Math 1312

Sections 1.2, 1.3, and 1.4

Informal Geometry and Measurement; Early Definitions and Postulates;

Angles and Their Relationships

Undefined Terms (set, point, line, plane)

- A point, which is represented as a dot, has location but not size.

 We use upper case letters to name points.
- A _______ is an infinite set of points. Notation: $\frac{\overrightarrow{AB}}{AB}$

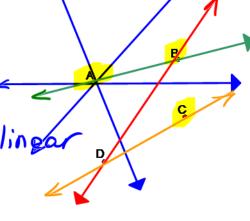
Given any 3 distinct points on the same line, they are said to be collinear.

Notation: A - X - B

 $A \times B$

Example 1:

A C


A Postulate is an unproved assumption.

Postulate: Through two distinct points there is exactly one line

Postulate: If two lines intersect, then they intersect at a point.

Example: How many lines can be drawn through

- 1. point A? many
- 2. both points A and B?
- 3. all three points A, and B, and C? home, points are
- 14. points A, and B, and C? hone colling α
- 5. Where do \overrightarrow{BD} and \overrightarrow{CD} intersect?

A BASS

 $BD \cap CD = D_{Page 1 of}$

_ is part of a line. It consists of two distinct points and all points between them.

Notation: \overline{AB} , where A and B are the end soints.

To **measure** segments we use rulers. Remember that there is a margin of error each time we use such a device.

Ruler Postulate: The measure of any line segment is a unique positive number.

Segments that have the same length are called \underline{Copq} ruent. Notation: $\overline{AB} \cong \overline{CD}$

In diagrams, we use identical tick marks to indicate congruent segments.

Segment-Addition Postulate: If X is a point of \overline{AB} and $\overline{A-X-B}$, then AX+XB=AB.

Definition: The mid point of a line segment is the point that separates the line segment into two congruent parts

Theorem: The midpoint of a line segment is unique.

Example: M is the midpoint of the segment AB. AB = 3x + 24 and MB = 7x + 1. Find x

and the length of the segment
$$AM$$
.

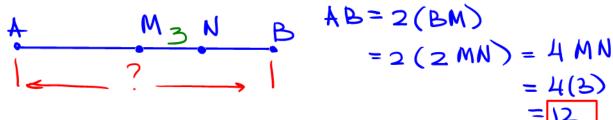
$$A = 2 MB$$

$$A = 2 MB$$

$$3x + 24 = 2 (7x + 1)$$

$$3x + 24 = 14x + 2$$

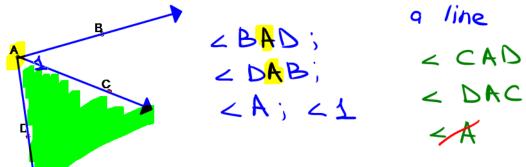
$$24 = 11x + 2$$


$$27 = 11x$$

Example: M is the midpoint of the segment AB. AM = 3x + 4 and MB = x + 38. Find x and the length of the segment AB.

$$A = 3x + 4$$
 $A = 3x + 4$ $A =$

Example:


M is the midpoint of the segment AB and N is the midpoint of the segment BM. Find AB, if MN = 3.

Definition: A ______ is made up of points and is straight. It begins at an endpoint and extends infinitely in one direction. Notation: \overrightarrow{AB}

rays are two rays that share a common endpoint and their union is a straight line.

Example: Draw rays \overrightarrow{AB} and \overrightarrow{AD} . Are they opposite rays? \overrightarrow{NO} , \overrightarrow{b} \overrightarrow{not} \overrightarrow{form}

Definition: An ______ is union of two rays that share a common endpoint. Notation: ∠ABC

The common point is called the <u>vertex</u> of the angle.

The rays are called ______ of the angle.

To **measure** angles we use a **protractor**. An angle's measure does not depend on the lengths of its sides.

Angles are measured in **degrees.** If the measure of an angle is 90. We write $m \angle ABC = 90^{\circ}$

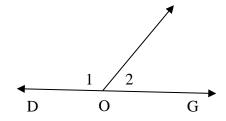
angles are angles that have the same measure.

Example: $\angle ABC \cong \angle PQR$ means $m \angle ABC = m \angle PQR$

Angle - Addition Postulate: If a point *D* lies in the interior (between the sides) of the angle $\angle ABC$, then $m\angle ABD + m\angle DBC = m\angle ABC$.

Draw a figure

Page 3 of 7


- An angle whose measures exactly 90° is a ______
- If an angle measures between 90° and 180° it is an
- A reflex is one whose measure is between 180° and 360°.

Example: Use the following figure to find

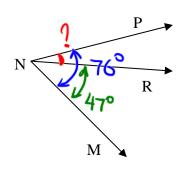
- < BAE a) Straight angle
- b) Right angle $\langle C \rangle$
- c) Acute angle $\langle DAE \rangle \langle CAB \rangle \langle CAB$
- d) Obtuse angle $\angle DAB$ $\angle CAE$

Example: $\angle DOG$ is a straight angle. If the $m \angle 2 = 65^{\circ}$ what is $m \angle 1$?

$$m < l = 180 - m < 2$$

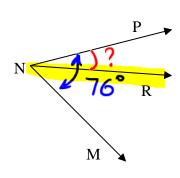
= $180 - 65 = 1.5^{\circ}$

Definitions:

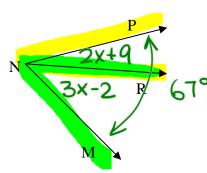

- The <u>angle bisector</u> of an angle is the ray that separates the given angle into two congruent angles.
- Two angles are <u>complement of the sum</u> of their measures is 90°. Each angle in the pair is known as the **complement** of the other angle.
- Two angles are <u>supplementary</u> angles if the sum of their measures is 180°. Each angle in the pair is known as the supplement of the other angle.

Theorem: There is one and only one angle bisector for any given angle.

D bisects < ABC


Examples:

a) If $m \angle MNP = 76^{\circ}$ and $m \angle MNR = 47^{\circ}$, find $m \angle PNR$.


$$m \angle PNR = m \angle MNP - m \angle MNR$$

= $76 - 47 = 29^{\circ}$

b) If $m \angle MNP = 76^{\circ}$ and \overrightarrow{NR} bisects $\angle MNP$, find $m \angle PNR$.

$$m < PNR = \frac{1}{2} m < MNP$$

= $\frac{1}{2}(76) = 38^{\circ}$

c) Find x, if $m \angle PNR = 2x + 9$ and $m \angle RNM = 3x - 2$, and $m \angle PNM = 67^{\circ}$.

Angle - Addition Postulate

$$2x+9+3x-2=67$$

 $5x+7=67$
 $5x=60$

More Examples:

a) If $m \angle A = (2x)^{\circ}$, and $m \angle B = (x - 6)^{\circ}$, and $\angle A$ and $\angle B$ are complementary, find x and the measure of each angle.

$$2x + x - 6 = 90$$

 $3x - 6 = 90$
 $3x = 96$
 $x = 32$

$$m \angle A = 2(32) = 64^{\circ}$$

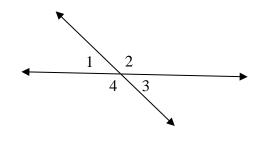
$$M < B = 32 - 6 = 26^{\circ}$$

$$m \angle A = 2(32) = 64^{\circ}$$

 $m \angle B = 32 - 6 = 26^{\circ}$
 $m \angle B = 90 - 64 = 26^{\circ}$
Page 5 of 7

b) If $m \angle A = (2y - 9)^{\circ}$ and $m \angle B = (7y)^{\circ}$ the $m \angle B = (7y)^{\circ}$ $\angle A$ and $\angle B$ are supplementary, find y and the measure of each angle.

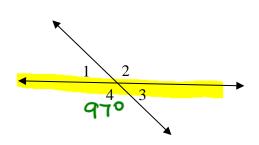
180°


$$2y-9+7y=180$$
 $y=21$
 $9y-9=180$ $m \ge A=2(21)-9=33°$
 $9y=189$ $m \ge B=7(21)=147°$
tions: $m \le B=180-33=147°$

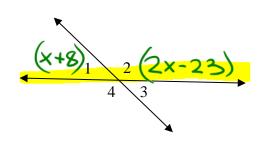
Definitions:

- The two angles are acjacent if they have a common vertex and a common side between them.
- When two straight lines intersect, the pairs of nonadjacent angles in opposite positions are known as ______ angles.

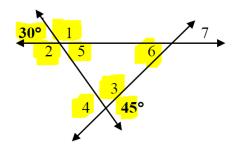
Example: List all the pairs of adjacent and vertical angles.


Adjacent	Vertical
21822	21843
L1& L4	<24<4
< 2 &<3	
< 3 & < 4	

Theorem: Vertical angles are congruent.


Examples:

a) If $m \angle 4 = 97^{\circ}$, find the measures of all other angles.


$$m < 2 = m < 4 = 97^{\circ}$$

b) If $m \angle 1 = (x + 8)^{\circ}$ and $m \angle 2 = (2x - 23)^{\circ}$, find x and the measures of all four angles.

$$m < 1 = m < 3 = 65 + 8 = 73^{\circ}$$

 $m < 2 = m < 4 = 2(65) - 23 = 130 - 23 = 107^{\circ}$

Example: Use the figure to find the measure of all the angles 1 -7. Hint: $m \angle 3 + m \angle 5 + m \angle 6 = 180^{\circ}$.

$$m < 5 = 30^{\circ}$$

 $m < 4 = 45^{\circ}$
 $m < 1 = 180 - 30 = 150^{\circ}$
 $m < 2 = 150^{\circ}$
 $m < 3 = 180 - 45 = 135^{\circ}$
 $m < 6 = 180 - 135 - 30 = 15^{\circ}$
 $m < 7 = 15^{\circ}$