Math 1300 Section 2.2

Section 2.2: The Distance and Midpoint Formula

For any two points $\mathbf{A}(x_1, y_1)$ and $\mathbf{B}(x_2, y_2)$, the distance between them is given by

$$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Example 1: Find the distance between the following pair of points.

a)
$$(-3,1) \& (1,3)$$

b)
$$(-2,5) \& (\frac{1}{2},-1)$$

c)
$$(4,-6) & (\frac{3}{2},-2)$$

Math 1300 Section 2.2

Midpoint Formula

The midpoint of the line segment joining the two points \boldsymbol{A} (x_1, y_1) and \boldsymbol{B} (x_2, y_2) is given by

$$M = \left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right)$$

Example 2: Find the midpoint between the following pair of points.

a)
$$(-3,1) \& (1,3)$$

b)
$$(-2, -3) & (4,6)$$

c)
$$\left(-\frac{1}{2}, 2\right) \& \left(\frac{5}{2}, -6\right)$$

Math 1300 Section 2.2

The **Pythagorean Theorem** states that in a right triangle, if a and b are the lengths of the legs, and c is the length of the hypotenuse, then $a^2 + b^2 = c^2$

Note: To use the Pythagorean Theorem, you must have a right triangle

Example 3: Find the missing side, if a = 6 and b = 8.

Example 4: Find the missing side, if a = 3 and c = 5.

Example 5: Find the missing side, if a = 5 and c = 13.

