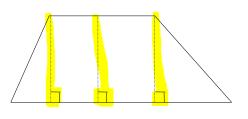

Math 1312 Section 4.4 The Trapezoid

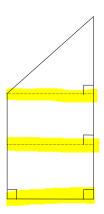
Definition:

A **trapezoid** is a quadrilateral with exactly one pair of parallel sides.

The parallel sides are called **bases** of the trapezoid. The nonparallel sides are referred to as the **legs** of the trapezoid.

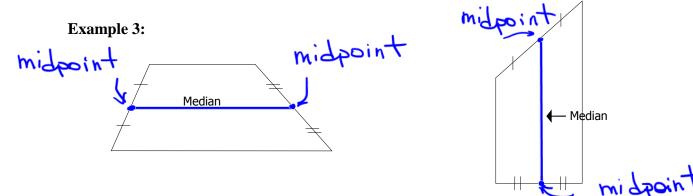
Example 1:

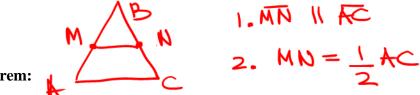



Definition:

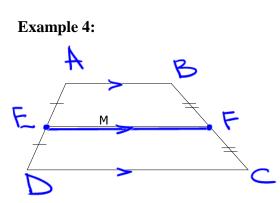
An **altitude** of a trapezoid is a segment drawn from **any** point on one of the parallel sides (base) perpendicular to the opposite side (the other base).

An infinite number of altitudes may be drawn in a trapezoid.


Example 2:



Definition:


A **median** of a trapezoid is the segment that joins the midpoints of the nonparallel sides (legs).

Theorem:

The median of a trapezoid is parallel to each base and the length of the median equals one-half the sum of the lengths of the two bases.

I. EF IL AB IL DC 2. EF= = = (+++)C)

Definition:

An **isosceles** trapezoid is a trapezoid in which the legs (nonparallel sides) are congruent.

An isosceles trapezoid features some special properties not found in all trapezoids.

AD = BC

Properties of Isosceles Trapezoid

> 1. The legs are congruent.

2. The bases are parallel. AB II DC

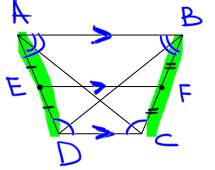
3. The lower base angles of an isosceles trapezoid are congruent. < ADC 2 2 BCD

4. The upper base angles of an isosceles trapezoid are congruent.

∠ BAD ≃ ∠ ABC

 \rightarrow 5. The lower base angle is supplementary to any upper base angle.

 $m \ \ ADC + m \ \ BAD = 180^{\circ}$ etc. 6. The diagonals of an isosceles trapezoid are congruent.


AC = BD

 \sim 7. The median is parallel to the bases

EFILABIDO

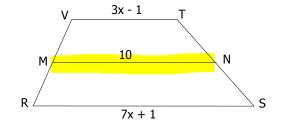
8. The length of the median equals one-half the sum of the lengths of the two bases.

 $EF = \frac{1}{2} (AB + DC)$

Proving that Trapezoid is isosceles

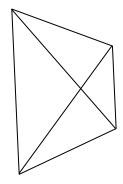
1. If legs of a trapezoid are congruent then it is an isosceles trapezoid.

- 2. If two base angles of a trapezoid are congruent, then it is an isosceles trapezoid.
- 3. If the diagonals of a trapezoid are congruent, then it is an isosceles trapezoid.

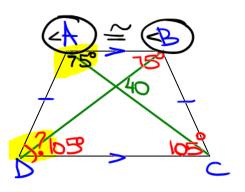

Example 5:

Given trapezoid RSTV with median MN, find the value of "x".

$$MN = \frac{1}{2}(VT + RS)$$


$$2.10 = \frac{1}{2}(3x + 7x + 7x + 7)$$

$$20 = 10 \times x = 2$$


Example 6:

Find the missing mea	asures of the given trapezoid. (1)		I
a. m∠IRD = 7		×	X
b. YR = 3	Note: <u>ABXD</u> ≅ <u>A</u> by HL	ITP. A	
c. DR	by CACTC	D 3 X	Y _3 R
= 3+1+3 = d. AC	13		_
= 12 (B)	[+0]= = (7	$+13) = \frac{1}{2}(2)$	GI = Cas

Example 7: Given an isosceles trapezoid *ABCD* with legs \overline{AD} and \overline{BC} .

a. $m \angle DAB = 75^{\circ}$. Find the $m \angle ADC$. = |\$0 - 75|

H

b. AC = 40. Find BD = 40

c. If $m \angle A = 6x + 25$ and $m \angle B = 8x + 15$. Find the measures of angles C and D.

$$6 \times + 25 = 8 \times + 15 | \times = 5$$

$$25 = 2 \times + 15 | m \le A = m \le B = 6(5) + 25 = 55^{\circ}$$

$$10 = 2 \times m \le C = m \le D = 180 - 55 = 125^{\circ}$$

Example 8: Given an isosceles trapezoid *HJKL* with bases \overline{HJ} , \overline{LK} , and median \overline{RS} .

a. If
$$LK = 30$$
 and $HJ = 42$ find RS .
 $RS = \frac{1}{2}(LK + HJ) = \frac{1}{2}(42 + 30) = 36$
b. If $RS = 17$ and $HJ = 14$ find LK .
 $2 \cdot \sqrt{7} = \frac{1}{2}(X + |4)$
 $34 = x + 14 \quad x = 20 \quad LK = 20$
c. If $RS = x + 5$ and $HJ + LK = 4x + 6$ find RS .
 $x + 5 = \frac{1}{2}(4x + 6)$
 $RS = 2 + 5 = 7$
 $x + 5 = 2x + 3$
 $S = x + 3$
 $x = 2$

SUMMARY CHARTS:

Special	Diagonals Are Always		Diagonals Always Bisect	
Quadrilateral	Congruent	Perpendicular	Each Other	Angles
Parallelogram	No	No	Yes	No
Rectangle	Yes	No	Yes	No
Rhombus	No	Yes	Yes	Yes
Square	Yes	Yes	Yes	Yes
Trapezoid	No	No	No	No
Isosceles	Yes	No	No	No
Trapezoid				

Property	Rectangle	Rhombus	Square
1. All the properties of a parallelogram?	Yes	Yes	Yes
2. Equiangular (4 right angles?)	Yes	No	Yes
3. Equilateral (4 congruent sides?)	No	Yes	Yes
4. Diagonals bisect angles?	No	Yes	Yes
5. Diagonals congruent?	Yes	No	Yes
6. Diagonals perpendicular?	No	Yes	Yes