Undefined Terms (set, point, line, plane)

• A _____, which is represented as a dot, has location but not size.

We use upper case letters to name points.

• A ______ is an infinite set of points. Notation: \overrightarrow{AB}

Given any 3 distinct points on the same line, they are said to be **collinear**.

Notation: A - X - B

Example 1:

```
В,
А,
С,
D,
```

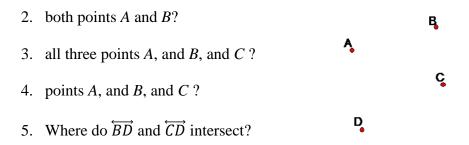
_____ is an unproved assumption.

Postulate: Through two distinct points there is exactly one line

Postulate: If two lines intersect, then they intersect at a point.

Example: How many lines can be drawn through

1. point *A*?



A ______ is part of a line. It consists of two distinct points and all points

between them.

Notation: \overline{AB} , where A and B are the _____.

To **measure** segments we use rulers. Remember that there is a margin of error each time we use such a device.

Ruler Postulate: The measure of any line segment is a unique positive number.

Segments that have the same length are called _____. Notation: $\overline{AB} \cong \overline{CD}$

In diagrams, we use identical tick marks to indicate congruent segments.

Segment-Addition Postulate: If *X* is a point of \overline{AB} and A - X - B, then AX + XB = AB.

Definition: The ______ of a line segment is the point that separates the line segment into two congruent parts.

Theorem: The midpoint of a line segment is unique.

Example: *M* is the midpoint of the segment *AB*. AB = 3x + 24 and MB = 7x + 1. Find x and the length of the segment *AM*.

Example: *M* is the midpoint of the segment AB. AM = 3x + 4 and MB = x + 38. Find x and the length of the segment AB.

Example:

M is the midpoint of the segment *AB* and *N* is the midpoint of the segment *BM*. Find *AB*, if MN = 3.

Definition: A ______ is made up of points and is straight. It begins at an endpoint and extends infinitely in one direction. Notation: \overrightarrow{AB}

_____ rays are two rays that share a common endpoint and their union is a straight line.

Example: Draw rays \overrightarrow{AB} and \overrightarrow{AD} . Are they opposite rays?

A C D

Definition: An ______ is union of two rays that share a common endpoint. Notation: $\angle ABC$

The common point is called the ______ of the angle.

The rays are called ______ of the angle.

To **measure** angles we use a **protractor**. An angle's measure does not depend on the lengths of its sides.

Angles are measured in **degrees.** If the measure of an angle is 90. We write $m \angle ABC = 90^{\circ}$

_____ angles are angles that have the same measure.

Example: $\angle ABC \cong \angle PQR$ means $m \angle ABC = m \angle PQR$

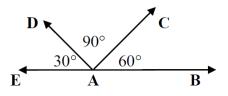
Angle - Addition Postulate: If a point *D* lies in the interior (between the sides) of the angle $\angle ABC$, then $m \angle ABD + m \angle DBC = m \angle ABC$.

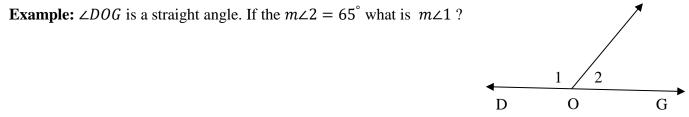
Draw a figure

- An angle whose measures less than 90° is an _____.
- An angle whose measures exactly 90° is a _____.
- An angle whose measures exactly 180° is a ______.
- If an angle measures between 90° and 180° it is an _____.
- A _____ is one whose measure is between 180° and 360°.

Example: Use the following figure to find

- a) Straight angle
- b) Right angle
- c) Acute angle
- d) Obtuse angle





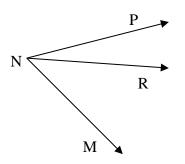
Definitions:

- The ______ of an angle is the ray that separates the given angle into two congruent angles.
- Two angles are _____ angles if the sum of their measures is 90°. Each angle in the pair is known as the complement of the other angle.
- Two angles are _____ angles if the sum of their measures is 180°. Each angle in the pair is known as the supplement of the other angle.

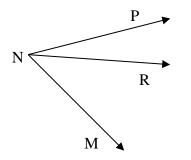
Theorem: There is one and only one angle bisector for any given angle.

Examples:

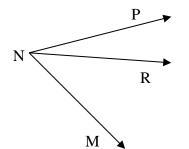
a) If $m \angle MNP = 76^{\circ}$ and $m \angle MNR = 47^{\circ}$, find $m \angle PNR$.



b) If $m \angle MNP = 76^{\circ}$ and \overrightarrow{NR} bisects $\angle MNP$, find $m \angle PNR$.



c) Find x, if $m \angle PNR = 2x + 9$ and $m \angle RNM = 3x - 2$, and $m \angle PNM = 67^{\circ}$.



More Examples:

a) If $m \angle A = (2x)^\circ$, and $m \angle B = (x - 6)^\circ$, and $\angle A$ and $\angle B$ are complementary, find x and the measure of each angle.

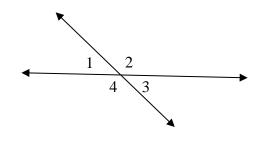
b) If $m \angle A = (2y - 9)^{\circ}$ and $m \angle B = (7y)^{\circ}$ the m $\angle B = (7y)^{\circ} \angle A$ and $\angle B$ are supplementary, find x and the measure of each angle.

Definitions:

- The two angles are ______ if they have a common vertex and a common side between them.
- When two straight lines intersect, the pairs of nonadjacent angles in opposite positions are known as _____ angles.

Example: List all the pairs of adjacent and vertical angles.

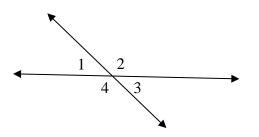
Adjacent	Vertical	



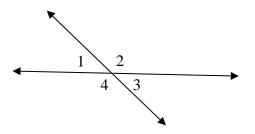
Theorem: Vertical angles are congruent.

Examples:

a) If $m \angle 4 = 97^{\circ}$, find the measures of all other angles.



b) If $m \angle 1 = (x + 8)^{\circ}$ and $m \angle 2 = (2x - 23)^{\circ}$, find x and the measures of all four angles.



Example: Use the figure to find the measure of all the angles 1 -7. Hint: $m \angle 3 + m \angle 5 + m \angle 6 = 180^{\circ}$.

