Math 1312 Section 4.2 The Parallelogram and Kite

Definition:

A kite is a quadrilateral with two distinct pairs of congruent adjacent sides.

Example 1:

Theorem: In a kite, **one** pair of opposite angles are congruent.

Properties of Kites

- 1. NOT a parallelogram!
- 2. Two pairs of consecutive sides are congruent.

3. The diagonals are perpendicular.

4. One diagonal is the perpendicular bisector of the other.

BD cuts FC in half, means FO = FO 5. One pair of opposite angles are congruent.

6. One of the diagonals bisects a pair of opposite angles.

Example 2: Given a kite ABCD, \overline{AC} is the perpendicular bisector of \overline{BD} :

a. If
$$\angle B = 90^{\circ}$$
 and AB =8 and BC=6. Find the length of \overline{AC}

$$AC^2 = AB^2 + BC^2$$

 $AC^2 = 8^2 + 6^2 = 64 + 36 = 100$

b. If AB = 16.3 and the perimeter of the kite is 54.7, find the lengths of DC, BC and AD.

BC = DC =
$$\frac{54.7 - 2(16.3)}{2} = \frac{22.1}{2} = 11.05$$

Example: In kite MNPQ, MP is the perpendicular bisector of NQ. If $m\angle QMN = 42^{\circ}$ and $m\angle MNP = 98^{\circ}$, find $m\angle NPQ$.

Theorem 4.2.5: The segment that joins the midpoints of the two sides of a triangle is parallel to the third side and has a length equal to an half the length of the third side.

Popper 08

<u>Clarification</u>: in ΔTRS "M" is the midpoint of \overline{RS} and "L" is the midpoint \overline{RT} .

By the above "rule", ML II ST and ML = $\frac{1}{2}$ ST. This can also be expressed as $\frac{2ML}{2}$ ST.

Example 3. M and N are the midpoints of the sides \overline{AB} and \overline{BC} of ΔABC

a. If MN = 7.3, find the length of \overline{BC} .

b. If BC = 4x + 6 and MN = x + 9, find the length of \overline{BC} .

Example 4:

In the figure below, AE=8, CE=x, DA=6, and BA=12. Is ED ll CB?

Example 5: M and N are the midpoints of $\,\overline{FJ}\,\mbox{and}\,\,\overline{FH}$

a. Given that ΔFHJ is isosceles, with $\overline{FJ}\cong \overline{FH}$, FM=2y+3, NH=5y-9 and JH=2y. Find the perimeter of ΔFHJ .

b. Given JH = 12, m/J = 80° and m/F = 60° . Find MN, m/FMN and m/FNM.

Example 6: Use the following figure for both parts a and b. In ΔRST , X, Y and Z are the midpoints of the sides as shown.

a. If RS = 18 , RT =24, and ST = 26. Find XY, YZ, XZ and the perimeter of ΔXYZ .

b. If XY = 7.2 , XZ = 6.9, YZ = 5.1. Find RS, RT, ST and perimeter ΔRST .

Example 7:

In $\triangle ABC$, D is the midpoint of AB, E is the midpoint of BC, and F is the midpoint of AC. Find the perimeter of $\triangle DEF$ if AB = 24, BC = 32, and AC = 26.

Perimeter of ΔDEF = _____

