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We employ an efficient list-based kinetic Monte Carlo (KMC) method to study a traffic flow
model on one-dimensional (1D) and two-dimensional (2D) lattice based on Arrhenius microscopic
dynamics. This model implements stochastic rules for the movement of cars based on the energy
profile of the traffic ahead of each car. In particular, we compare two different look-ahead rules:
one is based on the distance from the car under consideration to the car in front of it, the other one
is based on the density of cars ahead. The 1D numerical results of these two rules show different
coarse-grained macroscopic limits in the form of integro-differential Burgers equations. The 2D
results of both rules exhibit a sharp phase transition from freely flowing to fully jammed, as a
function of initial density of cars. The KMC simulations reported in this paper are compared with
those from other well-known traffic flow models and the corresponding empirical results from real
traffic.

PACS numbers: 89.40.-a, 05.50.+q, 64.60.-i, 02.70.-c

I. INTRODUCTION

In the past few decades, traffic problems have attracted
considerable attention of many scientists. It has been a
fundamental task to model traffic flows for understanding
the mechanisms leading to traffic jams and designing traf-
fic networks for efficient transportation systems. A num-
ber of theoretical and computational models have been
proposed to study traffic flows by using the methods and
concepts of non-equilibrium statistical physics. These
models can be roughly divided into several categories (see
review papers or books [1–6] and references therein): (i)
microscopic discrete lattice models (or individual-agent-
based models) where a lattice site configuration with val-
ues 1 (car is present) and 0 (car is absent) combined
with explicit rules for car movement on lattice sites is
used to represent traffic flow; (ii) microscopic non-integer
car-following models that treat cars as particles and use
ordinary differential equations (possibly with delay) to
describe the motion of cars; (iii) mesoscopic models that
use kinetic theories to describe the probabilistic distri-
bution of the car velocity, the moments of which give
the macroscopic car density and flux; (iv) macroscopic
models that treat the traffic flow as a compressible fluid
formed by the cars and use partial differential equations
(PDE, typically conservation laws) to relate the car den-
sity and flux.
In the microscopic models above, attention is explicitly

focused on individual cars and the interactions among
them are determined by the way the cars influence each
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others’ movements. While car-following models, such
as the follow-the-lead model [7] and the optimal veloc-

ity model [8, 9], provide a more realistic setup allowing
for detailed interaction rules, mechanisms for lane chang-
ing, etc., lattice models are simpler to implement and
are more amenable to analytical investigation. There-
fore, lattice models, such as the cellular automaton (CA)
[10–18], have been widely used to represent traffic flow
and a vast literature exists addressing various analytical
and numerical techniques for models of this type. Re-
cently, a novel look-ahead potential was introduced to
model long-range interactions in prototype lattice model,
which were then coarse-grained to obtain macroscopic de-
scriptions [19, 20]. In particular, in [21] the look-ahead
potential was used to model the effect of long-range traf-
fic conditions and a new macroscopic PDE model with
non-local interactions was formally derived. Extensions
to multi-lane traffic have also been developed [22, 23].
An improved coarse-grained model at the ODE level has
been made in [24].

In this paper we study a traffic flow model on one-
dimensional (1D) and two-dimensional (2D) lattice which
describes the interactions between cars by a look-ahead
rule based on the energy profile of the traffic ahead of
each car. In particular, we consider two different look-
ahead rules: one is based on the distance from the car
under consideration to the car in front of it, the other
one is based on the density of cars ahead as used in [21].
Numerically we employ the kinetic Monte Carlo (KMC)
algorithm [25] to simulate the microscopic stochastic dy-
namics of the traffic flow based on the Arrhenius law with
these rules. One reason to choose KMC instead of the
Metropolis Monte Carlo method [26] is that the KMC
method can provide the transition rates which are asso-
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ciated with possible configurational changes of the traffic
system, and then the corresponding time evolution of the
system can be expressed in terms of these rates. More-
over, when the dynamics of the traffic system features
a finite number of distinct processes in configurational
changes, we develop an efficient list-based KMC algo-
rithm using fast search that can further improve compu-
tational efficiency compared to the general KMCmethod.
The model parameters in the KMC method are cali-

brated against empirical results from real traffic. After
calibration, the KMC simulations are used to quantita-
tively predict the time evolution of 1D and 2D traffic
flows. The 1D numerical results of these two rules show
different coarse-grained macroscopic limits in the form
of integro-differential Burgers equations. The 2D results
of both rules exhibit a sharp phase transition from freely
flowing to fully jammed, as a function of initial density of
cars. The results of our model are comparable to those
from other well-known traffic flow models and the cor-
responding empirical results from real traffic in certain
parameter regimes.
The rest of the paper is organized as follows. In Section

2, we introduce the lattice model with two look-ahead
rules. In Section 3, we describe the list-based KMC algo-
rithm and its implementation. In Section 4, we provide
a series of numerical simulations in various parameter
regimes on 1D and 2D lattice, respectively. We state our
conclusion in Section 5.

II. A LATTICE MODEL WITH LOOK-AHEAD

RULES

We discuss the construction of the discrete lattice
model for 1D traffic flow in this section. For simplicity,
we assume that cars are forced to move toward one direc-
tion on a 1D periodic (single-lane loop highway with no
entrances or exits) lattice L partitioned into M evenly
spaced cells, L = {1, 2, . . . ,M}. The configuration at
each site x ∈ L is defined by an index σx:

σx =

{

1 if a car occupies cell x,

0 if the cell is empty,
(1)

and the state of the system is represented by the config-
uration space {0, 1}M with the element denoted by σx.
In the following we label the cars in driving direction to
the right such that the (n + 1)-th vehicle is in front of
the n-th car. Transitions in the state of system represent
the car movements, which obey the rules of an exclusion
process [27]: two nearest neighbor lattice sites exchange
values in each transition and cars cannot occupy the same
cell. In addition cars are only allowed to move one cell to
the right in one transition. Therefore, the only possible
configuration changes are of the form (see Fig. 1)

{σx = 1, σx+1 = 0} → {σx = 0, σx+1 = 1}

The transition rate depends on spatial forward
Arrhenius-type interactions with one-sided potentials

and a look-ahead feature which can be considered to rep-
resent driver behavior. This rule allows cars (or drivers)
to perceive the traffic situation up to L cells ahead in
which L is the look-ahead parameter. The interactions
between a pair of successive cars cannot be neglected if
the gap between them is shorter than L; in such situa-
tions the following car must decelerate so as to avoid col-
lision with the leading car. Similar to the spin-exchange
Arrhenius dynamics in which the simulation is driven
based on the energy barrier a particle has to overcome
in changing from one state to another [21], we perform a
car move only if the potential energy of the car is higher
than a given threshold. The move is taken as a nearest-
neighbor hopping process with its rate given by the Ar-
rhenius relation:

r = ω0 exp (−Eb) (2)

where the prefactor ω0 = 1/τ0 corresponds to the car
moving frequency with τ0 the characteristic or relaxation
time. The moving energy barrier Eb is assumed to de-
pend only on the local environment of the car under con-
sideration up to range L ahead of it, which enforces the
look-ahead rule (Fig. 1). In the following, we describe
two different look-ahead rules.
The first one is based on the distance from the car

under consideration to the car in front of it, in other
words, the number of vacancy cells, Nv, between these
two cars (as shown in left panels in Fig. 1). In particular,
the energy barrier is given by

Eb = Es +
(L−Nv)

L
Ec (3)

where Es is the energy associated with the site binding
of the car, which could vary in both space and time to
account for spatial and temporal traffic situations (in this
study we set to Es = 0). The parameter Ec is the car
look-ahead interaction potential strength. Then all cars
can be classified into (L + 1) folds according to their
corresponding values of Nv (Nv = 0, 1, . . . , L). Based on
the formulas (2) and (3), we can see that the larger is the
value of Nv, the smaller is the energy barrier Eb, thus the
larger is the transition rate r. This reflects the fact that
the closer is the distance between cars, the stronger is
the slowdown factor.
From experience with real traffic we know that drivers

usually observe not only the leading car but also other
cars ahead of the leading car. Therefore, we also consider
another look-ahead rule which is based on the density of
cars ahead of the car under consideration [21]. In this
rule, the energy barrier is given by

Eb = Es +
Nc

L
Ec (4)

where Es and Ec are defined as above (in this study we
set to Es = 0). As shown in the right panels in Fig. 1,
Nc is the number of cars in the range L ahead of the car
under consideration. Then all cars can also be classified
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FIG. 1. Schematic representation of two look-ahead rules. (Left panels): The rule based on the distance: a car in gray with
different numbers (Nv) of vacancy cells between it and the first car ahead of it in the range L (here, L = 4), (a): Nv = 0; (b):
Nv = 1; (c): Nv = 2; (d): Nv = 3; (e): Nv = 4. (Right panels): The rule based on the density: a car in gray with different
numbers (Nc) of cars ahead of it in the range L, (a): Nc = 3; (b): Nc = 2; (c): Nc = 2; (d): Nc = 1; (e): Nc = 0.

into (L+1) folds according to their corresponding values
of Nc (Nc = 0, 1, . . . , L). This look-ahead rule with the
formula (4) indicates that a slowdown factor is stronger
when the forward car density is high, i.e, when the road
is congested.
To summarize, the following parameters need to be

given for the stochastic simulations with either look-
ahead rule: (i) the characteristic or relaxation time τ0;
(ii) the car interaction potential strength Ec; and (iii) the
look-ahead parameter L.

III. THE KINETIC MONTE CARLO METHOD

We apply the kinetic Monte Carlo (KMC) method to
the above lattice model to investigate the evolution of a
traffic system. We choose KMC instead of the Metropo-
lis Monte Carlo (MMC) method [26] since in the MMC
method, trial steps are sometimes rejected because the
acceptance probability is small, in particular when a sys-
tem approaches the equilibrium, or the density of cars is
high. The KMC method that we adopt here is related
to the method proposed by Bortz, Kalos, and Lebowitz
as a speed-up to the MMC method for simulating the
evolution of Ising models [25]. A main feature of the
KMC algorithm is that it is “rejection-free”. In each
step, the transition rates for all possible changes from
the current configuration are calculated and then a new
configuration is chosen with a probability proportional
to the rate of the corresponding transition. Since the in-
teraction is short-ranged within the look-ahead distance,
there is only a small number of local environments that
need to be changed due to the previous transition. The
other feature of KMC is its capability of simulating the
dynamics of the system in real time. Since the corre-
sponding time evolution is expressed in terms of these

rates, KMC should provide a more accurate description
of time evolution of a traffic system than MMC.
The KMC algorithm is built on the assumption that

the model featuresN independent Poisson processes (cor-
responding to N moving cars on the lattice) with tran-
sition rates ri in (2) that sum to give the total rate

R =
∑

N

i=1 ri. In simulations with a finite number of dis-
tinct processes it is more efficient to consider the groups
of events according to their rates [28–30]. This can be
done by forming lists of the same kinds of events accord-
ing to the values of Nv in (3) of the first look-ahead rule
or the values of Nc in (4) of the second look-ahead rule.
This way we can put the total N events into (L+1) lists,
labelled by l = 0, . . . , L. All processes in the l-th list have
the same rate rl. We denote the number of processes in
this list by nl, which is called the multiplicity, and we

have N =
∑

L

l=0 nl. To each list we assign a partial rate,
Rl = nlrl, and a relative probability, Pl = Rl/R. Then

the total rate is given by R =
∑

L

l=0 nlrl. A fast list-based
KMC algorithm at each step based on the grouping of
events is given as follows.
List-based KMC algorithm:

Step 1: Generate a uniform random number, ξ1 ∈ (0, 1)
and decide which process will take place by choosing the
list index s such that

s−1
∑

l=0

Rl

R
< ξ1 ≤

s
∑

l=0

Rl

R
(5)

Step 2: Select a realization of the process s. This can
be done with the help of a list of coordinates for each kind
of event, and an integer random number ξ2 in the range
[1, ns]; ξ2 is generated and the corresponding member
from the list is selected.
Step 3: Perform the selected event leading to a new

configuration.
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Step 4: Use R and another random number ξ3 ∈ (0, 1)
to decide the time it takes for that event to occur (the
transition time), i.e., the nonuniform time step ∆t =
− log(ξ3)/R.
Step 5: Update the multiplicity nl, relative rates Rl,

total rate R and any data structure that may have
changed due to that event.

IV. NUMERICAL EXPERIMENTS

We next investigate 1D and 2D traffic flows in vari-
ous parameter regimes with the numerical methods de-
veloped in the previous section. We start by calibrating
some KMC model parameters with respect to well-known
quantities from real traffic data.

A. Calibration and validity by the red

light traffic problem

Following [21], we set the physical length of each cell to
22 feet, which allows for the average car length plus safe
distance. Therefore, a mile (= 5280 feet) is equivalent
to 240 cells. For a car which has an average speed of 60
miles per hour, an estimate of time to cross a cell is given
by

∆tcell =
22 feet

60 miles/h
=

1 cell× 3600 secs

60× 240 cells
=

1

4
sec. (6)

We calibrate the parameters τ0 and Ec by simulating
a free-flow regime and we expect all cars to drive at
their desired speed that is set to 60 miles per hour.
This is accomplished by setting the characteristic time
τ0 = 0.25sec, and then ω0 = 4sec−1. In fact, due to the
stochasticity inherent in the simulations, sometimes cars
may move faster or slower than the speed limit.
Fig. 2 shows the results of the “red light” traffic prob-

lem: the traffic light located at 0.5 miles (i.e., x = 120)
is turned from red to green at the initial time and the
“bumper to bumper” traffic wave is released. The initial
condition is given by

σx(0) =

{

1 1 ≤ x ≤ 120,

0 120 < x ≤ M.
(7)

The highway distance is set to 4 miles, i.e., M = 960
cells, which is large enough to enure that finite-size effects
do not interfere the simulations. Then the car density is
120/960 = 12.5%, which is in the free-flow regime. Given
the initial conditions (7), we run K = 500 simulations
with different random number seeds and estimate the
car density (middle panels in Fig. 2) by using ensemble
averages with the formula

ρ(x, t) ≈
1

K

K
∑

k=1

σ(k)
x

(t) (8)

where the integer k is the realization index. We also
compute the the variance in the car density over these
simulations, shown in the bottom panels in Fig. 2.
We calibrate the potential strength Ec such that the

velocity of a backward moving traffic jam can be approx-
imately −10 miles per hour, as estimated by traffic re-
searchers in [31–33]. While we take the look-ahead pa-
rameter L = 4 for both look-ahead rules, the calibrated
value of the potential strength is Ec = 4.0 for the first
look-ahead rule (3) (left panels in Fig. 2) and Ec = 6.0
for the second look-ahead rule (4) (right panels in Fig. 2).

B. Numerical comparisons of fluxes

To identify the range of significance of parameters, the
interaction potential strength Ec and the look-ahead dis-
tance L, we make a series of numerical tests for different
car densities with various values of parameters Ec and
L. In the following we show the fundamental diagrams
of the density-flow relationship and compare the results
of different look-ahead rules (3) and (4). For these results
we take a random car distribution at the initial time on
a loop highway of 1 mile (M = 240 cells) and observe the
behavior of traffic flows as the car density increases in-
crementally. The traffic flow is measured as the number
of cars passing a detector site per unit time [34]. Here we
run each KMC simulation with different densities until
the same final time (1 hour) and report long time aver-
ages of the flow in number of cars per hour.
Fig. 3 shows the results of the first look-ahead rule (3).

We first examine how the potential strength Ec influences
the traffic flow. In the left panel, we plot the microscopic
flux for the look-ahead distance of L = 4, which is more
appropriate for actual traffic conditions. As the poten-
tial strength increases, the concavity of traffic flow flux
changes. In particular, when Ec ≥ 3.0 the flux is neither
concave nor convex, which is similar to the simulation
results and the observed data from [11, 17, 32]. This
loss of convexity provides a richer behavior than the typ-
ical Lighthill-Whitham [35, 36] (or Burgers) type traffic
model predicts. In the later case the flow-density curve
is symmetric about the center ρ = 0.5, as shown by the
trivial case of Ec = 0, where the maximum flux at ρ = 0.5
is about 3600 cars per hour, as calculated via (9). More-
over, for given ρ, the magnitude of flux decreases with
increasing Ec becuase the larger is the potential strength
the stronger is the interaction to slowdown the cars.
In the right panel in Fig. 3, we show numerical results

of the microscopic flux for different look-ahead distances
L while keeping all other parameters fixed. The case of
L = 4 in the right panel connects to the case of Ec = 2.0
in the left panel and allows for comparisons between the
two. Note that, as L increases, the flux turns back to
be concave. In particular, when L = 240, the flux of
the KMC simulations agrees with that of the PDE in the
typical Lighthill-Whitham type traffic model [35, 36]

F (ρ) = ω0ρ(1 − ρ) exp (−Ec). (9)
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FIG. 2. Calibration of the potential strength Ec permitting a desired car speed of 60 miles per hour and a backward moving
traffic jam velocity of ≈ −10 miles per hour. We take the highway distance of 4 miles (M = 960 cells) and the look-ahead
parameter of L = 4 for both look-ahead rules. The initial condition corresponds to a red light traffic problem (i.e., bumper-
to-bumper cars up to 0.5 miles (= 120 cells) and no cars after that, so total 120 cars in each simulation). The running time
is up to 960 sec; (Left panels) Results of the first look-ahead rule (3) with the potential strength Ec = 4.0. (Right panels):
Results of the second look-ahead rule (4) with the potential strength Ec = 6.0. (Top panels): Car traces in a single simulation;
(Middle panels): Evolution of the car density averaged over 500 simulations; (Bottom panels): Evolution of the variance in the
car density over 500 simulations.

The maximum flux at the center ρ = 0.5 is about
3600e−2.0 ≈ 487 cars per hour (recall that ω0 = 4sec−1).

Moreover, for given ρ, the magnitude of flux decreases
with increasing L since the larger is the look-ahead dis-
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FIG. 3. Long time averages of the flow-density relationship for one-lane highway by using the first look-ahead rule (3). (Left
panel): Comparison results of different values of the potential strength Ec. In these results we take the look-ahead parameter
of L = 4. (Right panel): Comparison results of different values of the parameter L. In these results we use Ec = 2.0. Note that
for long range interactions (L = 240), the flux of the KMC simulation (shown in “+”) agrees with the PDE flux (9) (shown in
the red dashed curve). In both results we take the highway distance of 1 mile (M = 240 cells) and run all KMC simulations
until the same final time (1 hour) before plotting the flux versus the car density.
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FIG. 4. Long time averages of the flow-density relationship for one-lane highway by using the second look-ahead rule (4). (Left
panel): Comparison results of different values of the potential strength Ec. In these results we take the look-ahead parameter
of L = 4. (Right panel): Comparison results of different values of the parameter L. In these results we use Ec = 6.0. Note that
for long range interactions (L = 240), the flux of the KMC simulation (shown in “+”) agrees with the PDE flux (10) (shown
in the red dashed curve). As the same as in Fig. 3, in all KMC simulations the highway distance is 1 mile (M = 240 cells) and
the final time is 1 hour.

tance the longer is the effective range of interaction of
the cars.

Fig. 4 shows the results of the second look-ahead rule
(4). In the left panel, we again examine how the potential
strength Ec influences the traffic flow with the look-ahead
distance of L = 4. Here, we observe similar results as
shown in the left panel in Fig. 3. For values of Ec ≥ 4.0
the flux is neither concave nor convex. Moreover, for
given ρ, the magnitude of flux decreases with increasing

Ec. The right panel in Fig. 4 displays numerical results of
the microscopic flux for different look-ahead distances L,
where the case of L = 4 connects to the case of Ec = 6.0
in the left panel. For the second look-ahead rule (4), as
L increases, the flux turns to neither concave not convex
and the magnitude of flux also decreases. When L =
240, the flux of the KMC simulations matches with the
following nonlocal flux of the PDE model [21]

F (ρ) = ω0ρ(1− ρ) exp (−Ecρ̄). (10)
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where ρ̄ is the average of ρ on the long range L (if L =
240, ρ̄ = ρ). Since physically we do not expect that
drivers would (or even could) have a perception of traffic
up front for many cars, both look-ahead rules (3) and (4)
are reasonable for small L.

We note that in the left panels in Figs. 3 and 4,
the density-flow curve of the KMC simulation (shown
in blue “∗”) clearly displays that the region of free-flow
is up to the density of approximately ρcrit = 0.2, i.e.,
240 × 0.2 ≈ 50 cars per mile. This result is naturally
produced by the traffic dynamics in our simulations with
the calibrated parameters τ0 = 0.25sec, and Ec = 4.0 or
6.0 for each look-ahead rule, respectively. We also ob-
serve a maximum traffic flow of approximately 1800 cars
per hour as we take the car desired speed of 60 miles per
hour, which should agree with observations of the flow of
2000 cars per hour with the desired speed of 65 miles per
hour [32, 37].

C. Numerical results of time-headway distributions

The time-headway (TH) is defined as the time interval
between the departures (or arrivals) of two successive cars
recorded by a fixed detector on the highway [34]. The TH
distribution is regarded as an important characteristic
of traffic flow since the TH distribution contains more
detailed information on traffic flow than that available
from the flux alone. Actually the flux J can be estimated
by J = 1/Tave where Tave is the average of TH [34].
With the variation of density ρ of the cars, Tave comes
to a minimum at ρ = ρcrit, where the flux reaches its
maximum. As shown in the bottom panels in Fig. 5, Tave

takes the minimum, 2.0sec, at ρcrit = 0.2 in both cases,
which gives the maximum traffic flow of J = 3600/2.0 =
1800 cars per hour.

Fig. 5 shows the results of the first and second look-
ahead rules (3) and (4) with the potential strength Ec =
4.0 and Ec = 6.0, respectively. In both results we take
the look-ahead distance L = 4 and obtain similar distri-
butions. As shown in top panels in Fig. 5, the TH distri-
butions of cases ρ = 0.1, 0.2 and 0.3 show a strong peak
around 2.0 ∼ 3.0sec, which represents the global maxi-
mum of the distribution. These short THs correspond to
some groups of cars moving very fast and their drivers
are facing the risk of driving “bumper to bumper” with a
rather high speed. However, the corresponding high-flow
states exhibit metastability, in which a perturbation of
finite magnitude and duration can break down the high-
flow [31]. As the density ρ increases in the regime of con-
gested traffic (ρ > 0.3), the small THs have less weight in
the TH distributions. In “stop-and-go” traffic (ρ ≥ 0.7),
short THs are suppressed (results not shown). The bot-
tom panels in Fig. 5 also show that the average of TH,
Tave becomes longer as the density ρ increases.

D. Traffic flows on 2D lattice

In this subsection we extend the traffic model from
1D to 2D lattices and study traffic in cities. Our 2D
model is closely related to the Biham-Middleton-Levine
(BML) model [38], which is the earliest CA model of
traffic in idealized networks of streets in cities. Although
the model is simple, it displays very complex phenomena,
e.g., phase transition and self-organization. Since then,
extensive researches have been done based on this model
and it serves as a theoretical benchmark for modelling
urban traffic [39–51].
In the original BML model, two species of cars, east-

bound and northbound, populate a 2D periodic square
lattice. Each lattice site can be in one of three states:
empty, occupied by an eastbound car (→), or occupied
by a northbound car (↑). All the streets parallel to the
x-direction of a Cartesian coordinate system are assumed
to allow only single-lane eastbound traffic while all those
parallel to the y-direction allow only single-lane north-
bound traffic. The states of eastbound cars are updated
in parallel at every odd time step whereas those of the
northbound cars are updated in parallel at every even
time step following a rule: a car advances one lattice site
if and only if the target site is currently empty, otherwise
the car remains stationary even if the target site is to be-
come empty during the same time step. The dynamics is
fully deterministic and the randomness in this model en-
ters only through the initial random distribution of cars.
Furthermore, the number of cars on every street is con-
served since no turning of the vehicles is allowed by the
updating rules. Therefore, on anM×M lattice, there are
2M conservation laws on 1D strips. Suppose, N→ and
N↑ are the numbers of the eastbound and northbound
cars, respectively, in the initial state of the system. The
densities of the eastbound and northbound cars are given
by ρ→ = N→/M2 and ρ↑ = N↑/M

2, respectively, while
the global density of the cars is ρ = ρ→ + ρ↑. In this
study we will focus on the symmetric cases with equal
densities, i.e., ρ→ = ρ↑ = ρ/2.
Here, instead of using the parallel updating rule in

the original BML model, we take the look-ahead rules
to describe the car movements on each street in the same
manner as in the 1D lattice model in Section 2. Then,
we follow the prescriptions of the 1D model for describing
the positions and speeds of the cars as well as for tak-
ing into account the interactions between the cars on the
same street with the characteristic time τ0, the interac-
tion potential strength Ec, and the look-ahead parameter
L.

To study the 2D models with the two look-ahead rules,
we have performed a series of simulations for different car
densities with various values of the look-ahead parameter
L and the lattice size M . We fix the potential strength
Ec = 4.0 and Ec = 6.0 for the first and second look-ahead
rules (3) and (4), respectively. The results exhibit a phase
transition from the free-flow regime to the completely
jammed regime as the car density increases.
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FIG. 5. (Top panels): Time-headway (TH) distributions for different car densities from ρ = 0.1 to 0.6. (Bottom panels):
Average of TH, Tave, versus the car density ρ. (Left panels): Results of the first look-ahead rule (3) with the parameter L = 4
and the potential strength Ec = 4.0. (Right panels): Results of the second look-ahead rule (4) with with the parameter L = 4
and the potential strength Ec = 6.0. As the same as in Fig. 3, in all KMC simulations the highway distance is 1 mile (M = 240
cells) and the final time is 1 hour. The insets in the bottom panels show that Tave takes the minimum, 2.0sec, at ρcrit = 0.2 in
both cases.

Fig. 6 shows three typical configurations of the 2D
model on an M × M lattice of size M = 256 using the
first look-ahead rule (3) with the parameter L = 4 and
the potential strength Ec = 4.0. The left panel displays
a configuration below the transition, i.e., the free-flow
phase with a low car density ρ = 0.06, where the cars
are distributed randomly and homogenously. The middle
panel shows a completely jammed phase with ρ = 0.11
above the transition. Here all the cars are stopped in a
global jam, which is oriented along the diagonal from the
lower-left to the upper-right corners. This way it blocks
the paths of all cars which finally get stopped. The in-
trinsic stochasticity of the dynamics triggers the onset
of jamming and the phenomenon of complete jamming
through self-organization as well as the final jammed con-
figurations are similar to those in the BML model. The
right panel shows a high density, randomly jammed phase

with ρ = 0.6, in which small jams appear simultaneously
all over the lattice and connect almost immediately with
other jams, stopping all cars. In this phase, the system
has no time to self-organize, and instead of one global
jam, we observe a collection of small random jams. We
note that the configurations using the second look-ahead
rule (4) with L = 4 and Ec = 6.0 are not shown since
they are similar to those in Fig. 6.

For critical phenomena, it is expected that the size of
the system plays an important role. Therefore, we an-
alyze the effects of the lattice size M on the 2D traffic
with the diagrams of density-flow and density-velocity
relationships. Here we run all KMC simulations with
different densities ranging from ρ = 0 to ρ = 0.16 un-
til the same final time (5 hours). For each simulation
we compute long time averages of the flow in number of
cars per hour per lane and obtain the ensemble-average
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FIG. 6. Typical configurations of the 2D traffic model on an M ×M lattice of size M = 256 using the first look-ahead rule (3)
with the parameter L = 4 and the potential strength Ec = 4.0. The eastbound and northbound cars are represented by red
and blue dots, respectively. (Left panel): The free-flow phase with a low car density ρ = 0.06. (Middle panel): The completely
jammed phase consisting of one global jam with the car density ρ = 0.11. (Right panel): A high density, randomly jammed
phase with ρ = 0.6.

velocity in cells per second by averaging the velocities
over all cars moving in the same direction, eastbound or
northbound. Due to the symmetry with equal densities
of two species, i.e., ρ→ = ρ↑ = ρ/2, the results of both
directions are almost same, so we only report the results
of eastbound cars. Moreover, for every value of ρ and M ,
ten simulations with different random number seeds are
averaged over.

Results of four system sizes from 64×64 to 512×512 are
presented in each panel in Fig. 7. Every curve exhibits a
reasonably sharp phase transition between the free-flow
phase and the jammed phase. As shown in both top pan-
els, in the free-flow regime the flux increases as the car
density ρ increases, and reaches its maximum at the crit-
ical value, ρcrit. Beyond that point, the phase transition
starts and the flux drops down quickly to zero as all cars
are stopped. On the other hand, the bottom panels show
that in the free-flow regime the ensemble-average velocity
decreases slowly from the maximum speed limit of 4 cells
per second (i.e., 60 miles per hour) as ρ increases and the
chance of interaction between cars gets higher. When ρ
is larger than the critical point ρcrit, the average veloc-
ity also drops down quickly to zero. We observe that as
the system size increases, the transition becomes sharper
and the value of ρcrit tends to decrease. However, as in
the BML model, currently we are not able to determine
whether ρcrit converges to a finite value or to zero in the
infinite system limit. We also note that the results of the
first look-ahead rule (3) with Ec = 4.0 (in left panels)
and those of the second rule (4) with Ec = 6.0 (in right
panels) are similar, which indicates that both rules are
reasonable for small L = 4.

However, Fig. 8 shows that when L ≥ 8, two look-
ahead rules produce different results of both diagrams of
density-flow and density-velocity relationships. As shown
in the top-left panel for the first rule (3) with Ec = 4.0

and different values of the look-ahead parameter L = 1
to 256, the value of the critical car density ρcrit of the
transition decreases as the parameter L(≥ 2) increases.
Moreover, the magnitude of maximum flux decreases dra-
matically with increasing L. In particular, for the cases
of L = 128 and 256, the flux is almost suppressed. In
all cases of L ≤ 16, the flux increases as ρ increases,
and reaches the maximum at ρcrit, then the flux drops
down quickly to zero. On the other hand, in the cases of
L ≥ 32, the flux decreases slowly after it reaches its max-
imum. The bottom-left panel shows that in each case of
L ≤ 16, the ensemble-average velocity decreases slowly
with the increase of ρ before the transition. After that,
the average velocity drops down quickly to zero. But
in the cases of L ≥ 64, the average velocity decreases
quickly from the beginning.

The right panels in Fig. 8 show the results of the second
look-ahead rule (4) with the potential strength Ec = 6.0
and different values of the look-ahead parameter L = 1
to 256. As shown in the top-right panel, the value of
the critical car density ρcrit of the transition increases as
the parameter L(≤ 64) increases. On the other hand, for
the cases of L > 64, the value of ρcrit of the transition
decreases as the parameter L increases. For all cases with
different values of L, the flux increases as ρ increases until
ρcrit when the transition happens, and then the flux drops
down quickly to zero. The magnitude of maximum flux
decreases slowly with increasing L. The bottom-right
panel shows that in all cases of L, the ensemble-average
velocity decreases slowly with the increase of ρ until the
transition appears and then drops down quickly to zero.
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FIG. 7. Comparison results of the 2D traffic model with four different system sizes from 64×64 to 512×512. (Top panels): Long
time averages of the flow-density relationship of eastbound cars. (Bottom panels): Ensemble-average velocity of eastbound
cars versus the car density ρ. (Left panels): Results of the first look-ahead rule (3) with the potential strength Ec = 4.0 and
L = 4. (Right panels): Results of the second look-ahead rule (4) with the potential strength Ec = 6.0 and L = 4. In all KMC
simulations the final time is 5 hours.

V. CONCLUSIONS

We have used the kinetic Monte Carlo (KMC) method
with a lattice model to study 1D and 2D traffic flows.
Our work is motivated by the growing need to under-
stand the mechanisms leading to traffic jams and design
and optimize transportation systems. This cellular au-
tomata (CA) traffic model defines stochastic rules for the
movement of cars by using the look-ahead potential of
each car. In particular, we used two different look-ahead
rules: one is based on the distance from the car under
consideration to the car in front of it; the other one is
based on the density of cars ahead.

To simulate the time evolution of the traffic system,
we developed an efficient list-based KMC algorithm us-
ing fast search that can further improve computational
efficiency. In the KMC method, the dynamics of cars in
the traffic system is described in terms of the transition
rates corresponding to possible configurational changes
of the system, and then the corresponding time evolu-
tion of the system can be expressed in terms of these
rates. The KMC simulations relied on the calibration
of three model parameters: the characteristic time τ0,
the interaction potential strength Ec, and the look-ahead
parameter L. After calibration against empirical results
from real traffic, the KMC simulations are used to quan-
titatively predict the time evolution of 1D and 2D traffic
flows. The results of our model are comparable to those
from other well-known traffic flow models and the cor-

responding empirical results from real traffic in certain
parameter regimes.

For 1D traffic flows (in one-lane), we obtained fun-
damental diagrams with qualitatively meaningful flows
which display many of the observed traffic states. Com-
parison of the 1D numerical results of the two look-ahead
rules shows that in long-range interactions limit with
large look-ahead parameter L, the two rules produce dif-
ferent coarse-grained macroscopic limits in the form of
integro-differential Burgers equations. But for small L,
both rules produce similar results. The 2D results of
both rules exhibit a sharp phase transition from freely
flowing to fully jammed, as a function of initial density
of cars. Again, both rules produce different 2D results
in long-range interactions limit with large L, but the re-
sults of small L are similar. Moreover, currently we do
not expect that drivers would really (or even could) have
a perception of traffic up front for many cars, thus both
rules are reasonable for small L.

It is possible to improve our 1D and 2D model further
in the following directions. We can include entrances
and exits in 1D model by adding dynamics mechanisms
such as adsorption/desorption. In reality, at places with
traffic jams, drivers may take a turn around the street
and bypass the busy spot. Thus, in more realistic 2D
models, we can introduce the possibility of turning an
eastbound car into a northbound car, vice versa. We
also need to consider nonsymmetric cases with unequal
densities of eastbound and northbound cars. More com-
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FIG. 8. Comparison results of different values of the look-ahead parameter from L = 1 to L = 256 for the 2D traffic model
with the system size 512 × 512. (Top panels): Long time averages of the flow-density relationship of eastbound cars. (Bottom
panels): Ensemble-average velocity of eastbound cars versus the car density ρ. (Left panels): Results of the first look-ahead
rule (3) with the potential strength Ec = 4.0. (Right panels): Results of the second look-ahead rule (4) with the potential
strength Ec = 6.0. In all KMC simulations the final time is 5 hours.

plicated models addressing these aspects will be explored
in the future.
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