A plane is a two dimensional geometric object. It has infinite length and infinite width but no thickness.

Definitions:

• Parallel lines are lines that lie in the same plane but do not intersect. (Symbol: ||)

• Perpendicular lines are two lines that meet to form congruent adjacent angles. (Symbol:

Theorem: If two lines are perpendicular, then they meet to form the angles. angles.

GIVEN: \overrightarrow{AB} ⊥ PROVE: ∠AEC

\overrightarrow{CD} intersecting at E .		E	
	A -	D	P
	PROOF		

<u> </u>		
PROOF		
Statements	Reasons	
1. $\overrightarrow{AB} \perp \overrightarrow{CD}$ intersecting at <i>E</i> .	1.	
	1. Given	
2. ∠AEC ≅ ∠CEB	2. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	Det. of I line	
3. $m \angle AEC = m \angle CEB$	3. N C C o	
	" Def. of = <s.< th=""></s.<>	
4. ∠ <i>AEB</i> is a straight angle and	4. A – F – P	
$m \angle AEB = 180^{\circ}$	Def. of a str. <	
5. $m \angle AEC + m \angle CEB = m \angle AEB$	5. 1 1 1 1 5	
3. MENEC MEELD = MENED	" Angle-Add. Post.	
6. $m \angle AEC + m \angle CEB = 180^{\circ}$	6.	
0. <i>m</i> ZAEC + <i>m</i> ZCED = 100	" Substitution	
7 (AEC (AEC 100°		
7. $m \angle AEC + m \angle AEC = 180^{\circ}$ or	7. Substitution	
$2 \cdot m \angle AEC = 180^{\circ}$		
8. $m \angle AEC = 90^{\circ}$	8. Division Pop of Eq	
	<u> </u>	
9. $\angle AEC$ is a right angle	9. Def. of a cight	

A <u>Relation</u> "connects" two elements of a set of objects.

Relation R	Objects Related	Example of Relationship
is equal to	numbers	6 = 6
is greater than	numbers	7>5
is perpendicular to	lines	l L m
is complementary to	angles	<1 is comp. to <2
is congruent to	line segments	AB ≃ CD
is a brother of	people	Mike is a brother John.

There are three special properties that *may* exist for a given relation.

1. Reflexive property: aRa

Example: 5 = 5, equality of numbers has a reflexive property.

2. Symmetric property: If aRb, then bRa.

Example: If $n \perp m$, then $m \perp n$, perpendicular lines have the symmetric property).

3. Transitive property: If aRb and bRc, then aRc.

Example: If $m \angle 1 = m \angle 2$ and $m \angle 2 = m \angle 3$, then $m \angle 1 = m \angle 3$, congruence of angle is transitive.

Example: Does the relation "is a brother of" have

- a. a reflexive property (consider one male)?
- b. a symmetric property (consider two males)?
- c. a transitive property (consider three males)?
- a. aRa

Ike is a brother of Ike NO

Definition: The **perpendicular bisector** of a segment is a line (or a segment) that is

perpendicular to a given segment and divides it into two congruent segments.

Theorem: The perpendicular bisector of a line segment is unique.

Example:

a. How many bisectors does a segment have?

b. How many perpendicular bisectors does a segment have?

c. How many bisectors does a line have?

