Definition (Merriam -Webster): Proof is the process of establishing the validity of a statement.

We consider two column proofs.

PROOF	
Statements	Reasons
What?	Why?

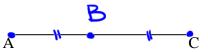
In our proofs, we can use the following properties.

5 = 5	Properties of Equality (a, b, and c are real numbers)	
5-2 = 5-2 <mark>,</mark>	Addition Property of Equality:If $a = b$, then $a + c = b + c$.	
5+(-2)=5	Subtraction Property of Equality:	If $a = b$, then $a - c = b - c$.
==±a (Multiplication Property of Equality:	If $a = b$, then $a \cdot c = b \cdot c$.
2 2 1	Division Property of Equality:	If $a = b$ and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$.

Example 1: Which property of equality justifies each conclusion?

a. If
$$x + \frac{1}{2} = 10$$
, then $x = 8$.

b. If
$$\frac{2}{3}x = 8$$
, then $x = 12$
 $x = 8$ $x = 8$ $x = 12$
 $x = 8$ $y = 8$ $y = 12$
 $x = 8$ $y = 12$
 $x = 12$


Subtraction	Prop. of	Equa	li.L
-------------	----------	------	------

Further Algebraic Properties of Equality (a, b, and c are real numbers)	
Reflexive Property:	a = a.
Symmetric Property:	If $a = b$, then $b = a$.
Distributive Property:	$a(b+c) = a \cdot b + a \cdot c.$
Substitution Property:	If $a = b$, then a replaces b in any equation.
Transitive Property:	If $a = b$ and $b = c$, then $a = c$.

Example 2: Given 3x + 2 = 4 + 5x, prove x = -1.

	PROOF	
	Statements	Reasons
	1. $3x + 2 = 4 + 5x$	1. Given
,	2. $3x + \frac{2-4}{2} = 4 - 4 + 5x$	2. Subt. Prop. of Equality
v	3. $3x - 2 = 5x$	3. Substitution
	4. $3x - 3x - 2 = 5x - 3x$	4. Subt. Doop. of Equality
	5. $-2 = 2x$	5. Substitution
	6. $\frac{1}{2}(-2) = \left(\frac{1}{2}\right)2x$	6. MuH. Prop. of Equal.
	7. $-1 = x$	7. Substitution
	8. $x = -1$	8. Symmetric

Example 3: GIVEN: *B* is the midpoint of the segment \overline{AC} PROVE: AB = AC/2

PROOF		
Statements	Reasons	
1. B is the midpoint of \overline{AC}	1. Given	
2. AB = BC	2. Def. of the midpoint	
3. AB + BC = AC	3. Segment - Add. Postulate	
4. AB + AB = AC	4. Substitution	
5. $2(AB) = AC$	5. Substitution	
$6. AB = \frac{AC}{2}$	6. Div. Apop. of Eq.	

Properties of Inequality (a, b, and c are real numbers)		
Addition Property of Inequality:	If $a > b$, then $a + c > b + c$. If $a < b$, then $a + c < b + c$.	
Subtraction property of Inequality:	If $a > b$, then $a - c > b - c$. If $a < b$, then $a - c < b - c$.	

Example 4:

G

GIVEN: MN > PQPROVE: MP > NQ

M N Ο

PROOF	
Statements	Reasons
1. MN > PQ	1. Given
2. MN + NP > NP + PQ	2. Add. Prop. of Ineg.
3. $MN + NP = MP$ and $NP + PQ = NQ$	3. Segment - Add. Postulate
$^{4.} MP > NQ$	4. Substitution

Example 5: State the property or definition that justifies the conclusion.

Given that $\angle s$ 1 and 2 are complementary, then $m \angle 1 + m \angle 2 = 90^\circ$. Def of comp. <s

Example 6: Draw a conclusion based on the stated property or definition.

a. Given: $m \angle 1 + m \angle 2 = 180^{\circ}$; definition of supplementary angles.

<1 & <2 are supplementary

Study more examples from the textbook!

b. Given: *K* is in the interior of $\angle GHJ$; Angle-Addition Postulate.

m < KHG + m < KHJ = m < GHJ

c. Given: $\frac{1}{2} = 0.5$ and 0.5 = 50%; Transitive Property of Equality.

Page 3 of 3