics of the reduced variables
and the intrinsic stochasticity of the heat bath and to test the overall performance of the mode reduction strategy
in several different regimes. When the stochastic mode-reduction strategy is successful, we have a simplified low-
dimensional stochastic model for the interactions. For these purposes the first step of the mode-reduction strategy will
be addressed here only briefly. For detailed discussion of this procedure and various approaches for determining the
stochastic parameters 486,37] The equations i(2) with A = 50 are utilized as a heat bath in the examples below.
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Fig. 11. Additive Model withx. = 2; conditional PDFs (the same as cross-sections of joint PDFs) of the slow variables; solid line — reduced
model in(8); dotted line — DNS of the full system if#); (a) PDF ofx; conditionalx, = 0; (b) PDF ofx; conditionalx; = O; (c) PDF ofx;
conditionaly, = 0; (d) PDF ofy; conditionalx; = 0.
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Direct numerical simulations of the coupled systems are performed utilizing a standard pseudo-spectral method
in space and fourth order Runge—Kutta stepping in time. Unless otherwise specified the statistics are computec
utilizing time-averaging from a single realization. §86,37]for a detailed discussion of this procedure.

4.1. Additive coupling

The first example considered here is the deterministic “additive” model with 104 degrees of freeddm«14)
given by

71 = 2522 4 (na + enalz1l? + exalz2/d)z1 + A (bx””l + ibyl"”) viwy,

72 = =22 + (u2 + ex1lz1l? + 221221922 + A2 + iB21“2)vou,,

i1 = {TBH} + )\_(bvﬂxlwlxlwl + bvllylwlylwl) + M(bwlmlelvl + bwl|y1U1ylvl)’

iy = {TBH} + A(bv2|x2w2x2w2 + bvz\yzwzyzwz) + i)»(bw2|x2v2x2v2 + bw2|)’2”2y2v2),

. ik o~

ukz{TBH}z—% Soatal, 2<k< a4, )
p+q+k=0

where{TBH} denotes the Truncated Burgers—Hopf terms introducé®l)im he coupling is selected in such a way
that the mode; is coupled only tat; and modez; is coupled touy; the interactions considered {4) produce
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Fig. 12. Additive Model witha = 2; normalized correlation functions faf » andy; »; solid lines — direct numerical simulations of the full
equations ir(4); dashed lines — reduced stochastic mod€8in
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Fig. 13. Additive Model withA = 2; normalized correlation of energy fof » andys »; solid lines — direct numerical simulations of the full
equations ir(4); dashed lines — reduced stochastic modé8jn

corrections of the Ornstein—Uhlenbeck type for the reduced variables. A particular simple choice of interaction
coefficients is presented fable 1and the parameteris introduced explicitly to control the strength of interaction
betweer1, z»> and the unresolved modes,.

Equations in(4) with > = 2 were integrated fof = 100,000 with parameters in the equationsfqr, presented
previously in(3). Comparison of correlation functions for andz, with correlation functions for1 7 is presented
in Fig. 7. Even with coupling, the heat bath of 100 modes has essentially equipartition of energy with variance
Var{Re Imu;} ~ 0.012 which according t@able 2is comparable to the variance of, z>. Although average
energy of the;1, zo variables is comparable with the average energy in the bath maddise modes; andz, have
much longer correlations and, thus, are natural slow variables of the system. Moreover, the cross-correlations between
all possible combinations of the real and imaginary parts;aindz, are two orders of magnitude smaller than
their variances. Thusx{, y1) = (Rez1, Im z1) and (2, y2) = (Rezz, Im z2) are also natural empirical orthogonal
functions of the systems i) with diagonal covariance matrix.

Table 3

Interaction coefficients for multiplicative models of Type I(&R) (first and second rows) and Type Il {25) (third and fourth rows)

priyivt — 075 pylxv — .25 pribvy — 1
prelyavz — (.75 prelxave — _0.25 pralxeye — 1
prilvavr — 075 pr2lxivt — .25 priby2 — 1

pralyivz — _0.75 prlxavz — .25 pralxeyt — 1
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Table 4
Multiplicative Model of Type | withA = 1; one-point statistics of the slow variables computed from the DNS of the full systéh2)mand

reduced model if13)

X1 » X2 2

Mean DNS 000058 —0.00162 —0.00624 —0.0006
Mean reduced 00061 000012 —-0.01191 —0.000061
Var DNS Q01072 001064 001529 001754
Var reduced M1075 001105 001369 001994
Skewness DNS 0017 Q0124 —0.0671 —0.0069
Skewness reduced —0.0059 —0.0048 Q0055 —0.0012
Flatness DNS 8106 201715 266309 251052
Flatness reduced .94827 191961 271078 221453

In the first step of the stochastic modeling strategy, the deterministic self-interactions of the bathupodes,
the equations for; anduy are approximated by an Ornstein—Uhlenbeck process, i.e.,

ik

= Z Wiy ~ —yuy + ok Wi, ®)
p+q+k=0

o

% = Var{uy}. (6)

With the approximation in(5) the additive coupled system (@) becomes, essentially, an eight-dimensional
stochastic differential equation, since the bath madesndu, decouple from the rest of the fast modes. Parameters

5 5
DNS Reduced
4 1 4
~ 3 ~ 3
= x
ks ks)
1 1
0 0
-0.5 0 0.5 -0.5 0 0.5
5 5
DNS Reduced
4 ] 4
w3 < 3
5] o
B2 82
1 1
0 0
-0.5 0 0.5 -0.5 0 0.5

Fig. 14. Multiplicative Model; marginal PDFs af = Rez; andx; = Rez; for the direct numerical simulations (DNS) of the full equations in
(12) and reduced stochastic model(iB).
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yx are determined crudely as the inverse of the area under the graph of the modulus of the correlation function for
uy (see[36,37). As mentioned earlier the heat batfh, achieves an equipartition of energy W(ttf) ~ 0.025 and
parametersy are determined from the equation(B). Estimates for these parameters are

y1=07139 1, =14083 01=01371 o, =0.1929 ©)

Unlike for the conservative “additive” systems reporte{B@], in this case the stochastic mode-reduction procedure

is insensitive to small changesji andoy. Small fluctuations in these parameters have essentially no effect on the
statistical behavior of the reduced system and we expect that the stochastic mode-elimination procedure applied
to any system with internal chaotic dynamics in the reduced variables will produce very robust results which do
not require any fine-tuning of the stochastic paramegerandoy. Applying the stochastic mode-reduction step
developed i135,36]to the stochastic equations for, andu » we obtain the reduced model for the slow variables

z1 andzz (written through the real and imaginary parts for explicit representation)

) — Ag(x1, y1)T 4 (W1, Wo)T,

/
x1\ [ xax2 + yiy2 + xi(ua + eanr + e12rd)
y1 x1y2 — y1x2 + y1(u1 + e1ar? + e12r3)

/
x2\ [ —0F = ¥3) + xa(pa + e21rf + e22r3)
¥2 —2x1y1 + y2(u2 + e21r? + ezor?)

) — Aa(x2, y2)T + Zo(Wa, Wa)T, (8)

0.3 0.3
0.2 0.2
0.1 0.1
0 S0
-0.1 -0.1
-0.2 -0.2
-0.3 -0.3
0.3 0.3
0.2 0.2
0.1 0.1
=0 =0
-0.1 -0.1
-0.2 -0.2
-0.3 -0.3

-0.2 0 0.2
X X

1 1

Fig. 15. Multiplicative Model; joint PDF of thej, x, computed utilizing bin counting from the DNS of the full model(itR) (left part) and
reduced stochastic model (23) (right part); the Figure is color-coded on the interval.[0., 13] with red color denoting the maximum of the
PDF and blue color denoting the minimum value.
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wherer? = |z|? = x2 + y2, W; are independent Wiener processes and constant matticesand 1 » are ex-
pressed explicitly through the interaction coefficiebits and parameterg, andoy:

)\2(7% lelul(bvlmwl + bwllnvl) lelul(bvl\ylwl + bwllylvl) ) (7]2_
Ar=-— 2 yilug (pilxiws wilx1v1) pyalua(prilyiwa wilyivry )’ X = _"A1
4y; \ b b +b )b b +b ) Y1
)»ZUS praluz(pvalxawz 4 pwalxavz) praluz(pralyawz 4 pwalyzvz) ) a%
Az =- 4y2 \ preluz(pralvawe o pualxvz) pyolua(pralyawe o puzlyavz) |2 X = EAZ’

Substituting the interaction coefficients frofable 1and computing,/A1 and+/A> humerically we obtain

2202 (1 -07 102 0.8192 —0.5735
Al = —= , Y1 ) ()]

~ 42 \ -07 049 " 2171 \ 05735 04014
2202 ( 1 055 ros [ 0.8762 —0.4819
Ay=—% . = . (10)
4y? \ —0.55 03025 2y2,/v2 \ —0.4819 02651

The reduced equations (8) with A = 2 and the estimates fof andoy from (7) were integrated fof = 1,000,000
using the second order Runge—Kutta method for the deterministic terms and a straightforward stochastic Euler

20 T 20
15
10
5
0
(2)
20 20 -
i
I
15 15
10 10
5 5
0 0

(c) (d)
Fig. 16. Multiplicative Model; conditional PDFs (the same as cross-sections of joint PDFs) of the slow variables; solid line — reduced model in
(13); dotted line — DNS of the full system {12); (a) PDF ofx; conditionalx, = 0; (b) PDF ofx, conditionalx; = 0O; (c) PDF ofx; conditional

y2 = 0; (d) PDF ofy; conditionalx; = 0.
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Fig. 17. Multiplicative Model; normalized correlation functions far, andy: »; solid lines — direct numerical simulations of the full equations

in (12); dashed lines — reduced stochastic mod¢LB).

method (se¢28]) to discretize the white noise terms. All statistics were computed as time averages from a single

realization.

Comparison of the PDFs of the slow variablgs= Rez; andx, = Rez, from the direct numerical simulations
(DNS) of the full equations with 104 degrees of freedon{4hand four-dimensional reduced stochastic model
in (8) is depicted inFig. 8 Results for the PDFs ofi = Im z3 andy, = Im z2 are qualitatively similar and not
presented here. Comparison of the low order statistics for the slow variables is presélaild i In addition to
obvious comparison of these statistical quantities we also performed a severe test for the one-point statistics where
we compared the joint PDFs of the slow variableig. 9 shows comparison of the joint PDF ef, xo computed
from the simulations of the full system with 104 degrees of freedof@)iand reduced equations(8). Comparison
of cross-sections of selected joint PDFs is depictefign 11 The stochastic mode-reduction strategy reproduces
the statistics of the full system with remarkable accuracy, including the complicated structure and magnitude of
the peaks in the joint PDFs of the slow variables. Next, we present comparison of the two-point statistics for the

Table 5

Comparison of Multiplicative Models of Type | and Il with= 0.25; one-point statistics of the slow variables computed from the DNS of the

full systems in(12) (Type 1) and in(15) (Type I1)

X1 1 X2 y2
Var, Type | 0.00903 0.00902 0.01573 0.02943
Flatness, Type | 2.25 2.26 291 1.95
Var, Type Il 0.00897 0.0089 0.0291 0.0166
Flatness, Type Il 2.72 2.72 1.97 2.68
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slow variables. In addition to the usual test for the correlation functions depicteid.ii2 we also compute the
normalized correlation of energy

(@*()q?(t + 5))
q%)% + 2(q(s)q(t + 5))?

This quantity measures the correlation in time of the enerffy), in the mode: it is appropriately normalized so

that K(r) = 1 for all time for a Gaussiag [36,37] The two-point statistics of the slow variables, including the
oscillations in the correlation functions and non-Gaussian behavior is captured extremely well by the reduced
four-dimensional stochastic model. Overall, there is a remarkable agreement between the statistical behavior of the
slow variables in the deterministic coupled system and in the reduced low-dimensional model. Moreover, we have
performed a systematic study of the mode(4h by varying the strength of coupling= 0.25, ..., 7. Although,

this parameter enters a$ in the time-scale of the slow variables in the reduced equation(®emd (10), for

the regimel = 2 the strength of the noise terms is roughly comparable with the cubic nonlinear terms and much
smaller than the quadratic terms in the reduced equati(8).i®f course, the non-dimensional form of the reduced
equations is needed to correctly assess the relative strength of various terms in the equation which confirm the abov
statement; derivation of the non-dimensional form of the reduced model is presefipdendix A For other
references related to this issue see also the detailed discussion of the non-dimensionali@g]omtie estimates

for the non-dimensionalization are not precise and serve only as guidelines for understanding the relative strengtt
of the noise. It is evident from the formulas far » andX4 2 in (9) and (10)hat smaller values of correspond

to cases with very weak noise. We obtained an extremely good agreement between the full equEj@mlithe

reduced model ir§8) for the range of the coupling strength= 0.25, ..., 5. For larger values of discrepancies

K,(s) = ( (11)

0 50 100 150 0 50 100 150
%, Yz
1.5 1.5
B o =~
1 = 1 i i s e |
L Nk
/N s

0.5 0.5 1

0 50 100 150 0 50 100 150

Fig. 18. Multiplicative Model; normalized correlation of energy far, andy »; solid lines — direct numerical simulations of the full equations
in (12); dashed lines — reduced stochastic mod¢LB).
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begin to appear first in the two-point statistics and then in the PDFs of the slow variables. To illustrate the drastic
effect the coupling has on the statistics of the slow variables we present the joint RREpfor regimes, = 1,4

in Fig. 10 This PDF has two disjoint peaks far= 1 with the overall structure closely resembling the statistics on
intermediate times of the Monte-Carlo simulation of the uncoupled model descriBedtion JseeFig. 2). Under

the stronger couplingHig. 9) the two peaks merge and form a complicated “boomerang” shape. Finally=ot

only one large peak remains in the joint PDFxgf x,. Other statistics of the slow variables also undergo nontrivial
transitions as the strength of the coupling is increased. We would like to emphasize that the reduced model captures
these transitions in all statistical quantities extremely well and these results are not presented here only for brevity of
presentation.

4.2. Multiplicative coupling

In the second example, the multiplicative type of coupling is examined more closely and the importance of
the noise is demonstrated on cases with very weak coupling. The multiplicative model is constructed in a manner
similar to the additive example iBection 4.1 except the interactions are chosen in such a way, that they produce
nonlinear corrections and multiplicative noises in the reduced ni8del37] Written through complex notation
the multiplicative model with 104 degrees of freedom is given by

. 2 2 TRy
21 = 2522 + (na + enrlzal® + er2lz2l?)z1 + Avy (B yy + D" THVIxy),

22 = =25 + (n2 + ea1lzaf® + e22lz21%)z2 + Ava(b™222y; + i572P22xy),
ik

Uy = —— Z ﬁ;ft; + )»81,kbvllxly1xly1 + k52,kbv2|x2y2x2y2. (12)

p+q+k=0

8 8

Type | Type
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% X
B4 Ba
=] k=)
Q. a
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0

(a)-0.5 0 0.5 (b)-0.5 0 0.5

8 8
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B4 B4
ES] S
Q Q.

¢} 0
(c)-0.5 0 0.5 (d) -0.5 0 0.5

Fig. 19. Comparison of Multiplicative Models of Type | and Il with= 0.25; marginal PDFs of; andxy; left column — simulations of the
multiplicative model of Type I in(12); right column — simulations of the multiplicative model of Type II(itb).
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Thus, in this example; andy; are coupled only to; = Reus andx, andy; are coupled only to; = Reus. We will

refer to this model as the multiplicative system of Type I. This model is considered with the same parameter values
in (3) and interaction coefficients presentedable 3 For a wide range of coupling strengthsthe average energy
distribution and difference in correlation times is qualitatively similar to the additive case discussection 4.1

and modeg; andz; play the role of natural slow variables of the systen{li) with diagonal covariance matrix.

The stochastic mode-reduction procedure is carried out in a similar manner. With the approxim@)eveiapply
Theorem 4.3 fronji35] to the six-dimensional system of, z2, Reu1 and Res, and obtain the reduced stochastic
model for the slow variables alone

1 = x1x2 + y1y2 + x1(u1 + e11r? + e1rd) + Niy2xg + Arxg + S1y1Wa,

1= x1y2 — y1x2 + y1(u1 + e1nrs + e1ord) + Nayixd + Aryr + S2X1_W1,
X2 = —(x2 — y2) 4 x2(u2 + 2172 + e20r3) + Nayaxa + Azxz + S3y2Wa,

2 = —2x1y1 + ya(uz + ea1rs + eord) + Nayoxs + Azyz + SaxaWo, (13)
where
Ny = AZM = —0.75E, Ny = AZM = —0.25)\—2,
71 Y1 Y1 Y1
0.3 0.3}
0.2 0.2
0.1 0.1
o 0
-0.1 -0.1
-0.2 -0.2
-0.3 -0.3
0.3 0.3
0.2 0.2
0.1 0.1
s 0 < 0
-0.1 -0.1
-0.2 -0.2
-0.3 -0.3
-0.2 0 0.2 -0.2 0 0.2
X X

Fig. 20. Comparison of Multiplicative Models of Type | and Il with= 0.25; joint PDFs ofx1, x andx1, y1; left column — simulations of the
multiplicative model of Type | ir(12); right column — simulations of the multiplicative model of Type II(itb).



A. Majda, I. Timofeyev / Physica D 199 (2004) 339-368 359

pralyzvapualxay2 22 py2lxz2vz pualxzy2 22
Na=222 7" _075%,  Ng=22 " — 025,
Y2 V2 V2 )7
s1= Mpub = 75t g, - A% pnian 252,
2 yi y1 y1
S3= 2%2pubae — 075192 g, = M2pmleve _ 95072
Y2 Y2 Y2 Y2

2 2 2 2 2.2
Ay = 2T prbiipninn 01875 0L A, = 3272 bzl — 0187502
12 Y1 V2 V2

In (13)and all equations below, the multiplicative noises are written in thedhsg18]. It is difficult to access the
exact strength of the noise in a multiplicative model; the non-dimensionalizatiqd3ppresented imrAppendix

A suggests that regime with= 1 has multiplicative noises which are comparable with the cubic ternit3)

but smaller in magnitude than the quadratic terms. The systéir?)rwith A, = 1 was integrated fof = 100,000

and statistics of the slow variableg,», and the heat bath were computed utilizing time-averaging from a single
realization. The heat bathy, is roughly equipartitioned with mean zero a«uﬁ) A (w,f) ~ 0.011. Estimates for

the decay of correlationg, and magnitude of the noisey, in the approximation itf5) are computed in the same
manner as before; they are

y1 = 0.613 yo = 1.3643 o1 = 0.117, o2 = 0.1745 (14)
PDF X,
oa=0 o=0.25
5 5 -
4 ~ 4
/,
3 3
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1 / 1
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Fig. 21. Marginal PDF ok1; bifurcation with respect to the strength of the nonlinearly in the coupled Additive Model; solid line — full coupled
system; dashed — reduced model; two lines overlap on most of the graphs.
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The structure of the stochastic terms is entirely different from the additive model consid8ezdion 4.1In addition

to the multiplicative noise, nonlinear correction also arise that play the role of nonlinear damping which balances the

noise. The non-dimensional balance of terms is also very different compared to the additive model discussed above
Detailed comparison of the one-point statistics, including the selected joint PDFs is presefadteidand

Figs. 14-16 This regime does not correspond to a weak noise limit and we observe some minor discrepancies

in the joint PDFs of the slow variables. The rest of the statistical quantities computed from the reduced model in

(13) are in very good agreement with the direct numerical simulations of the full equatigh)irComparison

of the two-point statistics is depicted Figs. 17 and 18The reduced model captures the non-trivial oscillatory

structure of correlations and non-Gaussian nature of the process extremely well. Non-Gaussian behavior of solution:

is manifested more strongly for the multiplicative model than for the additive caseSemtion 4.1(cf. Figs. 13

and 1§. Multiplicative noises and nonlinear corrections are essential for the correct reproduction of this behavior

in any reduced model and can not be reproduced by a linear stochastic model of the Ornstein—Uhlenbeck type.

4.2.1. Influence of intrinsic stochastic noise
To illustrate the importance of the exact structure of the noise in areduced model we consider the slightly different
coupled multiplicative system

71 = 2572 + (w1 + e1nlzal® + eralz2?)z1 + ABT P2 o1 + iDV1H2V2x005),

2= —ZE + (12 + e21lz1l® + e22l2219)z2 + A2y 07 4 D721V vy),

. ik an ,
i === Z ity + A8 kb 2 x 1 yo 4 A8 b2 x0y,. (15)
p+q+k=0
PDF x,
a=0 o=0.25
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Fig. 22. Marginal PDF of; bifurcation with respect to the strength of the nonlinearly in the coupled Additive Model; solid line — full coupled
system; dashed — reduced model; two lines overlap on most of the graphs.
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Thus, in(15)the two triads which are coupled together &rey», vy andxz, y1, v2. The interaction coefficients for

the model in(15) are presented imable 3 We will refer to the multiplicative model i\i12) as Type |, and to the
multiplicative model in(15) as Type Il. A weak noise regime is considered here with 0.25 and parameters in

(3). In this case, the non-dimensional form of the reduced stochastic equations yields multiplicative noises smaller
in strength than the cubic terms (see the explicit non-dimensional form of the multiplicative reduced model of Type
I with A = 0.25 in Appendix A). There are a lot of similarities in the statistical behavior of solutions for the two
types of multiplicative models, but there are also drastic differences, especially for the one-point statistics of the
slow variablesz; andzz. Comparison of the one-point statistics for the two models is presenféabie 5and
comparison of selected marginal PDFs from two simulations is presenked.ih9 While the one-point statistics

of x1 andy1 are almost the same for the two models, statistical behavior afdy, is very different. The variance

of x, is almost twice larger for the simulations of Type Il model than for the Type | and flatnessi®ftmaller

in the simulations of Type Il. One-point statisticsyefexhibit the opposite trend. Although the one-point statistics

of x1 andy; are nearly identical, the shapes of the marginal PDFs of these variables are very different between the
simulations of the two models (cf. left and right columnd=af. 19. In the simulations of the Type Il model the
marginal PDF ofc; has a large peak ai = 0 and two secondary peakswat~ +0.2 while for the Type | model the
distribution ofx1 is broader with just one maximum & = 0. Comparison of joint PDFs is presentedHig. 20
Although the coupling is weak, there are significant differences between the joint PDFs for the two models. For
example, joint PDFx1, x2 for Type | multiplicative model in(12) has two peaks atc{, x2) = (+0.15, 0). These

peaks are absent in the same PDF for Type Il modél%), instead, there is a large peak &f,(x2) = (0, —0.3).

The orientation of the “cross” in the joint PDfz, y; is very different for the two types of multiplicative models. In

the simulations of the multiplicative model of Type | the “cross” is orientedhat +y;, while in the simulations

a=0 o =025
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Fig. 23. Joint PDF ok, x2; full coupled system.
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of the Type Il model the orientation is along = 0, y1 = 0. These two examples demonstrate that even in a weak
coupling limit the detailed specific effects of intrinsic stochastic noise can alter the dynamics in the reduced variables
compared with the Monte-Carlo PDFs of the bare chaotic dynamical system preseBesdian 3

5. Behavior through the low-dimensional bifurcation sequence

To further address the relationship between the known properties of the projected system of @DEsth
properties of coupled systems we analyze the statistical behavior of the additive m¢tehsnparameterg »
ande; ; go through a bifurcation sequence of the heteroclinic ODE )JnWe introducex as an explicit bifurcation
parameter by substituting; , = ou12 andeg,j = we; ; in the equations for; andz in (4). We utilize the same
choice of the parameters and interaction coefficients as before (giv@) amd Table 1 respectively) with the
strength of coupling equal to one= 1, and bifurcation parameter, varying from zero to one. Thus, regime= 1
coincides with the simulations describedSection 4.1with A = 1. On the other hand, reginee= 0 corresponds
to the integrable case for the projected systeifi)mentioned irSection 3 In this case the quadratic terms(i
conserve the energy = |z1|2 + |z2|2 and, in fact, the system i{1) becomes integrab[83] whenui 2 =¢;; =0.
Moreover, due to the special property of the coupling coefficientsaiple 1 the coupled system i(4) with
12 = e; j = 0 also conserves energy for the full systeine= [z1]2 + |z2|2 + Y |uk|?. The system ir4) also has
the Liouville property (volume preserving flow) in this case. Therefore, we can apply the equilibrium statistical
mechanics formalisrf32,33] and deduce that far = 0 the most-probable equilibrium state should be Gaussian

=0 o=0.25

Fig. 24. Joint PDF of1, x2; reduced model.
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with mean zero and equipartition of energy among all variables

p* = Ce PlalP+izaP+ lul?). (16)

where parametés plays the role of the temperature afids a normalization constant. Therefore, the limit> 0 of
the additive system i() is singular in a statistical sense; the behavior of the limiting equations can not be predicted
from simulations withx > 0.

The parametes can be easily incorporated into the existence and stability criteria for heteroclinic cycles and
periodic motions presented[i8]. For the choice of parameters(i8) heteroclinic cycles exist for all & « < 1, but
become unstable for « 1. Instead, periodic and quasi-periodic motion becomes stable for the system of heteroclinic
ODEs with smalkr. In contrast with the decoupled heteroclinic systemiljy $§ome statistics of the additive model
do not exhibit drastic changes when the parametir decreased. For example, the marginal PDFs of the slow
variables undergo a very smooth transition. To illustrate this, marginal PDisasfdx; for « = 0, 0.25,0.75, 1
are depicted irfFigs. 21 and 22Following the existence and stability criteria for the heteroclinic cycld8litit is
easy to verify that heteroclinic orbits for the system of ODEELrexist for all values ofr = 0.25, 75, 1, but for
a = 0.25 they are unstable. On the other hand, the stability criteria is satisfiad=$d0.75 and 1. Forx = 0, the
truncated system possess a completely different, conservative, behavior as discusseHigar®&.and 24how
joint PDFs ofx1, x2 for the four values o# (with the same limits and color-coding). Fee= 0, in agreement with the
analytical prediction this PDF is Gaussian for both the coupled system and the reduced model. Two-point statistics
do not change considerably throughout the bifurcation sequence and are captured by the stochastic mode-reductior
technique extremely accurately. While the statistics for simulations avith0.75 and 1 is nearly identical, the
shape of joint PDFs changes considerably feom 0.25 to 0.75. The stochastic mode-reduction strategy is able to
track the changes in the joint PDFs extremely accurately. Thus, the stochastic mode-reduction strategy can serve
as a powerful tool for studying the bifurcation diagrams of complicated high-dimensional models. Even very crude
estimates for the stochastic parameterando; are usually sufficient for reproducing the qualitative behavior of
the system. Improved estimates for the stochastic parameters will lead to the correct quantitative picture.

6. Concluding remarks

Several prototype models have been introduced here to elucidate the interaction between heteroclinic low-
dimensional chaos in projected nonlinear dynamics and intrinsic stochasticity induced by energy exchange with
a bath of fast variables. In these models, the truncated nonlinear dynamics with stable heteroclinic cycles is the
canonical system of four ODEs arising from 2:1 resongdB¢2?] while the chaotic bath of modes is defined by the
Galerkin truncated Burgers—Hopf mod@i@2,33,1]with 100 degrees of freedom. These two basic component models
are coupled through a variety of elementary energy conserving quadratic nonlinear interactions to define the basic
models with both deterministic heteroclinic chaos and intrinsic stochastic chaos on the projected low-dimensional
dynamics; this second effect is induced by the back-scatter of energy onto the slow modes. Various types of elemen-
tary “additive” and “multiplicative” energy conserving couplings have been studied here which break the symmetry
of the heteroclinic chaos. The statistical behavior of the deterministic 104 degrees of freedom system projected on
the four-dimensional subspace of slow modes has been compared quantitatively with a four-dimensional stochastic
model derived through a systematic stochastic mode-reduction stfategd7} the energy-conserving couplings are
classified as “additive” or “multiplicative” according to the nature of the stochastic noise predicted in the stochastic
mode reduction theory. More realistic systems in general involve combinations of both types of c{@4pHBd}

The following main points have been develope&artions 3—%n the present paper:

(1) The stochastic mode-reduction the¢8#—37] which yields a reduced systems of four stochastic DEs for
the slow modes reproduces the low-frequency statistical features of the deterministic 104 degrees of freedom
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system with remarkable accuracy for all of the parameter regimes and couplings considered in this paper.
These statistical features include highly non-Gaussian PDFs, oscillatory time-correlations, and highly non-
Gaussian energy-correlations in time as well as their bifurcations with parameters. In fact, the chaotic dynamics
in the projected variables enhances the robustness of the stochastic mode-reduction procedure compared wit
the situation of stable deterministic dynamics for the projected varigB®37] Thus, the stochastic mode-
reduction technique supplies explicit simplified stochastic models for the nonlinear interaction of heteroclinic
chaos with intrinsic stochastic noise.

(2) The additive interaction models fro§ection 4. -demonstrate that the transient behavior of statistical solutions
of the projected four-dimensional heteroclinic system is more significant in shadowing the effects of intrinsic
stochastic noise in these additive cases than the direct detailed structure of the heteroclinic cycles themselves
It is important to note that while the additive noise levels derived in the stochastic mode-reduction theory are
quite small, they are much larger in magnitude non-dimensionally compared with the previous studies of weak
additive noise perturbations for heteroclinic OOES,24]

(3) The multiplicative models iSection 4.21demonstrate that for these type of couplings, the statistical behavior
of ensembles of solutions of the four-dimensional heteroclinic ODEs can completely fail to mimic many of
the effects of intrinsic stochastic noise, even when these effects are quite small in magnitude a<9fab).

Also properties of the PDFs for the projected variables depend quantitatively on the nature of coupling, even
for weak couplings. Nevertheless, these effects are largely captured quantitatively by the systematic reduced
stochastic model with four stochastic DEs in both smaller and larger coupling regimes for the deterministic
system with 104 degrees of freedom.

(4) The results irSection 5indicate that the stochastic mode-reduction techniques are robust through an entire
bifurcation sequence of behavior in the deterministic truncated ODEs. Moreover, the stochastic mode-reduction
procedure is insensitive to small changes in the statistical properties of the fast variables which makes it a
potentially useful tool for qualitative analysis of bifurcations in complex high-dimensional systems with modest
separation of time scales. ResultsS#ction S5demonstrate that it is sufficient to perform direct numerical
simulations of the full system only once to estimate statistics of the fast degrees of freedom. After that, the
reduced equations for the slow dynamics can be utilized to extrapolate the statistical behavior of the full system
for a wide range of parameters.

The models and results in the present paper should provide useful guidelines for the possible behavior in more
complex physical systems with many degrees of freedom where there is a competition in their low-frequency
variability between low-dimensional chaotic dynamics and intrinsic stochastic chaos due to back-scattering from
turbulent cascades. The scenario recently develodé@jirs an excellent starting point and one can envision similar
behavior for various regimes of ocean dynamics as well as coupled atmosphere-ocean systems. Recently, the bas
stochastic mode reduction strategy used [@te37]has been simplified for direct practical application in complex
climate models and tested in a realistic barotropic model climate on the sphere with orography with very encouraging
results[16]. Thus, more practical applications of the strategy used for the paradigm model in the present paper are
likely to be developed in the very near future. These are all central topics of further investigation. It is also interesting
to study the detailed properties of the four-dimensional reduced stochastic models derived in the present paper.
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Appendix A. Non-dimensional reduced equations
A.1. Additive noise example

The non-dimensionalization of the reduced equations is required to assess the relative magnitude of the noise,
linear, and nonlinear terms. A particular example of the non-dimensionalization of the reduced sy&gforn
the additive noise coupling frorBection 4.1lis presented below. In the first step, new dependent variables are
introduced with the requirement that their covariance matrix is the identity. Since in the examplgdotion 4.1
the covariance matrix of 2> andys » is diagonal, this amounts to dividing the dependent variables by square roots
of their variances:

gew_ % pew_ Vi (A1)
! Var{x;} ! JVar{y;}

In order to avoid cumbersome notation and coefficients it is possible to utilize approximate values for the variances
instead of the exact ones fromable 2 i.e.

Var{x1} ~ 0.01 = V1, Var{y1} ~ 0.01= Vq, Var{xs} ~ 0.016= V>, Var{y2} =~ 0.016= V>.
(A.2)

Substituting(A.1) with the particular values fronfA.2) into the equation8) from Section 4.1we obtain (the
superscript “new” is dropped)

!
X1 VVax1xz + /Vayryz + x1(p1 + Vierrrs + Voerors 1
( ) = ( - ( ! 2 _ Ag(x, y1)T + —=%1(Wy, Wo)T,
1

1 VVax1y2 — /Vayixz + y1(u1 + Vieirr? + Voe1or) v
w2\ —%(xi — ¥2) + x2(p2 + Vaeawrs + Vaezor3) , 1 .
- Vi 2 2 — Ag(x2, y2)" + —=Z2(W3, Wa)".
Y —27=x1y1 + ya(uz + Vieaw + Vaeaory) JV2

(A.3)

Taking into account particular values Bf, V> we obtain the following system of equations:

x1\  {0.12v1xp + 0.12y1y2 + x1(pu1 + 0.01e117% + 0.016e12r5)
yi)  \0.12v1y2 — 0.12y1x5 + y1(r1 + 0.0le1172 + 0.016e12r3)

22\ [~0.0842 — y2) + x2(uz + 0.01e2177 + 0.016e20r3)
¥2 —0.16x1y1 + y2(u2 + 0.01e2172 + 0.016e20r3)

) — A1(x1, y1)T 4 1081(Wy, Wo)T,
) - AZ(XZs )’Z)T + 7922(W37 W4)T7
(A.4)

where the values of the damping and forcing matrices are estimated from the direct numerical simulations with
A=1
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Table A.1

Estimates for the variance, decay rate of correlations and noise level for the Burgers bath: jrenuids,

A Var{Reu1} Var{Reus} Y1 V2 o1 02

0.25 0.01419 0.01412 0.7072 1.5007 0.1417 0.2059
0.5 0.01491 0.01486 0.7496 1.5039 0.1495 0.2115
1 0.01272 0.01275 0.7190 1.4687 0.1353 0.1936
2 0.01316 0.01320 0.7139 1.4083 0.1371 0.1929
3 0.01285 0.01309 0.8390 1.4616 0.1469 0.1956
4 0.01218 0.01256 0.9157 1.5359 0.1494 0.1964
5 0.01184 0.01221 0.9915 1.5637 0.1532 0.1954

A 5 0.0088 —0.006197 A - ( 0.004344 —0.002389
1= —0.006197 000433 |’ 2 —0.002389 0001314 }°

s 0.012299 —0.008609 B 0.009226 —0.005074
! —0.008609 0006027 |’ 2= —0.005074 0002791 |-

Here we use the fact that properties of the fast unresolved mogedp not change drastically with. This is
illustrated inTable A.1where we present estimates for the statisticg,dbr several values of.

The last step is to rescale time to normalize some terms on the right-hand side to one on average. The form of
the reduced equations M4 already reveals that the linear, quadratic, cubic terms and noise might be very different
in magnitude. We choose to normalize the quadratic terms to be of order one. With this normalization all other
heteroclinic terms will be smaller or equal in order. To achieve this we introduce new time variable

=01

and keeping in mind that the white noise rescales as the square root of timeli(e),-d /0.1dW () we obtain
the non-dimensional form of the reduced equations:

(x1>’ <1.2x1xz + 1.2y1y2 + x1(10u1 + 0.1e1172 + 0.16e12r3)

_ — A1(x1, y1)T 4 Z1(We, Wo)T,
1 1.2x1y0 — 1.2y1x2 + y1(10/L1 + 0.161]_7‘% + 0.16612”%)) ( g ) ( )

[ —0.8(x2 — y3) + x2(10u2 + 0.1e2172 + 0.16e22r3)

/
2 Ao(x2. y2)T + Ba(Wa, Wa)T
= — A2\X2, Y2 2\W3, W4) ,

2 —1.6x1y1 + y2(10u2 + 0.1621;’% + 0.16622r§)

(A.5)
Y 0.088 —0.0619 _ 0.0434 —0.0239
1= —0.0619 00433/’ 2= —0.0239 00131/’
0.388 —0.272 0.23 —0.127
Y1=A , Yo=A . (A.6)
—0.272 Q19 —0.127 Q07

In addition to just comparing the coefficientskn. A.5, eigenvalues o1 > and X » provide another measure of
the noise strength in the reduced model. The eigenvalues of matripeS)rare

Eig{A1} = 0.1322,  Eig{A2) = 0.057\2,  Eig{X;} = 0.578.,  Eig{Z} = 0.3%.
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A.2. Multiplicative noise example

Following a similar procedure, the nondimensional multiplicative noise equations(frf8hm Section 4.2are
given by

1 = 1.2x1x2 4+ 1.2y1y2 + x1(10u1 + 0.1e11r3 + 0.16e12r3) — 0.122.%y3x1 + 0.068,%x1 4 0.4528.y1 W1,
1= 1.2x1y2 — 1.2y1x2 4+ y1(10u1 + 0.1e1172 + 0.16¢12r3) — 0.04112y1x2 + 0.0682y; + 0.1508.x1 W1,
k2 = —0.8(x7 — y2) + x2(10uz + 0.1ep1rF + 0.16e22r3) — 0.088%y5x2 + 0.0310%x2 4 0.3032y, W2,

y2 = —1.6x1y1 4 y2(10u2 4 0.1ep1r? 4 0.16¢22r3) — 0.02%2ypx3 + 0.031 %y, + 0.1012x,Wo, (A7)

where all coefficients ifA.7) are estimated from the direct numerical simulations with 1. Recalling the values of
the free parameters given(8) utilized in the simulations of the coupled systems, we deduce that the multiplicative
noise are roughly comparible in magnitude with the cubic terms for the regin4.

To emphasize the weak noise limit for the simulationSéttion 4.2.1ve substitute values of the free parameters
in (3) andA = 0.25 in the above equations to obtain the non-dimensional form of the multiplicative Type | model
with » = 0.25

1 = 1.2x1x2 4+ 1.2y1y7 + x1(0.5 — 0.4r2 — 0.16/2) — 0.0076y2x1 4 0.0043c1 + 0.1132y1 Wy,

¥1 = 1.2x1y2 — 1.2y1x2 + y1(0.5 — 0.4r5 — 0.16r5) — 0.0026y1x5 + 0.0043y1 4 0.0377%x1 W1,

k2 = —0.8(x7 — y2) + x2(2 — 0.2r% — 0.32r5) — 0.0055y3x7 + 0.0019¢2 + 0.0758, W5,

2 = —1.6x1y1 + y2(2 — 0.2r2 — 0.32r3) — 0.0018y2x3 + 0.0019y, + 0.0253r2 Wy (A.8)

Non-dimensionalization for the multiplicative model of Type Il yield qualitatively similar results for the simulations
with » = 0.25.
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