Recall: $P \rightarrow Q$ represents the **conditional statement** "If P, then Q". $\sim P$ represents the **negation** of P.

Definitions:

- The ______ of a conditional statement is formed by negating the hypothesis and negating the conclusion of the original statement.

 In other words, the word "not" is added to both parts of the sentence; the words "if" and "then" do not move.
- The ______ of a statement is formed by *interchanging* the hypothesis and conclusion.

 In other words converse switches the parts of the conditional statement; the words "if" and "then" do **not** move.
- The <u>Cob trapositive</u> of a conditional statement is formed by <u>negating</u> both the hypothesis and the conclusion, <u>and</u> then <u>interchanging</u> the resulting negations. In other words, the contrapositive negates and switches the parts of the sentence.

Conditional	P o Q	If P , then Q .
Converse	$Q \rightarrow P$	If Q , then P .
Inverse	$\sim P \rightarrow \sim Q$	If not P , then not Q .
Contrapositive	$\sim Q \rightarrow \sim P$	If not Q , then not P .

Example: Give the inverse, converse and contrapositive for the following conditional statement. Then classify each as true or false.

P-Q

If <mark>a polygon is a square</mark>, then <mark>it has four sides.</mark>

True

CONVERSE:

Q > P If a polygon has 4 sides, then it is a square. False If a polygon is not a square, False ~P - vQ then it does not have 4 sides.

CONTRAPOSITIVE: If a polygon does not have True

CONTRAPOSITIVE: 4 sides, then it is not a square.

CONVERSE: If $x \neq 0$, then $x \neq 0$.

True

CONVERSE: If $x \neq 0$, then x > 3. False

NVERSE: If $x \leq 3$, then x = 0.

False

CONTRAPOSITIVE: If x = 0, then $x \leq 3$. True $x \in A$ $x \in A$

FACT: If a conditional statement is true, its contrapositive is TRUE!

The Law of Detachment:

 $1. P \rightarrow Q$

2. *P*

Conclusion: $\therefore Q$

The Law of Negative Inference:

 $1.\ P \to Q$

2. *∼Q*

Conclusion: $\sim P$

Example: Use the Law of Negative Inference to draw a conclusion.

1. If two angles are vertical angles, then they are congruent.

2. $\angle 1$ and $\angle 2$ are not congruent. $\sim Q$

Conclusion: 21 & 22 are not vertical.

Indirect Proofs use the law of negative inference.

Example: Complete a formal proof of the following statement.

GIVEN: $\angle ABC$ is not a right angle.

PROVE: $\angle 1$ and $\angle \overline{2}$ are not complementary.

PROOF:

Assume <12 < 2

complementary. m < 1 + m < 2 = 90

m21+ m22 = m2 ABC (Angl. - Add. Post.)

m = ABC = 90°

< ABC is a right < BUT

ZABC is not a right < .</pre>

Hence the assumed statement,

which claims that <1 & 2 2 are comp.

is false

It follows that

<1 2 < 2 are not complementary

Example: Complete a formal proof of the following statement.

GIVEN: ∠4 ≇ ∠8 PROVE: $r \nmid s$

PROOF:

Assume rlls.

$$\begin{array}{c|cccc}
 & 1/2 & r \\
\hline
 & 3/4 & \\
\hline
 & 5/6 & s \\
\hline
 & 7/8 & \\
\hline
 & t & \\
\end{array}$$

Then it follows 24 = 28

Hence the assumed statement that claims that + 1/s is false and r Hs.

