4.1 Exponential Growth and Decay

A function that grows or decays by a constant percentage change over each fixed change in input is called an exponential function.

Example 1

A certain quantity has an initial value of 50 and grows at a rate of 9% each month. Fill in the table below.

Month	Amt. of Increase	Value	÷100
0	-	50	50(0,00) = 115
1	4.5	54.5	JU(0.04) - 4,5
2	4.91	59.41	54.5 (0.09) = 4.91
3	5.35	64.76	59.41(0.09) = 5.35

Example 2

A certain radioactive substance decays at a rate of 11.4% per hour. Suppose initially there are 100mg of this substance. Complete the table below.

Hour	Amt. of Decrease	Value
0	-	100
1	11.4	88.6
2	10.10	78,5
3	8,95	69.55

11.4% -> .114
100 (.114) = 11.4
88.6(.114) = 10.10
78.5(.114) = 895

Growth/Decay Factor

For an exponential function that has a constant percent change r (in decimal form), the corresponding growth/decay factor for the function is:

a = 1 + r (for growth) or a = 1 - r (for decay)

Example 3

Give the growth or decay factor for the exponential functions from example 1 and example 2.

Exponential Function Formula

An exponential function that has initial value P and growth factor a has formula:

 $(x) = Pa^{x}$ where x has units matching the time units of the percent change

Example 4

Give the formula of the exponential functions from example 1 and example 2.

Example 5

The world's population in 1900 was about 1.6 billion and has been growing by about 1.4% per year since. Give a formula for the world population x years after 1900. Use function notation to represent the world population in 1995.

lear 1900 16

Growth factor = 1+ .014 = 1.014 P = 1.695 f(x) = 1.6 (1.014)f(95)=1.6(1.014)

Example 6

Iodine-131 is a radioactive form of iodine. I decays a a rate of 8.3% per day. Suppose, in a certain experiment, 80mg of Iodine-131 is present. Give a formula for the amount of Iodine-131 present after x days. How much is remaining 36 hours into the experiment?

Decay factor =
$$1 - .083 = 0.917 = 9$$

 $P = 80$
 $f(x) = 80(0.917)$
 $f(1.5) = 80(.917) = 10.25 \text{ mg}$
Conversion for Growth Factors

Unit (

If the growth or decay factor for 1 period of time is a, then the growth or decay factor for k periods is a^{k} .

So if a quantity is growing by 4% each hour, it has an hourly growth factor of a = 1.04.

Then the daily growth factor is $1.04^{24} = 2.5633$,

and thus is growing by 156.33% per day.

4% → .04 a = 1 + .04 = 1.04

The minute growth factor is $1.04^{\frac{1}{60}} = 1.00065$.

and thus is growing by 0.065% per minute.

1.00065 - 1 = 0.00065 $0.00065 \times 100 = 0.065\%$ 2.5633-\ =1.5633 1.5632×100 =156.33%

Example 7

Suppose a certain quantity grows by 7.4% each year.

- (a) Give the yearly growth factor.
- (b) Give the decade growth factor. What is the constant percent change per decade?
- (c) Give the monthly growth factor. What is the constant percent change per month?

(a)
$$7.4\% \rightarrow .074$$

Yearly Growth Factor = $|+.074 = |.074$
(b) Decade = 10 Years
DGF = $(YGF)^{10}$ DGF = $(1.074)^{10} = 2.04$
Constant % Change = $(2.04 - 1) \times 100$
= $(1.04) \times 100 = 104\%$
(c) Mon th = $\frac{1}{12}$ Year
MGF = $(YGF)^{1/2}$ MGF = $(1.074)^{1/2} = 1.006$
Const. % Change = $(1.006 - 1) \cdot 100$
= $0.006 \times 100 = 0.6\%$