Math 1312 Section 3.3 Analyzing Isosceles Triangles

Definitions:

An **isosceles triangle** is a triangle having at least two congruent (of equal length) sides. The two sides are called the **legs** and the third side is called the **base**. The point at which the legs meet is the **vertex** and the angle there is the **vertex angle**. The two angles that include the base are called the **base angles**.

Example: Name the parts of this isosceles triangle:

Other important triangle parts:

Definitions:

- Median is a segment that starts from an angle and goes to the midpoint of the opposite side.
- Altitude is a segment that starts from an angle and is perpendicular to the opposite side.
- Angle bisector of a triangle is a segment that bisects an angle and goes to the opposite side.
- Perpendicular bisector is a segment that passes through the midpoint of a side AND is perpendicular to that side.

Example: *Fill in the blanks.*

- a) \overline{DF} is <u>median</u> of ΔDEC .
- b) \overline{EH} is <u>a Hitude</u> of ΔDEC .

c) \overline{RV} is angle bisector of ΔRST .

Theorem: Corresponding altitudes of congruent triangles are congruent.

Theorem: The bisector of the vertex angle of an isosceles triangle separates the triangle into two congruent triangles.

Isosceles Triangle Theorem: If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

$$(AB = BC)$$

AND (converse): If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Example:

 $\triangle DEF$ is isosceles. $\angle D$ is the vertex angle. $m\angle E = 2x + 40$ and $m\angle E = 3x + 22$. Find the measures of each angle.

$$+40 = 3 \times +22$$

$$40 = x + 22$$

$$m \angle E = 2(18) + 40$$

$$m \angle E = m \angle F$$

$$2x + 40 = 3 \times + 22$$

$$4D = x + 22$$

$$18 = x$$

$$x = 18$$

$$m \angle E = 2(18) + 40$$

$$= 76^{\circ}$$

$$m \angle F = 76^{\circ}$$

$$m \angle D = 180 - 2(76)$$

$$= 28^{\circ}$$

Note:

- A triangle is equilateral if and only if it is equiangular.
- ➤ Each angle of an equilateral triangle measures 60°.

Definition: The perimeter of a triangle is the sum of the lengths of all of its sides.

Example: In the figure below, $\overline{PQ} \cong \overline{PR}$, and \overline{PS} and \overline{ST} are medians. Find QT and QR.

$$QP = PR = 10$$

$$= 2 \left(1 + \frac{7}{5} \right)$$

Example: \overline{KL} is an altitude of ΔHJK . Find x.

$$9x-27+3x+21 = 90$$

$$12x - 6 = 90$$

Example: \overline{PO} is the perpendicular bisector of \overline{MN} . Find x.

$$MP = NP$$
 $2x+5 = 15-3x$
 $5x+5 = 16$
 $5x = 10$
 $x = 2$

Example: In ΔIKL , $\overline{JK} \cong \overline{JL}$, and \overline{JM} is both a median, and altitude, and an angle bisector. Find the following.

- a) *m∠KMJ* = **9**0
- b) *KL* = **5**
- c) $m \angle KJM = 90 56 = 34^{\circ}$
- d) $m \angle KJL = 2(34) = 68^{\circ}$

e) $m\angle K = 56^{\circ}$

Example: a)
$$x = _{}$$
 45

c)
$$x = \frac{20}{(2x - 25)^{\circ}}$$
 $(x + 5)^{\circ}$

$$x = 30$$

Example: Use the figure below to find the angle measures if $m \angle 1 = 30$.

m∠2 = 180 - 2(30) = 120°

$$m \angle 6 = \underline{60}^{\circ}$$

$$m\angle 8 = \underline{900}$$

