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Nofil Barlas, Krešimir Josić, Serguei Lapin∗, Ilya Timofeyev

Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA

Received 12 June 2006; received in revised form 13 April 2007; accepted 9 June 2007
Available online 22 June 2007

Communicated by E. Vanden-Eijnden

Abstract

We examine the dynamical mechanisms that lead to the loss of predictability in low-dimensional stochastic models that exhibit three main
types of oscillatory behavior: damped, self-sustained, and heteroclinic. We show that the information that an initial ensemble provides about the
state of the system decays non-uniformly with time. Long intervals during which the forecast provided by the ensemble does not loose any of
its power are typical in all the three cases. Moreover, the information that the forecast provides about the individual variables in the model may
increase, despite the fact that information about the entire system always decreases. We analyze the fully solvable case of the linear oscillator, and
use it to provide a general heuristic explanation for the phenomenon. We also show that during the intervals during which the forecast loses little
of its power, there is a flow of information between the marginal and conditional distributions.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Due to atmospheric uncertainty, statistical predictions
involving Monte-Carlo simulations for an ensemble of
trajectories are frequently used in weather and climate
forecasting. The evolution of such ensembles, and, in
particular, their spread can be used to quantify the reliability
of predictions. Several measures that quantify “potential
predictability” of dynamical systems in this sense have been
utilized in atmosphere/ocean science. These include the Root
Mean Squared Error [5], Anomaly Correlation Coefficient [4]
and Potential Prediction Utility [2,6]. Other measures of
predictability, inspired by dynamical systems theory, include
Lyapunov exponents [3,23] and various notions of entropy
[16,13].

A measure that appears to be particularly well suited to
quantify the predictability of a stochastic dynamical system is
relative entropy [15] (also called Kullback–Leibler divergence).
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The relative entropy can be interpreted as the amount of
information provided by a particular prediction [7]. Unlike
some other measures of utility, it reflects differences in
all moments, including the mean and variance, of two
distributions. In addition, relative entropy satisfies several
important mathematical properties which make it a relatively
unique measure of predictability.

Typically, the predictability properties of a given system are
characterized by the behavior of the relative entropy averaged
over the equilibrium distribution of the system obtained by
Monte-Carlo simulations with an ensemble of ensembles. Each
individual ensemble in the simulation describes the decay
of the utility of prediction for an initial state. The mean of
each initial state is chosen at random from the equilibrium
distribution, and their variances reflect uncertainties due to
imperfect measurements.

The overall predictability of the model can then be
characterized by averaging the relative entropy over all initial
states thus generated.

The goal of this article is to show that even for Markov
systems the mechanisms that leads to the loss of predictability
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1 Care needs to be taken in interpreting R as a distance since R(p, q) does
not in general equal R(q, p).
have surprising and counterintuitive aspects. While utility of
ensemble predictions typically decays exponentially with time
(see [15,22], for example), it can behave very differently for
each individual ensemble. This implies that the predictability
of a model can be considered as a functional dependent on the
initial state used for the prediction, and significant information
may be lost by averaging over all initial states [17].

In particular, we show that for a certain class of models
and initial states there are large intervals of time during which
the utility of the prediction remains nearly constant. Therefore,
the predictability of these particular forecasts is very different
from the exponentially decaying averaged predictability of the
system. Oscillatory transport of the initial ensemble towards
and away from peaks of a spatially non-uniform equilibrium
distribution is the primary mechanism behind this behavior.
During the times of extended predictability the ensemble mean
resides in areas where the mass of the equilibrium distribution
is small, and predictability is lost during the transient returns of
the ensemble mean.

Relative entropy decays monotonically with time for
Markov processes, since information that is lost cannot be
regained [12]. Therefore the utility of a prediction cannot
increase with time for Markov models, and in the language
of atmosphere/ocean science, there is no return of skill [1].
However, this result holds only for the full density of the
system being modeled, and does not apply to the marginal
densities. Indeed, we show that the marginal relative entropies
of all variables in the model may increase simultaneously
with time, while the relative entropy of their joint distribution
decays. Therefore, while information about the total state of
the system is necessarily lost over time, information about
its attributes may be regained. Surprisingly, information about
all attributes may be regained simultaneously. We illustrate
that the mechanism leading to the return of skill and the near
constancy of relative entropy over certain time intervals are
closely related.

As the marginal relative entropies may change either in
concert or in opposite directions, it may be difficult to make
sense of the flow of information between the variables defining
a Markov model. It is sometimes more natural to consider
the flow of information between the different conditional and
marginal distributions. We also show that the phenomena
described above can be understood in terms of such a flow of
information.

The rest of the paper is organized as follows. In Section 2
we present general properties of the relative entropy functional
and discuss its relevance to other measures of predictability.
In Section 3 we consider the stochastically perturbed linear
oscillator. This example is solvable analytically, and is utilized
here to explain the mechanism behind the non-uniform decay
of relative entropy and return of skill in noisy oscillatory
systems. We consider the stochastic perturbation of a non-
linear oscillator (obtained from the normal form of a Hopf
bifurcation) and homoclinic cycle (obtained from the Duffing
equation) in Sections 4.1 and 4.2, respectively. Conclusions are
presented in Section 5.
2. Relative entropy for SDEs

Most systems arising from fluid dynamics can be viewed
as high-dimensional chaotic systems with many interacting
degrees of freedom. Two- and three-dimensional turbulence
are classical examples of such behavior. Although the ergodic
and mixing properties of deterministic models cannot be
verified rigorously, extensive numerical and observational
evidence exists supporting these assumptions in fluid dynamics.
Therefore, it is assumed that long-term statistical averages
reflect the equilibrium (climate) properties in geophysical
applications, and daily observations reflect fluctuations about
the equilibrium state.

In this paper the relative entropy formalism is applied
to several stochastic models, for which the existence of
the equilibrium distribution can be established rigorously.
In geophysical application stochastic terms often represent
turbulent interactions with non-essential or neglected degrees
of freedom.

Consider a stochastic dynamical system model of climate,
which we assume to be Markov. Let q(Ex) be the invariant
(climatological) distribution, and let p(Ex, t) be the probability
density corresponding to the ensemble of realizations
predicting the state of the system at time t . The relative entropy,
or Kullback–Leibler divergence between these two distributions
is defined as

R(p(Ex, t), q(Ex)) = R(t) =

∫
p(Ex, t) log

(
p(Ex, t)
q(Ex)

)
dEx . (1)

This can be thought of as a measure of “distance” between
the distributions p(Ex, t) and q(Ex).1 More precisely R(t)
corresponds to the amount of information that the distribution
p(Ex, t) provides about the state of the system in excess of that
given by the equilibrium distribution q(Ex). It is therefore natural
to interpret R(t) as a measure of the utility of the prediction
provided by an ensemble of particular realizations.

Relative entropy reflects differences in the mean and
variance, as well as other moments of two distributions: an
increase in the utility of a prediction may be due to the narrow
spread of the ensemble (reflected in a difference between
the variances of p and q), or the fact that this ensemble
indicates a large departure from normal conditions (reflected
in a difference between the means of p and q).

Relative entropy also satisfies three important mathematical
properties:

(1) it is invariant under well behaved non-linear transforma-
tions of state variables,

(2) it is non-negative and,
(3) it declines monotonically with time for Markov processes.

The fact that relative entropy decreases with time can be
naturally interpreted as a decline in the utility of a prediction,
or skill.
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In this section we recall the relative entropy between
multivariate Gaussian distributions, and provide an expression
that will be used to analyze its decay in the model systems we
consider subsequently.

2.1. Relative entropy for Gaussian distributions

Suppose that q(Ex) and p(Ex, t) are n-dimensional multivari-
ate Gaussian distributions with vector-valued means µp and µq
and correlation matrices σp and σq respectively. In this case a
closed form for the relative entropy can be obtained [15]

R =
1
2

 log

(
det(σ 2

q )

det(σ 2
p)

)
+ Tr(σ 2

p(σ 2
q )−1)

+ (µp)
T (σ 2

q )−1(µp)︸ ︷︷ ︸
signal term

−n

 . (2)

For the Gaussian case the relative entropy can be naturally
decomposed into two parts: the signal (the third term in the
sum) and the dispersion (the remaining terms). The signal
component accounts for the difference in the means of the two
distributions, q(Ex) and p(Ex, t), while the dispersion reflects
the difference in their variances. Therefore, the signal and
dispersion terms are analogous to the Anomaly Correlation
Coefficient and Root Mean Squared Error, respectively.

2.2. Relative entropy as a Lyapunov functional for the
Fokker–Planck equation

We next consider the Fokker–Planck equation

∂p(Ex, t)
∂t

= −

∑
i

∂

∂xi

[
Ai (Ex)p(Ex, t)

]
+

1
2

∑
i, j

∂2

∂xi∂x j

[
Bi j (Ex)p(Ex, t)

]
, (3)

corresponding to a model stochastic differential equation [12].
Here A(Ex, t) is the drift vector, B(Ex, t) is the diffusion matrix,
and the distribution p(Ex, 0) provides the initial data for the
Fokker–Planck equation. We assume that the system under
consideration has a unique equilibrium solution q(Ex).

The relative entropy R(p(Ex, t), q(Ex)) = R(t) is dependent
on the initial data p(Ex, 0), corresponding to the distribution of
initial conditions of an ensemble in a Monte-Carlo simulation.
We will show in the next section that the decay of relative
entropy can vary markedly for different choices of initial
ensembles.

In this case the relative entropy, defined in Eq. (1), is
a Lyapunov functional for the Fokker–Planck equation [12].
Indeed, a direct calculation shows that the relative entropy
decays monotonically with time. Using the definition of relative
entropy we obtain

dR
dt

=

∫
dEx
[
∂p(Ex, t)

∂t
(log p(Ex, t) + 1 − log q(Ex))

−
∂q(Ex)

∂t

(
p(Ex, t)
q(Ex)

)]
. (4)

Let us assume that q(Ex) is non-zero everywhere, except
at infinity, where it and its first derivatives vanish. The
contributions to dR/dt stemming from the drift (

(
dR
dt

)
drift

) and

diffusion (
(

dR
dt

)
diff

) terms in the Fokker–Planck equation can
also be obtained by the same calculation:(

dR
dt

)
drift

=

∑
i

∫
dEx

∂

∂xi

[
−Ai p(Ex, t) log

(
p(Ex, t)
q(Ex)

)]
, (5)

(
dR
dt

)
diff

= −
1
2

∑
i, j

∫
dEx p(Ex, t)Bi j

[
∂

∂xi
log

p(Ex, t)
q(Ex)

]
×

[
∂

∂x j
log

p(Ex, t)
q(Ex)

]
. (6)

Under the given assumptions on q(Ex) it can be shown that(
dR
dt

)
drift

= 0 and
(

dR
dt

)
diff

≤ 0. (7)

It follows that the decrease in relative entropy is due
only to diffusion terms. This is not surprising from an
information theoretic viewpoint since it is the diffusion terms
that correspond to the stochastic components of the equation
that lead to information loss. While the most immediate effect
of these terms is to increase the spread in the ensemble forecast,
they interact in a non-trivial way with the drift terms to
determine the rate of this decrease. We illustrate this point in
the next section.

3. The stochastic linear oscillator

Several low-dimensional equations of various complexity
have been introduced as prototype models of El Niño/Southern
Oscillation (ENSO). These include two-dimensional stochastic
linear oscillator [14] and more sophisticated models developed
in recent years [11,19,21]. Despite the varying complexity
of these models, one common feature among them is the
oscillatory behavior of solutions. Therefore, as a prototype
behavior we consider the simple two-dimensional model
described in [14].

Even in this simple model relative entropy decays non-
monotonically, and the marginal relative entropies can oscillate.
The results of this section were obtained using analytical
expressions for the relative entropy which we do not report in
full due to their complexity.

The model is given by the following two-dimensional
stochastic differential equation:

dx1 = αx1dt + βx2dt,

dx2 = γ x1dt + δx2dt + εdW,
(8)
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Fig. 1. Left: The equilibrium distribution q(Ex) for the linear oscillator (8). Right: Average relative entropy in the case of the stochastic linear oscillator. Parameters:
α = 0.4573, β = 0.2435, γ = δ = −1.0852, and ε = 0.1.
where W is a Wiener process, ε is the noise level, and the
remaining parameters are chosen so that with ε = 0 the
system exhibits damped oscillations. Fig. 1 (Left) shows the
contour plot of the equilibrium distribution in one specific
case. Although we use the same parameters for all subsequent
simulations in this section, we show below that our observations
hold under very general conditions.

The Fokker–Planck equation describing the evolution of an
initial density is given by Eq. (3) with

A =

(
α β

γ δ

)
and B =

(
0 0
0 ε

)
.

This equation can be solved analytically assuming a
deterministic initial condition p(Ex, 0) = δEx0(Ex) where Ex0

=

(x0
1 , x0

2) [12]. The solution at time t is a Gaussian with mean(
x̄1
x̄2

)
= eAt

[
x1(0)

x2(0)

]
, (9)

and covariance matrix[
〈x1, x1〉 〈x1, x2〉

〈x2, x1〉 〈x2, x2〉

]
=

∫ t

0
dt ′eA(t−t ′)

(
0 0
0 ε2

)
eAT (t−t ′). (10)

Since the equilibrium distribution q(Ex) can also be computed
explicitly [12], Eq. (2) can be used to obtain the relative entropy
analytically in this case.

3.1. The decay of relative entropy

The overall predictability of a model is determined by the
average rate of decay of the relative entropy, where the average
is taken over all deterministic initial conditions weighted by the
stationary probability density. In general, this requires Monte-
Carlo simulations with a collection of ensembles [15]. Each
ensemble consists of a number of initial conditions distributed
according to a narrow Gaussian or a delta function centered at
a point sampled randomly from the equilibrium distribution.
As noted earlier, averaging over the equilibrium distribution
provides a measure of the average predictability of a given
model. The average relative entropy for the linear oscillator
(8) averaged over initial ensembles corresponding to densities
δEx0(Ex) is shown in Fig. 1 (Right).

One of the essential properties of the relative entropy is its
monotonic decay with time reflecting the loss of information
due to the stochastic forcing as each ensemble of initial
conditions is propagated forward in time. Simple estimates
show that initially diffusive terms dominate, and relative
entropy has a logarithmic singularity at the origin. Therefore,
there is a boundary layer around t = 0 during which the relative
entropy decays as − log(t). This is followed by a long interval
during which relative entropy decays exponentially, as shown
in Fig. 1 (Right).

However, the situation can be different for any particular
initial ensemble whose mean is sufficiently far from the
mean of the equilibrium distribution. Rather than decreasing
exponentially, there are intervals during which the relative
entropy remains nearly constant. This is illustrated in Fig. 2
(Left), using the relative entropy for an ensemble of trajectories
with the initial condition (x0

1 , x0
2) = (1, 1) so that p(Ex, 0) =

δ(1,1)(Ex). The ensemble is generated utilizing independent
realizations of the Wiener process.

In particular, during the time intervals [5 . . . 10], and
[22 . . . 27] the rate of relative entropy decay is nearly zero.
During these intervals, the forecast skill remains nearly
constant, and our confidence in the prediction based on an
ensemble of possible projections does not decrease.

Relative entropy decays in a similar manner for any initial
density whose mean differs sufficiently from that of the
equilibrium distribution. However, the plateaus in relative
entropy do not occur at the same time, and we show below
that their position in time depends on the phase of the mean of
the initial ensemble. Therefore, the average over different initial
ensembles provides a somewhat misleading picture: compared
to the rate of decay of relative entropy for a particular ensemble
the rate corresponding to the average is much larger during the
plateaus, or much smaller between the plateaus.

As we will see in the next section, this effect is due to the
fact that after a transient the value of relative entropy is mainly
determined by the location of the mean of an ensemble, and the
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Fig. 2. Left: Relative entropy for a particular initial condition (x0
1 , x0

2 ) = (1, 1) (solid), and the contribution to the relative entropy due to the signal term in Eq. (2)

(dashed). Right: Behavior of
(

dR
dt

)
diff

(solid) and I3 term of (13) (dashed) with time for an initial condition (x0
1 , x0

2 ) = (1, 1). Parameters as in Fig. 1.

Fig. 3. Case with matrix A defined by (11) for an initial condition (x0
1 , x0

2 ) = (3, 0). Left: Trajectory of the mean of the distribution. Middle: Relative entropy
behavior. Right: Difference between the full relative entropy and the signal term.
means corresponding to different initial data can oscillate in- or
out-of-phase.

3.2. Analysis of the rate of decay of R(t)

We can explain the non-uniform decay of the relative
entropy by considering Eq. (2). After an initial quick increase
in the variance of the transient distribution p(Ex, t) resulting in
a logarithmic singularity of R(t), and

(
dR
dt

)
diff

∼ −1/t , further
changes in the variance occur at a timescale slow compared to
that of the oscillations (see the top row of Fig. 4). Therefore the
signal term in expression (2) can be expected to dominate. That
this is indeed the case is illustrated in Fig. 2 (Left).

We illustrate the analysis in the case

A =


1
k

1
b

−b
1
k

 , (11)

B as above, and x0
2 = 0. The general case is very similar, but

more tedious. The mean of the solution of Eq. (3) with this
initial data is, by (9),

x̄1(t) = x0
1 e−t/k cos t, x̄2(t) = bx0

1 e−t/k sin t,
so that k is a damping coefficient, and b determines how the
solutions are stretched in the y direction. For fixed values of
k and b of the same order, k � 1, and b � 1, small noise
and x1(0) sufficiently large, the signal term dominates all other
terms in Eq. (2) (an example with k = 10, b = 10, ε = 0.1, and
x0

1 = 3 is shown in Fig. 3).
The signal term of the relative entropy has the form

Rsignal(t) = e−
2t
k

2b2(x0
1)2 (1 + k2

+ cos(2t) + k sin(2t)
)

εk3 .

In the parameter regime of interest the term proportional to
e−

2t
k sin(2t) determines the non-uniformities in the decay of

relative entropy.
The plateaus in relative entropy therefore occur at the times

at which sin(2t) is increasing. Those intervals correspond to the
time during which |x2(t)| increases from 0 to b, and the mean
of the transient distribution moves away from the mean of the
stationary distribution (see the left panel of Fig. 3). Similarly,
information is lost rapidly during the times at which |x2(t)|
decreases from b to 0.

Intuitively, this is a consequence of the fact that information
is gained as the means of the transient and equilibrium
distribution move apart, and this gain balances the loss of
information due to the increase in the variance of the transient
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Fig. 4. Probability density functions of the transient distribution (dashed line) and the equilibrium distribution (solid line) for times t = 17.5 (left), t = 25 (center)
and t = 35 (right). The arrows indicate the direction in which the transient distribution moves at the time of the snapshot.
distribution through diffusion. As the means of the two
distributions move together, i.e. during the times at which
sin(2t) is decreasing, information is lost due to changes in both
mean and variance. These intervals correspond to the rapid loss
of information following the plateaus. Similar estimates and
arguments apply to the example in the previous section. The
interval between the first two panels in the top row of Fig. 4
corresponds to a plateau, while the interval between the last two
panels corresponds to the sharp drop following a plateau.

According to the discussion in Section 2, the decay of
relative entropy is entirely due to diffusion. Therefore the fact
that the decay of relative entropy is dominated by the behavior
of the mean whose evolution is completely determined by the
drift appears somewhat counterintuitive. We next explain this
apparent contradiction.

For the stochastic linear oscillator in (8) the diffusion part of
the corresponding Fokker–Planck equation (6) reduces to(

dR
dt

)
diff

= −
ε

2

∫
dEx p(Ex, t)

[
∂

∂y
(log(p(Ex, t)/q(Ex)))

]2

.(12)

This can be evaluated using a straightforward, but lengthy
calculation. The expression (12) can be rewritten as

(
dR
dt

)
diff

= −
ε

2


∫

dEx p(Ex, t)
(

∂ log p(Ex, t)
∂y

)2

︸ ︷︷ ︸
I1

− 2
∫

dEx p(Ex, t)
∂ log p(Ex, t)

∂y
∂ log q(Ex)

∂y︸ ︷︷ ︸
I2
+

∫
dEx p(Ex, t)

(
∂ log q(Ex)

∂y

)2

︸ ︷︷ ︸
I3


≡ I1 + I2 + I3. (13)

A direct computation shows that only the third integral
(I3) depends on the mean of the transient distribution µp,
while the first two integrals I1 and I2 depend only on the
variances σ 2

p and σ 2
q . Moreover, this integral is exactly the

time-derivative of the signal part of the relative entropy, i.e.
(I3) =

d
dt [(µp)

T (σ 2
q )−1(µp)]. Thus, since the relative entropy

is dominated by the signal term, the behavior of
(

dR
dt

)
diff

nearly
equals I3, as depicted in Fig. 2 (Right). Therefore, although the
time-decay of the relative entropy is entirely due to diffusive
terms in the equation, the magnitude of

(
dR
dt

)
diff

is almost
completely determined by the mean of the ensemble forecast.

We have shown that the relative entropy of the full
distribution decreases monotonically to zero, although at a non-
uniform rate. As we will see next, the situation is quite different
for the relative entropies of the marginal distributions p(x1, t)
and p(x2, t) which may increase with time.

3.3. Return of skill for marginal entropies

We next consider the marginal entropies of the stationary and
transient distributions. The relative entropies Rx1(t) and Rx2(t)
for the two marginal distributions are again defined using Eq.
(1), and can be interpreted as the amount of information that
the marginal distribution p(x1, t) provides about the state of
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Fig. 5. Left: means of the variables |x1| (solid line) and |x2| (dashed line). Right: marginal relative entropies Rx1 (t) (solid line) and Rx2 (t) (dashed line) and
Rx1|x2 (t) (solid-star line) and Rx2|x1 (t) (dashed-star line) for an initial condition (x0

1 , x0
2 ) = (1, 1).
the variable x1 at time t in excess of the information provided
by the marginal stationary distribution q(x1). We emphasize
that marginal entropies are not invariant under coordinate
changes, so that the results of this section are highly coordinate
dependent.

Note that in contrast to the full relative entropy, the marginal
relative entropies do not necessarily decay with time. However,
we can relate their behavior using conditional relative entropies
which are defined by the following equation

Rx2|x1(t) = R(p(x2|x1, t), q(x2|x1))

=

∫
p(x1, t)

∫
p(x2|x1, t) log

p(x2|x1, t)
q(x2|x1)

dx1dx2.

(14)

Here p(x2|x1, t) denotes the conditional distribution of x2 at
time t given x1, and Rx1|x2(t) is the excess information provided
by the marginal distribution p(x2|x1, t) over q(x2|x1).

The chain rule for relative entropy [12] relates the full,
marginal and conditional relative entropy

R(t) = Rx2|x1(t) + Rx1(t). (15)

We start by calculating the relative entropy of the marginal
distributions which can be obtained analytically using Eq.
(2). The evolution of the marginal relative entropies is shown
in Fig. 5. For the initial condition (x0

1 , x0
2) = (1, 1) the

oscillations are well pronounced. This observation implies that
the information about the variables x1 and x2 taken separately
can increase with time, while information about their joint
distribution must always decrease.

The top and bottom panels of Fig. 4 compare the evolution
of the full and marginal distributions. The increases in marginal
relative entropy correspond to the times at which the mean
of the marginal distribution moves away from the mean of
the stationary distribution, i.e. the plateaus in the full relative
entropy. The main factors contributing to this behavior can be
identified as in the previous section, and here we provide an
equivalent intuitive explanation.

The bottom panels of Fig. 4 show that the variance of
the distribution p(x1|x2, t) remains nearly constant during one
oscillation. However, during the time between the first two
panels the mean of the distribution moves away from 0 which
leads to an increase in Rx1(t). Similarly, the movement of
the transient to the stationary marginal distribution during the
period between the last two panels leads to a decrease in Rx1(t).
The fact that both marginal relative entropies Rx1(t) and Rx1(t)
increase at the same time, is a consequence of the fact that
for the solution of the corresponding deterministic system both
x̄1(t) and x̄2(t) can increase at the same time. Note that this
would not be true in a different coordinate system. In particular,
for the matrix A in (11), x̄1(t) and x̄2(t) and the marginal
relative entropies oscillate out of phase.

It is natural to ask how the information contained in the
marginal distributions of x1 and x2 is generated. Eq. (15)
provides the answer: With an increase in information about
the marginals comes a decrease in information about the
conditional distribution, that is, a decrease in the excess of
information that a knowledge of x1 provides about the state
of x2 over that provided by the stationary distribution q(x2|x1)

(see Fig. 5 (Right)).
We also note that there is no direct “flow of information”

between the variables x1 and x2. However, one can think of
a flow of information between the marginal and conditional
distributions when the full relative entropy is approximately
constant, since during that time the sum of the two is
approximately constant as well.

4. Non-uniform decay of R(t) in general systems

The results of the previous section extend to much more
general stochastic systems. The non-uniform decay of relative
entropy occurs whenever the main mass of the distribution
p(Ex, t) approaches, and then diverges from the main mass of
the stationary distribution q(Ex). Oscillations in the marginal
relative entropies occur when such divergence occurs in the
marginal distributions. The following two examples show that
such behavior can be expected both in the case of stochastic
oscillators, when the mass of the stationary distribution is
distributed non-uniformly around the limit cycle, and in the case
of stochastically perturbed homoclinic and heteroclinic cycles.
Such dynamical behavior is often credited for the complex
evolution in various prototype atmospheric models [8,9].
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Fig. 6. Top: Probability density function for time = 3 (left) and time = 5 (right). Bottom Left: Full relative entropy R(t). Bottom Right: marginal relative entropies
Rx1 (t) (solid) and Rx2 (t) (dashed) in simulations of (16) with initial ensemble centered at (x0

1 , x0
2 ) = (0.5, 0) and ε = 0.1.
4.1. Decay of relative information for non-linear oscillators

In this section we show that the behavior of relative entropy
described in the previous section can be observed in the case
of non-linear oscillators. In particular, we consider a planar,
stochastic system with a limit cycle arising from a supercritical
Hopf bifurcation:

dx1 = µx1dt − cωx2dt + Θx1(x2
1 + c2x2

2)dt + εdW1,

dx2 =
1
c

(
ωx1 + cµx2 + cΘx2(x2

1 + c2x2
2)
)

dt + εdW2,
(16)

here W1,2 are independent Wiener processes. Since the
corresponding Fokker–Planck solution cannot be solved
analytically, we examine the system numerically using the
parameter values µ = 0.5, ω = 1.0, c = 0.6 and Θ =

−1.0. Similar behavior can be observed over a wide range of
parameters. In the absence of white noise the system in (16)
has a stable periodic orbit

x1(t) =

√
−

µ

Θ
cos(ωt + φ0),

x2(t) =
1
c

√
−

µ

Θ
sin(ωt + φ0), (17)

with period Tper = 2π/ω. For small noise, the invariant
measure is concentrated sharply around the vertical extrema
of the unperturbed orbit. Similar to the linear oscillator, the
invariant measure is stretched in the x2 direction to better
illustrate the non-uniform decay of relative entropy. Note that
the speed at which a trajectory moves around the attracting
periodic orbit of the deterministic system is at a minimum at
the top and the vertical extrema of the orbit. These are therefore
the places at which the equilibrium distribution will have local
maxima. Similar behavior can be observed for other values of c
for which the equilibrium measure is distributed non-uniformly
along the limit cycle.

The relative entropy is evaluated numerically by discretizing
the phase space into a uniform mesh. Stochastic Euler method
is used to integrate the equation. The equilibrium distribution
q(Ex) is estimated utilizing bin-counting from a single long
realization. The initial non-equilibrium ensemble is a 250,000-
member ensemble generated from the uniform distribution with
width 0.3 × 0.3 centered at (x1, x2) = (0.5, 0), away from the
mean of the equilibrium distribution. Numerical estimates for
relative entropy R(t) and marginal relative entropies are shown
in Fig. 6.

The non-uniform decay of relative entropy and oscillations
in marginal relative entropies are clearly visible after a short
transient period. Since the periodic orbit given in (17) is stable,
the transient period is due to the fast initial transition of the
initial ensemble to the vicinity of this orbit.
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Fig. 7. Left: Homoclinic loop for Duffing equation with ε = 0. Right: Contour plot of probability density function for ε = 0.01.
After this initial phase, the relative entropy decays more
slowly. As in the case of the damped linear oscillator, the
variance of the transient distribution increases slowly compared
to the time of the oscillations. Fig. 6 shows that the plateaus
in relative entropy correspond to the times during which the
mass of the transient distribution moves away from a peak in
the mass of the stationary distribution. Therefore the plateaus
occur at twice the frequency ω, and the non-uniform decay
of relative entropy is due to the mechanism discussed in the
previous section.

4.1.1. Return of skill for marginal entropies
Marginal entropies depicted in Fig. 6 exhibit strong out

of phase oscillatory behavior with frequency 2ω, consistent
with the frequency of plateaus of the full relative entropy.
The marginal stationary distribution q(x1) is approximately
unimodal. As in the case of the linear oscillator, the minima
of the marginal entropies Rx1(t) occur at the times at which
the mean value of the transient marginal distribution coincides
with the mean value of the equilibrium distribution (top right of
Fig. 6).

Since the marginal distribution q(x2) is strongly bimodal,
the situation is somewhat different. The minima of Rx2(t) occur
at the times when the mean of the transient distribution p(x2)

is between the two peaks in the stationary distribution q(x2).
Since this occurs exactly when the distribution p(x2) is at its
farthest distance from q(x1), the marginal relative entropies
Rx1(t) and Rx2(t) oscillate out of phase.

4.2. Stochastically perturbed Duffing equation

We next consider a system of non-linear stochastic
differential equations exhibiting coherence resonance [18,10].
Although the deterministic analog of this system is very
different from both previous examples, stochastic perturbations
lead to intervals of extended predictability and the return of skill
for marginal distributions.
The model is given by the Duffing equations driven by white
noise [20]

dx1 = x2dt + εdW1,

dx2 = (x1 − x3
1 − γ x2 + βx2

1 x2)dt + εdW2,
(18)

where W1,2 are independent Wiener processes, and γ, β and
ε are parameters. For ε = 0 and parameters γ = 0.4 and
β = 0.497 this system has an attracting double homoclinic
cycle (Fig. 7 (Left)) to the saddle point at the origin. The
signature of the homoclinic connection is clearly visible in the
invariant density of the stochastic system in (18) shown in Fig. 7
(Right).

To demonstrate the existence of extended regions of
predictability and the return of skill for marginal distributions
we chose a particular 250,000-member initial ensemble
centered at x1 = 0.25, x2 = 0.25, and estimate the
relative entropy numerically as in the previous example. The
distributions p(Ex, t) are computed utilizing the Monte-Carlo
simulations with the initial ensemble generated from the
uniform distribution on [0.3] × [0.3] (see Fig. 7 (Left)).

The computed relative entropy for ε = 0.01 is presented
in the bottom left panel of Fig. 8. As in the linear oscillator
case the relative entropy is almost constant over several time
intervals. There are four plateaus in the graph of relative
entropy, although the nature of the first plateau (at times
[4 . . . 8]) is somewhat different from the subsequent ones.

Recall, that the decay in relative entropy is only due to the
diffusion in Eq. (6). For the model (18) the diffusion term
becomes(

dR
dt

)
diff

= −
ε

2

∫
dx1dx2 p(x1, x2)

×

∑
i=1,2

[
∂

∂xi

(
log

p(x1, x2)

q(x1, x2)

)]2

. (19)

For the stochastic Duffing equation the behavior of the(
dR
dt

)
diff

is more complicated than in the case of linear

oscillator. Namely, the value of
(

dR
dt

)
diff

depends not only on
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Fig. 8. Top: Probability density function for time = 5 (left), time = 10 (middle) and time = 15 (right). Bottom Left: Full relative entropy R(t), Bottom Right:
marginal relative entropies Rx1 (t) (solid) and Rx2 (t) (dashed) in simulations of (18) with initial ensemble centered at (x0

1 , x0
2 ) = (0.25, 0.25) and ε = 0.01.
the means, but also on all terms involving variances of the
invariant and transient distributions.

Since the initial ensemble is chosen on one side of the
heteroclinic loop, different trajectories do not separate during
the first passage along the heteroclinic loop (see the first two
top panels in Fig. 8). As the cluster of initial conditions moves
away from the origin we observe the long plateau in the
graph of relative entropy, since the transient distribution moves
away from the origin where the main mass of the equilibrium
distribution is located. Indeed, Fig. 9 illustrates that the mean
of transient distribution is largest at times [4 . . . 8], coinciding
with the first plateau in relative entropy R(t).

After the first transition, individual realizations return
close to the origin, but separate following the two different
branches of the homoclinic loop. Therefore, the mean of
the ensemble is approximately zero (see Fig. 9). Due to
coherence resonance [10,18,20], most of the mass of the
transient distribution is ejected from the vicinity of the origin
around the same time. The second plateau in the graph of
relative entropy occurs when the two main portions of the
transient distribution are at their farthest distance from the main
mass of the equilibrium distribution at times [15 . . . 17]. The
bimodality of the transient distribution during this time implies
that the oscillatory behavior is manifested strongly through the
variance of the ensemble (see Fig. 9).
Although the details are somewhat different from the
previous examples, the non-uniform decay in relative entropy
is again due to the fact that the stationary distribution is
concentrated in one area of the phase space, and oscillations in
the system that take the transient distribution recurrently close
to the main mass of the stationary distribution.

4.2.1. Return of skill for marginal entropies
Marginal relative entropies for x1 and x2 are shown in the

bottom right panel of Fig. 8. The mechanism leading to the
oscillations in both marginal entropies is similar to the one
described in the preceding examples. An inspection of Fig. 8
shows that the marginal entropies are at a maximum at the times
during which the main mass of the marginal transient distri-
bution diverges maximally from the marginal of the stationary
distribution. The fact that the transient and stationary distribu-
tions for x1 are bimodal and trimodal, respectively, somewhat
complicates the description. However, the animation provided
at http://www.math.uh.edu/˜ilya/research/predict stoch osc il-
lustrates the entire process.

5. Conclusions

We considered the predictability of the three models
with particular emphasis on the non-uniform decay of
the utility of predictions and return of skill (oscillations

http://www.math.uh.edu/~ilya/research/predict%5Fstoch%5Fosc
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Fig. 9. Left: mean in x1 (dashed line), mean in x2 (solid line), Right: variance in x1 (dashed line), variance in x2 (solid line) in simulations of the stochastic Duffing
equation in (18) with ε = 0.01. (Horizontal lines show equilibrium variances.)
in marginals) for dynamic variables. These models were
constructed as stochastic perturbations of linear oscillator, non-
linear oscillator (Hopf normal form), and homoclinic cycle
(Duffing equation), and are representative of a wide class of
stochastic oscillators.

Relative entropy is utilized to characterize the predictability
properties of these prototype systems. The averaged (with
respect to many initial ensembles) predictability of all three
systems decays exponentially with time. Nevertheless, as a
result of the oscillatory-like behavior, two related phenomena
emerge in the behavior of the relative entropy functional and
marginal entropies for each particular ensemble simulation. In
particular, (i) the full relative entropy decays at a non-uniform
rate, and (ii) there is return of skill (oscillatory behavior) for the
marginal entropies of all three systems.

Interestingly, we can also think of the return of skill as
a flow of information from the conditional to the marginal
non-equilibrium distribution. Both of these phenomena are
driven by oscillations of the mean of the non-equilibrium
(forecast) ensemble, and an increase in the variance of the non-
equilibrium ensemble that is slow compared to the frequency of
oscillation.

The leading order effect in this case is the transport
of the non-equilibrium distribution in phase space by the
underlying oscillatory dynamics. This results in a slower rate
of decay for the relative entropy when the mean of the non-
equilibrium ensemble is moving away from an area in which the
invariant measure is concentrated. The same mechanism causes
oscillations of marginal distributions and return of skill in each
dynamic variable.

While the quantitative details differ between the oscillatory
mechanisms considered, the qualitative behavior of the relative
entropy functional is similar in all the three cases. The
oscillatory behavior is manifested strongly for initial ensembles
concentrated in the tails of the invariant measure, but can also
be detected for other initial data. This suggests that similar
behavior of various predictability metrics can be detected
in more complex systems, especially for initial ensembles
concentrated around rare events.
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