Definition (Merriam Webster): Proof is the process of establishing the validity of a statement.

We consider two column proofs.

PROOF	
Statements	Reasons
What?	Why?

In our proofs we can use the following properties.

Properties of Equality (a, b, and c are real numbers)	
Addition Property of Equality:	If $a = b$, then $a + c = b + c$.
Subtraction property of Equality:	If $a = b$, then $a - c = b - c$.
Multiplication Property of Equality:	If $a = b$, then $a \cdot c = b \cdot c$.
Division Property of Equality:	If $a = b$ and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$.

Example 1: Which property of equality justifies each conclusion?

a. If
$$x + 2 = 10$$
, then $x = 8$.
b. If $\frac{2}{3}x = 8$, then $x = 12$

Further Algebraic Properties of Equality (a, b, and c are real numbers)		
Reflexive Property:	a = a.	
Symmetric Property:	If $a = b$, then $b = a$.	
Distributive Property:	$a(b+c) = a \cdot b + a \cdot c.$	
Substitution Property:	If $a = b$, then a replaces b in any equation.	
Transitive Property:	If $a = b$ and $b = c$, then $a = c$.	

Example 2: Given 3x + 2 = 4 + 5x, prove x = -1.

PROOF	
Statements	Reasons
1. $3x + 2 = 4 + 5x$	1.
2. $3x + 2 - 4 = 4 - 4 + 5x$	2.
3. $3x - 2 = 5x$	3.
4. $3x - 3x - 2 = 5x - 3x$	4.
5. $-2 = 2x$	5.
6. $\frac{1}{2}(-2) = \left(\frac{1}{2}\right)2x$	6.
7. $-1 = x$	7.
8. $x = -1$	8.

Example 3:

GIVEN: *B* is the midpoint of the segment \overline{AC} PROVE: AB = AC/2

ĀC

PROOF	
Statements	Reasons
1. <i>B</i> is the midpoint of \overline{AC}	1.
2. AB = BC	2.
3. AB + BC = AC	3.
4. AB + AB = AC	4.
5. $2(AB) = AC$	5.
$6. AB = \frac{AC}{2}$	6.

Properties of Inequality (a, b, and c are real numbers)	
Addition Property of Inequality:	If $a > b$, then $a + c > b + c$. If $a < b$, then $a + c < b + c$.
Subtraction property of Inequality:	If $a > b$, then $a - c > b - c$. If $a < b$, then $a - c < b - c$.

Example 4:

GIVEN: MN > PQPROVE: MP > NQ

M N P Q

PROOF		
Statements	Reasons	
1.	1.	
2. MN + NP > NP + PQ	2.	
3. $MN + NP = MP$ and NP + PQ = NQ	3.	
4.	4. Substitution	

Example 5: State the property or definition that justifies the conclusion.

Given that $\angle s \ 1$ and 2 are complementary, then $m \angle 1 + m \angle 2 = 90^{\circ}$.

Example 6: Draw a conclusion based on the stated property or definition.

a. Given: $m \angle 1 + m \angle 2 = 180^{\circ}$; definition of supplementary angles.

b. Given: *K* is in the interior of $\angle GHJ$; Angle-Addition Postulate.

c. Given: $\frac{1}{2} = 0.5$ and 0.5 = 50%; Transitive Property of Equality