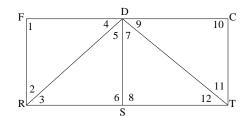

Math 1312 Section 3.1 review & Section 3.2 Congruent Triangles

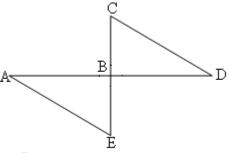
Example 1

Refer to quadrilateral DAVE.


a. Name the included side for $\angle 1$ and $\angle 5$.

- b. If $\angle 6 \cong \angle 10$, and $\overline{DC} \cong \overline{VC}$, then $\Delta DCA \cong \Delta$ by ______.
- c. Given that $\angle 7 \cong \angle 11$, $\overline{AD} \cong \overline{EV}$, and $\overline{DC} \cong \overline{VC}$. Can $\triangle ADC \cong \triangle EVC$? Explain.

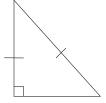
Example 2

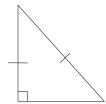

a. Name the included side for $\angle 1$ and $\angle 4$.

- b. \overline{CT} is included between what two angles?
- c. In ΔFDR , name a pair of angles so that \overline{FR} is not included.
- d. If $\angle 1 \cong \angle 6$, $\angle 4 \cong \angle 3$, and $\overline{\mathsf{FR}} \cong \overline{\mathsf{DS}}$, then $\Delta \mathsf{FDR} \cong \Delta$ ______ by _____.
- e. If $\angle 4 \cong \angle 9$, what sides would need to be congruent to show $\triangle FDR \cong \triangle CDT$?
- f. If $\overline{RS}\cong \overline{TS}$ and $\overline{DR}\cong \overline{DT}$, name a pair of angles that would create an SAS relationship.

Example 3

Given: $\overline{CD} \parallel \overline{AE}, \overline{CB} \cong \overline{EB}$ Prove: $\triangle ABE \cong \triangle DBC$


Statements Reasons


CPCTC – Corresponding Parts of Congruent Triangles are Congruent

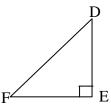
Once we prove two triangles are congruent, we can state that any corresponding parts are congruent by CPCTC.

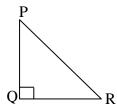
Right Triangles

Principle HL: If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.

Example 4

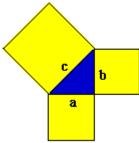
These triangles are congruent by HL. Find the values of "x" and "y".


 $\mathbf{x} =$


$$\overline{\frac{\text{FD}}{\text{DE}}} = 73$$

$$\overline{\frac{\text{DE}}{\text{PQ}}} = 37$$

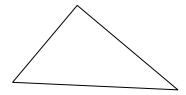
$$\overline{\frac{\text{PQ}}{\text{PQ}}} = 2x - 1$$



|--|

Pythagorean Theorem:

The sum of the squares of the lengths of the legs of a right triangle ('a' and 'b' in the triangle shown below) is equal to the square of the length of the hypotenuse ('c').



In other words, $a^2 + b^2 = c^2$

Note: Since we are working with lengths of sides here if $x^2 = p$, then $x = \sqrt{p}$ (we only need positive square root.

Example 5:

- a) Find c if a = 4 and b = 3.
- b) Find b if a = 15 and c = 17.

