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The Galerkin truncated inviscid Burgers equation has recently been
shown by the authors to be a simple model with many degrees of
freedom, with many statistical properties similar to those occurring
in dynamical systems relevant to the atmosphere. These properties
include long time-correlated, large-scale modes of low frequency
variability and short time-correlated ‘‘weather modes’’ at smaller
scales. The correlation scaling in the model extends over several
decades and may be explained by a simple theory. Here a thorough
analysis of the nature of predictability in the idealized system is
developed by using a theoretical framework developed by R.K.
This analysis is based on a relative entropy functional that has been
shown elsewhere by one of the authors to measure the utility of
statistical predictions precisely. The analysis is facilitated by the
fact that most relevant probability distributions are approximately
Gaussian if the initial conditions are assumed to be so. Rather
surprisingly this holds for both the equilibrium (climatological) and
nonequilibrium (prediction) distributions. We find that in most
cases the absolute difference in the first moments of these two
distributions (the ‘‘signal’’ component) is the main determinant of
predictive utility variations. Contrary to conventional belief in the
ensemble prediction area, the dispersion of prediction ensembles
is generally of secondary importance in accounting for variations
in utility associated with different initial conditions. This conclu-
sion has potentially important implications for practical weather
prediction, where traditionally most attention has focused on
dispersion and its variability.

Predictability of dynamical systems relevant to the atmosphere
and climate is a topic of enormous practical and theoretical

interest. For several decades it has been recognized that a
statistical framework is required for an adequate analysis of this
subject (1–4).

Recently, ideas from information theory have made a natural
appearance (5–7), because entropy measures offer a precise
definition of the informational content of predictions based on
probability distribution functions (pdfs).

Here we provide a concise summary of the relevant material
contained in ref. 7. This reference contains considerably more
detail and application to a range of dynamical systems relevant
to climate and weather.

For any dynamical prediction there always exists uncertainty
in the specification of initial conditions, and this may be de-
scribed by a pdf. The time evolution of this pdf is at the heart of
any analysis of the statistical prediction problem, which is
characterized by two pdfs: the prediction distribution p and the
climatological or equilibrium distribution q. The former is the
time-evolved initial-condition pdf, and the latter is the asymp-
totic (t 3 �) distribution. In most practical situations there is
considerable knowledge concerning q due to the long-term
historical observation of the dynamical system (under the as-
sumption of ergodicity). In terms of the informational content of
a prediction, knowledge of q therefore may be considered prior
information, because this is the information we have on a
dynamical system before a particular prediction is made. One may
quantify the additional information provided by p over and
above the prior known q, and this will measure the utility of the

prediction. The relevant two-valued functional is known as the
relative entropy and is given generically by

R�p, q� � �pln�p
q�dV. [1]

The always nonnegative functional R has the attractive property
of satisfying a generalized second law of thermodynamics for
Markov processes in that it declines monotonically with time
toward an asymptotic value of zero. Refer to ref. 8 for a short
rigorous derivation of this interesting result. It is sometimes (9)
deployed in applications of Boltzmann’s H theorem to nonequi-
librium statistical mechanics problems. The property of R as a
(nonsymmetric) distance function between pdfs also means that
it plays an important role in the analysis of the approach to
equilibrium of solutions of the Fokker–Planck equation (10).

The distributions p and q that one encounters in many
practical contexts are apparently approximately Gaussian.‡ In
such a case an exact expression may be obtained for R. For the
multivariate case, this is easily shown to be given by

R�p, q� � 0.5�� ln�det��q
2�

det��p
2�� � tr��p

2��q
2��1�

� ��� p � �� q
t ���q

2��1��� p � �� q� � n�, [2]

where �q
2 is the covariance matrix of the equilibrium distribution,

�p
2 is the covariance matrix of the prediction distribution, �� q and

�� p are the mean vectors of these two distributions, respectively,
and n is the dimension of the state space under consideration.
For pedagogical convenience we call the third term the signal
component, and the sum of the remaining terms are termed the
dispersion component of Gaussian relative entropy. In the uni-
variate case, the dispersion component contributes to prediction
utility when the prediction reduces the uncertainty from the
uncertainty of the equilibrium or prior distribution. The signal
component contributes when the mean of the prediction dis-
tribution differs significantly from that of the equilibrium
distribution.

A fundamental and general question one can ask in predict-
ability theory is: What determines variations in utility as a
function of initial conditions? In particular, it is worth deter-
mining whether the Gaussian dispersion or signal component is
a major determinant of such utility variation. This question is of
some importance in a practical context, because a user of
forecasts needs some guidance on whether a particular prediction
is likely to be useful, and parameters such as the (Gaussian)
signal or dispersion may be good indicators of this even when
distributions are only approximately Gaussian. In general, the
study of predictability in the atmospheric context has focused

Abbreviations: pdf, probability distribution function; TBM, truncated Burgers model.
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‡The limited size of available practical ensembles in practical situations makes it difficult to
be completely precise on this point.
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almost exclusively on variations with initial conditions of quan-
tities that are functions of the second moments of p and q and
thus are related to the second component above, i.e., the
dispersion (however, see ref. 11 for another viewpoint). Ensem-
ble spread§ versus correlation skill diagrams are widely used (12,
13) despite the fact that this relationship often is not particularly
strong. In fact, correlation skill may be shown theoretically (14)
to depend on both the first and second moments of p, which
suggests that the signal component might be a useful and
neglected measure of practical prediction utility.

An interesting and simple counterexample to the conventional
concentration on second moments is provided by linear constant
coefficient stochastic differential equations with deterministic
initial conditions. Such systems obviously have wide application
and in particular have been proposed as simple representations
of climate dynamical systems (15). For such dynamical systems
(10), all distributions are Gaussian, and the prediction covari-
ance matrix is independent of the initial conditions. On the other
hand, the prediction mean vector for such a system is simply the
dynamical propagator operator¶ applied to the initial conditions,
which obviously depends strongly on the particular initial con-
ditions. Clearly in this class of dynamical systems it is only the
signal term that is responsible for any variation with initial
conditions of prediction utility.

Exploration in ref. 7 with a range of somewhat more complex
climate models relevant to the El Niño phenomenon suggested
that the signal component was generally more important than
dispersion in determining utility variation. On the other hand,
for the classical Lorenz (16) three-variable model of chaos
dispersion dominated at least for short-range prediction. This
suggested a possible qualitative difference in climate and
weather prediction, because the Lorenz model is used often in
the literature as a simple analog for the dynamical system
underlying atmospheric systems (17). The severe spectral trun-
cation of this model, however, has often led theoreticians in
atmospheric and ocean dynamics (4) to consider higher order
systems that exhibit a rather more stochastic as opposed to
chaotic nature. In particular, the topographically forced baro-
tropic potential vorticity equation has served often as a more
realistic simple model of geophysical turbulence. This model can
often be analyzed in terms of a statistical mechanical framework
such as that described in ref. 18.

A Simple Model of the Atmosphere
Recently an even simpler one-dimensional model of the type
studied by Carnevale and Frederiksen (4) has been introduced
and analyzed in some detail by A.J.M. and I.T. (19). It exhibits
many of the desirable properties of the more complex atmo-
spheric system but has the virtue of allowing a relatively com-
plete analysis of statistical properties. The model is a spectrally
truncated version of Burgers equation (referred to as truncated
Burgers model or TBM),

ut �
1
2

P��u�
2 �x � 0, [3]

where

u��t� � �

k
 � �

uk�t�eikx u�k � u*k

and P�f � f� � �

k
��

fk�t�eikx, [4]

and typically values of at least � � 5 are required for qualitative
behavior to converge. In most of our previous work (and here)
� 	 50, and thus 100 real spectral components are retained.
Majda and Timofeyev (19) showed that the equilibrium statis-
tical mechanics of this model could be described by a canonical
Gibbs probability measure,

G� � C�exp��� �
k	��

k	�


uk
2�, [5]

where � 	 �	E, with E the (kinetic) energy of the system, which
can easily be shown to be conserved. (More precisely the energy
is simply 
 u2dx 	 �uk

2.) The implication of Eq. 5 is that the
equilibrium pdf for this model is Gaussian, with all spectral
components having the same variance and zero mean and being
statistically independent of each other.

The model has the interesting property that the decorrelation
time scale of the spectral components is inversely proportional
to their wave number. In other words, large-scale structures have
low frequency variability and are much more persistent than the
‘‘weather modes’’ at smaller scales. Such a statistical property is
a well known feature of the atmosphere and many other dynam-
ical systems of physical interest (e.g., molecular biological sys-
tems). Furthermore this scaling behavior in the TBM is pre-
dicted by elementary theory and confirmed by numerical
simulations.

The two properties outlined above (a simple statistical equi-
librium distribution and spatially scale-dependent decorrelation
with many degrees of freedom) make the TBM a particularly
attractive analog of more complex dynamical systems and an
ideal vehicle to examine the developing ideas on predictability
theory discussed above.

This article is organized as follows. The relaxation of the TBM
toward its equilibrium distribution is analyzed in Relaxation
Behavior. In The Nature of Predictive Utility, we use this analysis
to examine the nature of predictive utility in the system and in
particular study what determines variations in this quantity
between different sets of initial conditions. As discussed, vari-
ation of predictability with initial conditions is a crucial theo-
retical and practical issue for dynamical systems. Finally, we
provide a summary and discuss some research directions for the
near future (Summary and Discussion).

Relaxation Behavior
Statistical prediction may be viewed as the relaxation of a
relatively tight probability distribution at the initial time toward
an equilibrium distribution, which can be considered the clima-
tological distribution. The initial time pdf can be considered as
the uncertainty in the initial specification of the system’s state
vector. In general, one would expect the mean of the initial-
condition distribution to be drawn according to a pdf identical
to that of climatology, because this is the historical distribution
under the assumption of ergodicity. We adopt such an approach
here.

Additionally, we assume that the initial-condition pdf is
Gaussian, with a mean distributed as just discussed and a
variance 4 orders of magnitude smaller than that of the equi-
librium pdf (which also is Gaussian for the model currently under
study, with variance of each mode equal to 0.1). This choice for
the initial-condition variance is somewhat arbitrary and is in-

§A Monte Carlo method known as ensemble prediction is commonly used in practical
situations to attempt to approximate the prediction pdf. State-of-the-art numerical
weather-prediction models have an order of 107 state variables, and thus this is a nontrivial
exercise.

¶We are using the terminology of quantum mechanics here. The operator referred to is that
for the corresponding dynamical system without stochastic forcing, which takes one from
a state vector at one time to a new state vector at some later time.
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tended to represent the realistic scenario where uncertainty in
the initial-conditions state vector is much less than the historical
spread in the same vector (see below for further discussion). The
relaxation behavior for a typical set of initial conditions is
displayed in Fig. 1, which shows the evolution of the mean and
standard deviation of the spectral components for a particular
set of initial conditions. The quantities here are estimated by
using ensemble methods. Thus, an ensemble of 500 members is
used for this study, with initial conditions drawn according to the
initial-condition pdf discussed above integrated forward in time
until approximate equilibrium occurs. Each ensemble member
represents a time integration of the TBM model. The technique
of forward integration is a fourth-order Runge–Kutta scheme,
and a pseudospectral technique is used to evaluate the nonlinear
terms. As can be seen from Fig. 1 the smaller scale modes
converge much more rapidly toward equilibrium for both first
and second moments of the pdfs. Notice that the first moment
can sometimes exhibit some oscillatory-like behavior as it con-
verges to zero.

In general, the distributions governing the prediction pdfs
appear to be approximately Gaussian at all lags. Fig. 2 shows the
distributions for five of the modes at various prediction lags. The
modes are chosen to be representative of the various spatial
scales of the model. This degree of Gaussian behavior is rather
surprising given the significant nonlinearity operating in the
model (19). To check this result further we transformed the
spectral modes (separately at all prediction times) to a basis in
which all resulting modes were uncorrelated (the singular vector
basis). Specifically this can be obtained by calculating the
eigenvectors of the covariance matrix of the Fourier modes (for
more detail see ref. 20). We then tested the Gaussianicity of each
transformed component using the Shapiro–Wilk W test (21).
This latter reference explains in detail the derivation of the W
statistic. Intuitively, if the data are plotted against a normal
probability variate, then the W statistic represents the deviation
from a straight line as measured by a correlation coefficient
reduced from unity (it would be one in the case that the data
were perfectly Gaussian). Results were computed (not shown) to
determine when the test indicated non-Gaussianicity at the 1%

confidence level. This was done for 100 different initial condi-
tions at various prediction times. It was evident that only the final
singular vector (which is dominated completely by small-scale
features) showed any degree of non-Gaussian behavior and then
only at small prediction times. Examination of the distribution
for this singular vector shows that the deviation from Gaussian
behavior takes the form of moderate bimodality (kurtosis).
Interestingly, the first 10 (large-scale) singular vectors at such
prediction time show a close correspondence with the first 10
spectral modes. For these large-scale ‘‘climate’’ modes the
assumption of Gaussian behavior is universally an excellent
approximation.

Fig. 1. Convergence of the first and second moments for a particular ensemble of predictions. The initial conditions are drawn from a Gaussian distribution
with means drawn from the equilibrium distribution, which has a variance of 0.1 for each mode (see Relaxation Behavior).

Fig. 2. Histograms of mode distributions of particular ensembles at partic-
ular times. (Left) t 	 0.2. (Right) t 	 0.8. Each row refers to a different Fourier
mode from the model. From top to bottom, these are modes 5, 15, 25, 45,
and 65.
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The Nature of Predictive Utility
The approximately Gaussian nature of the prediction pdfs for
the model under study considerably simplifies the (approximate)
calculation of relative entropy. As discussed in the first section
for the multivariate Gaussian case, the relative entropy is given
by Eq. 2 and for pedagogical convenience may be decomposed
exactly into two terms:

dispersion � 0.5��ln�det��q
2�

det��p
2�� � tr��p

2��q
2��1� � n�

signal � 0.5���� p��� q�
t��q

2� � 1��� p � �� q�

As noted previously, the dispersion and signal measure rather
different aspects of the prediction utility. In the case of ‘‘weakly’’
non-Gaussian distributions, it turns out to be still useful to
determine which of these terms is important in determining
relative entropy.

We conducted similar experiments with the TBM and
calculated relative entropy according to Eq. 2 under the
assumption that the prediction pdf is approximately Gaussian.
If one were to drop this simplifying assumption, the direct
calculation of relative entropy becomes generally prohibitively
expensive (see ref. 7 for details about practicalities here), and
new approximation methods are needed for systems with many
degrees of freedom.

As was mentioned, we assumed that the initial pdf was
Gaussian, with variance 4 orders of magnitude smaller than the
equilibrium variance. A consequence of this is that any initial
conditions drawn from the equilibrium distribution will have
essentially the same energy and consideration of Eq. 2, and the
properties of the equilibrium pdf show immediately that this
means that the time-0 signal term will also be equal for all initial

The results described below are not qualitatively changed by varying the initial-condition
pdf variance over 2 orders of magnitude.

Fig. 3. A scatter plot, for the 100 ensembles considered, of signal and dispersion versus relative entropy. The latter was calculated under the assumption that
distributions are Gaussian and thus are the sum of signal and dispersion (see The Nature of Predictive Utility).
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conditions; thus, the dispersion component is automatically the
most important measure of predictability variability at very short
times. This property is somewhat artificial, because it is a
consequence of the inviscid (conservative) nature of the TBM.

More realistic systems are obviously more dissipative and may
not necessarily have this property.

Results for our set of 100 initial conditions are displayed in
Fig. 3 for various prediction times. Recall that the prediction pdf

Fig. 4. The evolution of (univariate Gaussian) relative entropy with time for various Fourier modes and for a particular initial-condition ensemble.

Fig. 5. The same as described for Fig. 3 but for multivariate Gaussian relative entropy of the first 10 Fourier modes (see text). These modes represent the
large-scale, slowly evolving part of the flow.
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statistics were obtained by using a 500-member ensemble. In ref.
19 it was found that a natural time scale in the TBM was that
connected with shock formation from large-scale initial condi-
tions (see figure 1 in ref. 19). This occurs at �t 	 0.5, a time scale
that is consistent with the relaxation process studied in the
previous section. We shall refer to times shorter than this as
short-range predictions and conversely for longer times.

In Fig. 3 we see that for short-range predictions, the signal and
dispersion are of roughly equal importance in determining utility
variation with initial conditions, but for longer ranges signal is
somewhat more important in determining utility variability.
Given the artificial nature of the dominance of dispersion at time
0, it is clear that signal is an important determinant of prediction-
utility variability for the TBM. It is worth emphasizing that here
we are interested in which parameter determines variation of
utility with initial conditions and not the absolute value of the
particular parameter. This latter quantity is somewhat arbitrary,
because it depends on the assumption one makes about the
tightness of the initial-condition pdf (a tighter value implies a
higher absolute value of the dispersion and conversely).

In general, in prediction scenarios for climate one is interested
in determining the large-scale component of the flow with low
frequency variability. This separation of scales is the motivation
for the climate-oriented stochastic modeling often used in
studies of atmospheric dynamics (22–24). Stochastic modeling
also is used extensively in climate systems that involve both the
ocean and atmosphere (25–27). Here there is a much greater
scale separation, with atmospheric transients providing the fast
time-scale ‘‘stochastic’’ forcing for the slowly evolving ocean-
controlled climate variables.

It is clear in the TBM that the large-scale spectral modes are
much more predictable than the small-scale ones. This may be
seen in Fig. 4 for one particular initial-condition set. Plotted is
the evolution of utility as a function of spectral mode, and it is
evident that the utility of the large-scale modes remains for a
considerably longer period than the same quantity for the
small-scale modes.

To examine the stochastic climate scenario we calculated the
utility of the first 10 (large-scale) spectral modes. Fig. 5 shows the
role of signal and dispersion in determining total large-scale
utility. Rather strikingly, the signal component completely dom-
inates utility variation at all prediction times. Similar results (not
shown) also were found when even 20 and 40 modes were
retained. This result indicates that in general signal is the main
determinant of prediction utility in the TBM and that the equal
signal	dispersion relation found for the total utility at short
prediction times is really a consequence of the artificial con-
straint on initial conditions caused by the inviscid nature of the
model, which automatically leads to the dominance of dispersion
at very short times.

Summary and Discussion
Relative entropy offers a very attractive means for quantifying
the informational content of dynamical predictions. In the case
that the probability distributions for both prediction and clima-
tology (equilibrium) are Gaussian, a useful decomposition of this
measure of utility into dispersion and signal is possible. In simple
terms, the former measure the utility of uncertainty reduction
through prediction, whereas the latter measures the degree to
which the mean of a prediction differs from what one would
expect in the absence of a dynamical prediction based on
historical precedent.

Here we applied these ideas to a simple model with obvious
similarities to the atmospheric dynamical system. The spectrally
truncated Burgers equation has the property that large-scale
structures are more persistent than those of small scale. In
addition it has a particularly simple Gaussian equilibrium dis-
tribution, reflecting the fact that an equilibrium statistical me-
chanical formulation is possible. In addition we find that the
prediction (nonequilibrium) distributions are also approximately
Gaussian, which further facilitates the analysis of the system
from the viewpoint of information theory.

We find that in general the signal component of relative
entropy is significantly more important than dispersion. This
result was particularly unexpected, because R.K. had found
earlier (7) that dispersion was more important in the case of the
Lorenz-63 (16) model. Given that the TBM system analyzed here
is a many degree-of-freedom model with several important
statistical features in common with the atmosphere that are
absent in the Lorenz-63 model, this effect clearly deserves
further investigation in more sophisticated models such as the
barotropic potential vorticity equation. It is clear that if the
current results hold in the more realistic context, then there are
important implications for the rapidly developing field of sta-
tistical prediction. In particular, attention has focused to date in
this field almost entirely on dispersion, and signal has been
mainly ignored. Interestingly, this is not the case in climate
prediction as noted in ref. 14.

Analysis in the present case was facilitated greatly by the
approximate Gaussian nature of the prediction distributions. In
the case of the Lorenz model such an assumption was not
justified, because prediction distributions there are often highly
bimodal (among other things). A priority of future work in
applying information theory to dynamical prediction is the
development of efficient methods for the calculation of entropy
when many degrees of freedom are present in the system.
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