A **plane** is a two dimensional geometric object. It has infinite length and infinite width but no thickness.

Definitions:

- **Parallel lines** are lines that lie in the same plane but do not intersect. (Symbol: ||)
- Perpendicular lines are two lines that meet to form congruent adjacent angles. (Symbol: ⊥)

Theorem: If two lines are perpendicular, then they meet to form ______ angles.

GIVEN: $\overrightarrow{AB} \perp \overrightarrow{CD}$ intersecting at *E*. PROVE: $\angle AEC$ is a right angle

PROOF				
	Statements	Reasons		
1.	$\overleftarrow{AB} \perp \overleftarrow{CD}$ intersecting at <i>E</i> .	1.		
2.	$\angle AEC \cong \angle CEB$	2.		
3.	$m \angle AEC = m \angle CEB$	3.		
4.	$\angle AEB$ is a straight angle and $m \angle AEB = 180^{\circ}$	4.		
5.	$m \angle AEC + m \angle CEB = m \angle AEB$	5.		
6.	$m \angle AEC + m \angle CEB = 180^{\circ}$	6.		
7.	$m \angle AEC + m \angle AEC = 180^{\circ}$ or $2 \cdot m \angle AEC = 180^{\circ}$	7.		
8.	$m \angle AEC = 90^{\circ}$	8.		
9.	∠ <i>AEC</i> is a right angle	9.		

Relation R	Objects Related	Example of Relationship
is equal to	numbers	
is greater to	numbers	
is perpendicular to	lines	
is complementary to	angles	
is congruent to	line segments	
is a brother of	people	

There are three special properties that may exist for a given relation.

1. Reflexive property: *aRa*

Example: 5 = 5, equality of numbers has a reflexive property.

2. Symmetric property: If *aRb*, then *bRa*.

Example: If $n \perp m$, then $m \perp n$, perpendicular lines have the symmetric property).

3. Transitive property: If aRb and bRc, then aRc.

Example: If $m \angle 1 = m \angle 2$ and $m \angle 2 = m \angle 3$, then $m \angle 1 = m \angle 3$, congruence of angle is transitive.

Example: Does the relation "is a brother of " have

- a. a reflexive property (consider one male)?
- b. a symmetric property (consider two males)?
- c. a transitive property (consider three males)?
- a. a**R**a

_____ is a brother of ______

b.	If $a\mathbf{R}b$, then $b\mathbf{R}a$.	
If	is a brother of	, then
	is a brother of	·
c.	If $a\mathbf{R}b$ and $b\mathbf{R}c$, then $a\mathbf{R}c$.	
If	is a brother of	and
	is a brother of	, then
	is a brother of	·
a. b. c.	ple: Does the relation "is complementary to" have a reflexive property (consider one angle)? a symmetric property (consider two angles)? a transitive property (consider three angles)?	
	is complementary to	
b.	If $a\mathbf{R}b$, then $b\mathbf{R}a$.	
If	is complementary to	, then
	is complementary to	
c.	If $a\mathbf{R}b$ and $b\mathbf{R}c$, then $a\mathbf{R}c$.	
If	is complementary to	and
	is complementary to	, then
	is complementary to	

Definition: The perpendicular bisector of a segment is a line (or a segment) that is

perpendicular to a given segment and divides it into two congruent segments.

Theorem: The perpendicular bisector of a line segment is unique.

Example:

a. How many bisectors does a segment have?

ĀC

- b. How many perpendicular bisectors does a segment have?
- c. How many bisectors does a line have?