The Formal Proof of a Theorem

When a statement has the form "If H , then C ," the hypothesis is H and the conclusion is C .
The hypothesis of a statement describes;
The conclusion describes what you need to
Some theorems must be reworded into " $If \dots$, then" form.
Examples: Give the hypothesis and conclusion for each statement.
a. If x and y are any two quantities with $x = y$, then x can be substituted for y in any expression containing y .
b. Vertical angles are congruent.
Reworded:
c. Two lines with slopes m_1 and m_2 are parallel if $m_1=m_2$. Reworded:
Recall: Conditional statements have a hypothesis (P) and a conclusion (Q) and are in the form:
If P, then Q.
We can write this with symbols: $P \rightarrow Q$.
Definition: The converse of a statement "If P, then Q" is "If Q, then P."
That is, the converse of the given statement interchanges the hypothesis and conclusion. The words "if" and "then" do not move.

Example: Theorem 1.6.1: If two lines are perpendicular, then they meet to form right angles.
Theorem 1.7.1 : If two lines meet to form right angles, then these lines are perpendicular.
Example: Write the converse of the statement: If a person lives in Houston, then that person lives in Texas.
Theorem 1.7.2 : If two angles are complementary to the same angle (or to congruent angles), then these angles are congruent.
Theorem 1.7.3 : If two angles are supplementary to the same angle (or to congruent angles), then these angles are congruent.
Theorem 1.7.4 : Any two right angles are congruent.
Theorem 1.7.5 : If the exterior sides of two acute adjacent angles form perpendicular rays, then these angles are complementary.
Theorem 1.7.6 : If the exterior sides of two adjacent angles form a straight line, then these angles are supplementary.

Theorem 1.7.7 : If two lines segments are congruent, then their midpoints separate these into four congruent segments.
Theorem 1.7.8 : If two angles are congruent, then their bisectors separate these angles into four congruent angles.