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A simplified one-dimensional model system is introduced and
studied here that exhibits intrinsic chaos with many degrees of
freedom as well as increased predictability and slower decay of
correlations for the large-scale features of the system. These are
important features in common with vastly more complex problems
involving climate modeling or molecular biological systems. This
model is a suitable approximation of the Burgers–Hopf equation
involving Galerkin projection on Fourier modes. The model has a
detailed mathematical structure that leads to a well-defined equi-
librium statistical theory as well as a simple scaling theory for
correlations. The numerical evidence presented here strongly sup-
ports the behavior predicted from these statistical theories. Unlike
the celebrated dissipative and dispersive approximations of the
Burgers–Hopf equation, which exhibit exactly solvable andyor
completely integrable behavior, these model approximations have
strong intrinsic chaos with ergodic behavior.

One challenging common feature of several important prob-
lems in contemporary science, ranging from short-term

climate prediction for coupled atmosphere–ocean systems (1–3)
to simulating protein folding through molecular dynamics (4, 5),
is the important fact that larger-scale features have longer
correlation times and are more predictable than the general
smaller-scale and shorter time-scale features of these systems
with a huge number of degrees of freedom. For these intuitive
reasons, for example, many features of climate are much more
predictable than the weather at a fixed location. Such circum-
stances naturally suggest the development of suitable stochastic
modeling procedures for reduced systems involving only degrees
of freedom with longer correlation times. Systematic mathemat-
ical strategies to treat such issues have been developed very
recently in different contexts (refs. 4 and 6; A.M., I.T. & E.
Vanden Eijnden, unpublished work). The goal of this paper is to
introduce and study the simplest one-dimensional system of
equations with such features as a highly simplified model for such
behavior. Straightforward numerical experiments with this de-
terministic system, presented below, establish that it has intrinsic
stochastic dynamics with many degrees of freedom and longer
correlation times on larger scales, with general features that can
be predicted a priori through simple mathematical arguments
and scaling theories. Thus, this model provides a simple unam-
biguous test problem for stochastic modeling strategies for
treating unresolved degrees of freedom.

The model introduced and studied here is the Galerkin
truncated spectral approximation to the Hopf or inviscid Burgers
equation,

ut 1
1
2

~u2!x 5 0 . [1]

Various approximations to the Eq. 1 have a long history. With
various dissipative terms added to the right-hand side, this
equation becomes a model for both shock dynamics (7) and
turbulence theory (8) that can be solved exactly (9) with ex-
tremely predictable behavior associated with shock formation
and propagation. For suitable dispersive terms added to Eq. 1,
the equations become completely integrable once again with

highly predictable and recurrent behavior (7, 10). Goodman and
Lax (11) have shown that the simplest naive dispersive difference
approximation to Eq. 1 has completely integrable behavior for
suitable initial data. In contrast, the approximation to Eq. 1
introduced here has intrinsic stochastic dynamics with strong
numerical evidence for ergodicity and mixing as well as scaling
behavior, so that the larger scales are more predictable with
longer correlation times.

The Model
To develop the approximation to Eq. 1 that defines this model,
let PL f 5 fL denote the finite Fourier series truncation of f,

PL f 5 fL 5 O
uku # L

f̂keikx . [2]

Here and elsewhere in the paper, it is tacitly assumed that f is 2p
periodic and real valued so that complex Fourier coefficients f̂k

satisfy f̂2k 5 f̂ *k. The positive integer, L, from Eq. 2 defines the
number of complex valued degrees of freedom in the approxi-
mation. With these preliminaries, the model introduced and
studied here is the approximation to Eq. 1,

~uL!t 1
1
2

PL~uL
2 !x 5 0 . [3]

This is a Galerkin truncated approximation to Eq. 1. With the
expansion

uL~t! 5 O
uku # L

uk~t!eikx , u 2 k 5 u*k , [4]

Eq. 3 can be written equivalently as the following system of
nonlinear ordinary differential equations for amplitudes uk(t)
with uku # L,

d
dt

uk 5 2
ik
2 O

k 1 p 1 q 5 0
upu,uqu # L

u*pu*q . [5]

It is elementary to show that solutions of the either Eq. 3 or
Eq. 5 have conservation of both momentum and energy, i.e.,

M 5
1

2p E
0

2p

uL~t! 5 u0~t! [6]

and
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E 5
1

4p E uL
2 dx 5

1
2

uu0u2 1 O
k 5 1

L

uuku2 [7]

are constant in time for solutions of Eq. 3 or Eq. 5.
The momentum constraint in Eq. 6 is associated with trivial

dynamical behavior, and without loss of generality, we set M 5
0, so that u0(t) 5 0 in the formula for energy, E, in Eq. 7. Also,
all of the sums in Eq. 5 involve only k with 1 # k # L. Eq. 3 has
the conserved quantities in Eqs. 6 and 7 but it is unclear whether
it is a Hamiltonian system.

It is well known that nontrivial smooth solutions of Eq. 1
develop discontinuities in finite time and thus exhibit a transfer
of energy from large scales to small scales. For functions with
uk(t) identically zero instantaneously for k . Ly2, the approx-
imation in Eq. 3 or Eq. 5 represents this energy transfer exactly;
however, once this transfer develops in a general solution of Eq.
3 or Eq. 5, the conservation of energy constraint rapidly redis-
tributes the energy in the smaller scales to the larger-scale
modes. This effect is responsible for the intuitive fact that the
small-scale modes of the system should decorrelate more rapidly
than the large-scale modes.

Equilibrium Statistical Mechanics for the Model
It is natural to utilize the conserved quantity given by the
energy, E, in Eq. 7 to define an invariant Gibbs measure for
equilibrium statistical mechanics. To be able to do this, the
ordinary differential equations in Eq. 5 need to satisfy the
Liouville property. For a set of ordinary differential equations,
wW (t) 5 FW (wW ), the Liouville property requires that O Fiywi 5
0, i.e. FW is incompressible. As mentioned in the preceding
paragraph, the equations in Eq. 5 have individual solutions
that exhibit compressible transfer of energy to smaller scales.
Nevertheless, the equations in Eq. 5 satisfy the Liouville
property for statistical solutions; to see this, because u0 5 0 and
u2k 5 u*k, the modes uk 5 ak 1 ibk with 1 # k # L are the
defining modes for the equations in Eq. 5. The equation for
uk(t) in Eq. 5 can be written in the following form in terms of
ak and bk,

d
dt S ak

bk
D 5 SVk

1

Vk
2D 5 S 2k~bka 2 2k 1 akb 2 2k!

22k~aka 2 2k 1 bkb 2 2k!D 1 [8]

the terms without ak, bk.

Because Vk
1yak 1 Vk

2ybk 5 0 as follows from Eq. 8, the
Liouville property is satisfied. With this property, the canonical
Gibbs measures

Gb 5 CbEXP S2b O
k 5 1

L

uuku2D , b . 0 , [9]

are invariant probability measures for the statistical dynamics of
Eq. 3 or Eq. 5. Given a value for the mean energy, E# , from
Eq. 7, b is given by

b 5
L

E#
, with Var $ak% 5 Var $bk% 5

1
2b

, [10]

where Var denotes variance. The canonical Gibbs ensemble
predicts a spectrum with equipartition of energy in all modes
according to Eq. 10. We show below that these statistical
predictions are satisfied with surprising accuracy for L of
moderate size or larger.

A Scaling Theory for Temporal Correlations
It is a simple matter to present a scaling theory that predicts that
the temporal correlation times of the large-scale modes are
longer than those for the small-scale modes. Recall from Eq. 10
that the statistical prediction for energy per mode is E# yL 5 b21;
because E# yL has units length2ytime2, and the wave number k
has units length21, the predicted eddy turnover time for the kth
mode, Tk, is given by

Tk 5 SL

E# D
1/21

k
5

b1/2

k
, 1 # k # L . [11]

If the physical assumption is made that the kth mode decorre-
lates on the timescale proportional to the eddy turnover time
with a universal constant of proportionality, a simple plausible
scaling theory for the dynamics in Eq. 3 or Eq. 5 emerges. Thus,
the scaling theory implied by Eq. 11 shows that the larger-scale
modes in the system should have longer correlation times than
the smaller-scale modes. This basic qualitative fact is always
confirmed in the numerical simulations reported below. The
exact quantitative agreement of computed correlation times with
the predictions of the scaling theory is also reported below.

Invariant Low-Dimensional Subspaces with Exact Dynamics
Virtually all inhomogeneous systems with many degrees of
freedom and intrinsic stochastic behavior also possess lower-
dimensional invariant sets with nongeneric and atypical dynamic
behavior. Here we show how to construct large families of
lower-dimensional invariant subspaces for the dynamics in Eq. 3
or Eq. 5.

To build these invariant subspaces for dynamics, pick any
positive integer k* satisfying 2 # k* # L and consider the unique
integer N with

Nk* # L , ~N 1 1!k* . [12]

Associated with k*, we build exact solutions of Eq. 5 with
nonzero Fourier coefficients only at u6jk*

for 1 # j # N, i.e.,
define ũj by

u 6 jk*
5 ũ 6 j , 1 # j # N

uk 5 0, k Þ 6 jk* . [13]

Functions with Fourier coefficients satisfying the symmetries in
Eq. 13 are not only 2p periodic but are also spatially periodic
with the smaller period, 2pyk* . For elegance in notation, given
k*, we rescale time to the faster timescale t 5 k*t, then a short
calculation confirms that the nonzero Fourier coefficients in Eq.
13 satisfy the same dynamical equations in Eq. 5 with 2N degrees
of freedom that are strictly less than 2L degrees of freedom in
the general solution of the original system, i.e.,

d
dt

ũk52
ik
2 O

k 1 p 1 q 5 0
upu,uqu # L

ũ*pũ*q, for uku # N , [14]

with uk(t) 5 0 for k Þ 6jk*.
For k* with Ly2 # k* # L, N 5 1, and the equations in Eq.

14 trivially yield the time independent steady state,

uk*
5 uk

0, any complex constant
uk 5 0 for k Þ k*, 1 # k # L . [15]

For k* with Ly3 # k* , Ly2, N 5 2, and the nonzero Fourier
components uk*

, u22k*
are defined through Eq. 14 with

N 5 2, i.e.,
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d
dt

ũ1 5 2iũ*1ũ*2 2

d
dt

ũ 2 2 5 i~ũ*1!2 .

[16]

First, note that Eq. 16 has the steady-state solution defined by the
higher wave number ũ22 5 ũ22

0 , ũ1 5 0, which corresponds to
the steady state already mentioned in Eq. 15. Linearized per-
turbations ũ91 about this steady state satisfy the equation

d
dt

ũ91 5 2i~ũ91!
*ũ 2 2

0 , [17]

with exponentially growing solution so that these higher wave-
number steady states are dynamically unstable to lower wave-
number perturbations. This is the simplest example exhibiting
the tendency of Eqs. 3 or 5 to also transfer energy to larger scales.
In fact, the equations with N 5 2 are completely integrable,
because conservation of energy implies that uũ1u2 5 E 2 uũ2u2 and
differentiating the second equation in Eq. 16 yields

d2

dt2 ũ 2 2 5 22uũ1u2ũ 2 2 5 22~E 2 uũ2u2!ũ 2 2 . [18]

Eq. 18 is integrable, so the dynamics for N 5 2 has regular
nonchaotic behavior (12).

For k* with Ly4 # k* , Ly3 so that N 5 3, the dynamics on
this subspace already exhibits a mixture of integrable and chaotic
behavior, whereas N 5 4 has completely stochastic dynamics.
These results are presented and discussed elsewhere (13).

Numerical Evidence for Ergodicity and Correlation Scaling
Here, numerical evidence is presented that strongly supports the
statistical predictions in Eqs. 9 and 11 regarding the dynamics in
Eq. 5. For all the numerical data presented here, a pseudospec-
tral method of spatial integration combined with fourth-order
Runge–Kutta time stepping is utilized for Eq. 5. One can
anticipate from Eq. 9, which predicts energy equipartition, that
in dynamic simulations both the high and low spatial wave
numbers are equally important, so increased spatial resolution in
the pseudospectral algorithm is needed. Here, this is achieved by
increasing the length of the array of the discrete Fourier
coefficients by adding zeros for wave numbers k with L , k #
L* and then performing the discrete Fourier transform to
x-space on this bigger array for pseudospectral computations; the
choice L* $ 4L works well in practice and is utilized below. With
the small Runge–Kutta time step, Dt 5 2.5 3 1024, the
algorithm conserves the energy from Eq. 7 within 1024%, a
relative error of 1026, for all of the simulations presented here.

The Transition from Deterministic to Stochastic Behavior
First, results are presented for discretization of the deterministic
initial data for Eq. 1 given by u0 5 2 sin x. The exact solution of
Eq. 1 remains smooth for t with t , 0.5 until a discontinuity
forms at t 5 0.5. Next, the discrete solution of Eq. 5 will be
presented for L 5 50. The statistical prediction from Eqs. 9 and
10 is striking; the solution of Eq. 5 eventually should achieve
statistical equipartition of energy among all modes with variance
predicted by Eq. 10 with b 5 50.

The numerical solution exhibits three phases depicted in the
snapshots of the solution in Fig. 1 at times t 5 0.4, 0.56, 1.56, and
20. The smooth regime occurs for t , 0.5, as is evident in the first
snapshot from Fig. 1. Beyond the classical breaking time, t 5 0.5,
the solution first develops weak oscillations that increase in
character as time evolves. In the second phase of the dynamics,
oscillations build up first on small spatial scales and later on

intermediate spatial scales with memory of the large-scale
structure from mode k 5 1, as is evident from the snapshots at
t 5 0.56 and 1.56 in Fig. 1. In the third phase, all memory of the
initial data is lost for the solution, as occurs in the last snapshot
at t 5 20 in Fig. 1.

The graphs of the complex amplitudes of the Fourier modes,
k 5 1, 5, 10, and 20, depicted in Fig. 2 for the time interval 0 #
t # 40, confirm the tendency in the second and third phases
mentioned above. Clearly by time t 5 40, the amplitude of the
wave number k 5 1 is completely eroded, and the other modes
exhibit random behavior.

Next, it is demonstrated that the solution of Eq. 5 beyond the
time t 5 50 is completely statistical with the equipartition of
energy spectrum predicted by Eq. 9 with b 5 50. To measure this,
here and elsewhere in the paper, time averaging of an individual
solution is performed; thus, the energy in the kth mode is
computed by

^uuku2& 5
1
T E

T0

T 1 T0

uuk~t!u2dt . [19]

Fig. 1. Solution at time t 5 0.4, 0.56, 1.56, and 20.

Fig. 2. Time evolution of the amplitudes of the Fourier coefficients for k 5 1,
5, 10, and 20.
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For the present simulation, the initial averaging value, T0 5 50,
and averaging window, T 5 5,000, are utilized. This is a severe
test because only the microcanonical statistics for an individual
solution of Eq. 5 are utilized rather than a Monte-Carlo average
over many random initial data as given by the canonical Gibbs
ensemble in Eq. 9.

The energy spectrum for the real and imaginary parts of the
Fourier modes is presented in Fig. 3. The straight lines in Fig. 3
correspond to the theoretically predicted value Var{Reuk} 5
Var{Imuk} 5 0.01, with b 5 50. Clearly, there is statistical
equipartition of energy for times t with t $ 50 in the solution of
Eq. 5; the relative errors mostly occur at large scales and do not
exceed 4%.

The time correlations ^Reuk(t 1 t)Reuk(t)& are computed by
the same numerical averaging procedure from Eq. 19. The range
in timescales of correlations in the individual Fourier modes
varies over 1.5 decades for the value b 5 50 in the present
simulation. Fig. 4 depicts the correlation functions of Reuk for
k 5 1, 2, 3, 10, 15, 20, illustrating this wide range of timescales
present in the system.

The elementary scaling theory for correlation times developed
in Eq. 11 is compared with the numerically computed correlation

times in Fig. 5. There, the scaling formula in Eq. 11 is multiplied
by a constant to exactly match the correlation time for k 5 1. As
shown in Fig. 5, the simple theory proposed in Eq. 11 is an
excellent fit for the large-scale wave numbers k, with k # 15,
which exhibit the largest range of scaling behavior for temporal
correlations.

Robustness and Sensitivity of Results
A wide range of simulations of Eq. 5 have been performed by
picking random initial data with b varying from b 5 10, 50, 75,
whereas L also ranges over values L 5 50, 100, 200. The
equipartition of the spectrum and correlation scaling behavior
predicted by the theory in Eqs. 9, 10, and 11 is very robust, with
similar behavior as depicted in Figs. 4 and 5. The only caveat in
this discussion is the preconstant for the correlation scaling
theory in Eq. 11, which depends on the correlation time of the
largest-scale mode with k 5 1. This correlation time is a weakly
dependent function of L; however, the ratio of the largest to the
smallest correlation time in the system is independent of L for
all the parameter regimes tested. Details are presented else-
where (13).

The statistical predictions of Eq. 9 go beyond the energy
spectrum and also predict Gaussian behavior for higher mo-
ments. For a Gaussian distribution, fourth moments are equal to
three times the square of second moments, whereas sixth mo-
ments are equal to fifteen times the cube of second moments. In
Fig. 6, the relative error in the Gaussian approximation of fourth
and sixth moments from Eq. 9 is computed as a function of wave
number from the simulations of Eq. 5 with b 5 50 and L 5 200;
the larger value of L is utilized to avoid dynamic range effects
(dividing by small numbers) in processing the numerical output.
Fig. 6 Upper gives the relative error in the fourth moment
prediction; these errors are less than 1% for almost all wave
numbers and never exceed 3%, with the largest errors in the low
wave number regime. For the sixth moments, the relative errors
are less than 2% for most of the wave numbers and do not exceed
6% overall. Thus, further statistical details of the prediction from
Eq. 9 are confirmed with surprising accuracy.

Concluding Discussion
In the previous paragraphs, we have introduced a simple model
for one-dimensional dynamics that is a suitable approximation of
the Burgers–Hopf equation in Eq. 1 involving the Galerkin
projection on Fourier modes defined in Eqs. 3 or 5. Unlike the

Fig. 3. Energy spectrum. Circles, DNS; solid line, canonical predictions.

Fig. 4. Correlation functions for modes k 5 1, 2, 3, 10, 15, 20.

Fig. 5. Correlation times. Circles, DNS; solid line, predictions of the scaling
theory.
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celebrated dissipative and dispersive approximations to Eq. 1,
which exhibit exactly solvable andyor completely integrable
behavior, the numerical evidence presented here indicates
strong intrinsic chaos with ergodic behavior in the model.
Furthermore, the mathematical structure of the model, includ-
ing conservation of momentum, energy, and the Liouville prop-
erty, allows for simple statistical predictions for the model that
are strongly confirmed by numerical experiments. The model
exhibits intrinsic slower decay of temporal correlations at larger
scales and the increased predictability of the larger-scale motions
in a simple model with intrinsic chaos. This is one of the main
achievements of the present paper. Furthermore, simple scaling
theories for the behavior of the correlations have been devel-
oped, and these predictions are also supported and confirmed by
the numerical evidence reported here.

Several intriguing issues regarding the model are worth pur-
suing in the future. Eq. 1 also conserves the higher invariants,
* uuup. Thus, are there suitable approximations to Eq. 1 that
conserve momentum, energy, and a discrete version of at least
one of the higher invariants and also have the Liouville property
with a well-defined statistical theory? Another simple issue is
whether there are other discrete approximations to Eq. 1 that
conserve discrete forms of momentum and energy and also have
the Liouville property. We have found a very simple finite
difference approximation to Eq. 1 with all of these properties,
and the difference scheme used by Zabusky and Kruskal (14) is
a second example with these properties. Is the large-scale
correlation scaling behavior universal in these systems, as com-
pared with the spectral Galerkin truncation utilized in the model
presented here? We discuss all of these issues elsewhere (14).

The original motivation of the ‘‘toy’’ model developed here is
to utilize this model to check reduced stochastic modeling
procedures for more complex physical or biological models with
a range of correlations on a simple unambiguous one-
dimensional model system that exhibits such behavior. Cai,
Vanden Eijnden, and A.M. have done this for the model and
report on this work elsewhere (15).

Spectrally truncated approximation for idealized geophysical
f lows that conserve both energy and enstrophy play an important
role in building idealized climate models (16, 17) where various
facets of observational as well as computational (18) and sto-
chastic (ref. 6; A.M., I.T. & E. Vanden Eijnden, unpublished
work) modeling phenomena can be checked in a relatively
unambiguous context. The even simpler one-dimensional mod-
els proposed here have the potential to provide more mathe-
matical insight on a variety of the issues encountered in these
problems.
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