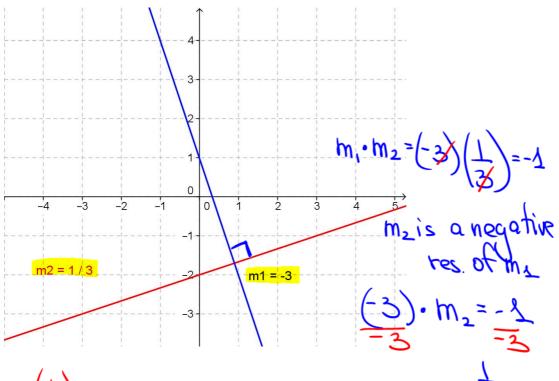

Math 1300 Section 2.5

Section 2.5: Parallel and Perpendicular Lines


Two lines with slopes m_1 and m_2 are **parallel** if and only if $m_1 = m_2$

 $m_1=m_2$ AND $b_1=b_2$ SAME

Y= 2x + 1

Two lines with slopes m_1 and m_2 are **perpendicular** if and only if m_{1*} $m_2 = -1$

$$a \cdot \left(\frac{a}{1}\right) = \sqrt{2}$$

$$M^5 = \frac{3}{7}$$

Math 1300 Section 2.5

Example 1:

If you have a line with slope -2;

Any line that is parallel to this line has slope: _______

Any line that is perpendicular to this line has slope: $\frac{1}{2}$.

If you have a line with slope 7;

Any line that is parallel to this line has slope:

Any line that is perpendicular to this line has slope: _

If you have a line with slope 4/9;

Any line that is parallel to this line has slope: $\underline{\underline{q}}$

Any line that is perpendicular to this line has slope:

Example 2: State whether the following lines are parallel, perpendicular, neither or the same.

$$y = -5x + 4$$

$$y = -5x - 9$$

$$m_2 = -5$$

$$m = slope$$

$$b = y - int$$

Example 3: State whether the following lines are parallel, perpendicular, neither or the same.

$$y = \frac{4x + 4}{y + \frac{1}{4}x = 2}$$

$$\frac{-\frac{1}{4}x - \frac{1}{4}x}{y = -\frac{1}{4}x + 2}$$

$$M_1 = \frac{4}{4} \quad 4\left(-\frac{1}{4}\right) = -\frac{1}{4} \quad \text{lines are perpendicular.}$$

Example 4: State whether the following lines are parallel, perpendicular, neither or the same.

$$3x + 2y = 6$$

$$-6x - 4y = -12$$

$$3x + 2y = 6$$

$$-6x - 4y = -12$$

$$-3x + 2y = 6$$

$$-4y = -12$$

$$-4y = 6x + 12$$

$$-4x + 2y = 6$$

$$-6x - 4y = -12$$

Same

Math 1300 Section 2.5

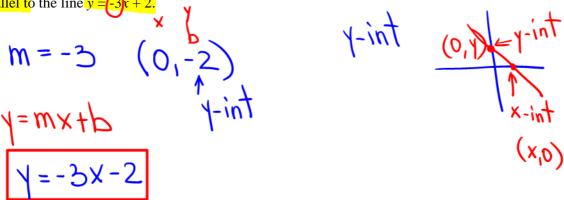
Example 5: State whether the following lines are parallel, perpendicular, neither or the same.

$$\begin{array}{r}
 10y - 5x = 15 \\
 5x + 10y = -9
 \end{array}$$

$$\begin{array}{r}
 10y - 5x = 15 \\
 5x + 10y = -9
 \end{array}$$

$$\begin{array}{r}
 5x + 10y = -9 \\
 \hline
 5x + 10y = -9
 \end{array}$$

$$\begin{array}{r}
 10y = -5x + 9 \\
 \hline
 10y = -5x + 9
 \end{array}$$


$$\begin{array}{r}
 10y = -5x + 9 \\
 \hline
 10y = -5x + 9
 \end{array}$$

$$\begin{array}{r}
 10y = -5x + 9 \\
 \hline
 10y = -5x + 9
 \end{array}$$

$$\begin{array}{r}
 10y = -5x + 9 \\
 \hline
 10y = -5x + 9
 \end{array}$$

$$\begin{array}{r}
 10y = -5x + 9 \\
 \hline
 10y = -5x + 9
 \end{array}$$

Example 6: Write the equation of a line in slope-intercept form that passes through the point (0, -2) and is parallel to the line y = (-3)x + 2.

Example 7: Write the equation of a line in slope-intercept form that passes through (2, -6) and is perpendicular to the line y - 4x = -2.

Example 8: Find the equation of the line that passes through the point (1/2, -3) and is perpendicular.

line x = 4. Tuertical line mis undefined Need a horizonta

3

Math 1300 Section 2.5

Example 9: 9. Write the equation in standard form for the line that passes through the point (2, 2) and is parallel to the graph of the line 4x - 5y = -12.

$$-\frac{4x-5y=-12}{-4x} \qquad m = \frac{4}{5} \qquad \begin{pmatrix} x_1 \\ 2_1 \\ 2_2 \end{pmatrix}$$

$$-\frac{4x-5y=-12}{-4x} \qquad y-y_1 = m(x-x_1) \qquad y = \frac{4}{5}x-\frac{8}{5}+\frac{2.5}{1.5}$$

$$y-2 = \frac{4}{5}(x-2) \qquad y = \frac{4}{5}x+\frac{8+10}{5}$$

$$y=\frac{4}{5}x+\frac{12}{5} \qquad y-2 = \frac{4}{5}x-\frac{8}{5} \qquad y = \frac{4}{5}x+\frac{2}{5}$$

$$y=\frac{4}{5}x+\frac{12}{5} \qquad y-2 = \frac{4}{5}x-\frac{8}{5} \qquad y = \frac{4}{5}x+\frac{2}{5}$$

$$y=\frac{4}{5}x+\frac{12}{5} \qquad y-2 = \frac{4}{5}x-\frac{8}{5} \qquad y = \frac{4}{5}x+\frac{2}{5}$$

Example 10: Write the equation of a line in slope-intercept form that passes through (1,2) and is parallel to the line that passes through the points (4, 6) and (6, 10).

$$m = \frac{12 - 11}{12 - 11} = \frac{10 - 6}{6 - 11} = \frac{1}{2} = 12$$

$$m = 2$$
 $(1,2)$ slope point

Point-slope:
$$y-y_1 = m(x-x_1)$$

 $y-2 = 2(x-1)$

$$\frac{1-2}{+2} = \frac{2x-2}{+2}$$

Check:
$$(1,2)$$

2(1)=2

4