Math 1312 Section 5.2 Similar Polygons

Definition:

Two polygons are **similar** (~) if and only if two conditions are satisfied:

- 1. All pairs of corresponding angles are congruent.
- 2. The ratios of the measures of corresponding sides are equal.

The symbol "~" means "similar to"

Definition:

Scale Factor (constant of proportionality) is the ratio of the lengths of two corresponding sides of two similar polygons.

Example 1:

The following quadrilaterals are similar:

Why are they similar? Because......

1)
$$\angle A \cong \angle E$$
 $\angle B \cong \angle F$ $\angle C \cong \angle G$ $\angle D \cong \angle H$

2)
$$\frac{AB}{EF} = \frac{BC}{FG} = \frac{CD}{GH} = \frac{DA}{HE} = \frac{2}{1}$$
 This is the scale factor.

Similar figures have the **same shape** but not necessarily the same size.

Example 2:

Which figures are similar?

Two congruent polygons are also similar.

Question:

Two similar polygons are always congruent, true or false?

Example 3:

Which figures must be similar?

a. Any two isosceles triangles

- b. Any two regular pentagons
- c. Any two rectangles
- d. Any two squares

Example 4:

Trapezoid PQRS is similar to trapezoid UTWV. Find the value of x.

a. identify the scale factor

c. cross multiply

d. solve

Example 5:

Complete each statement - RSTU ~ EFGH

3.
$$\angle H =$$
 4. $\angle G =$

5.
$$\frac{HG}{UT} = \underline{\hspace{1cm}}$$

$$6. \quad \frac{ST}{FG} = \underline{\hspace{1cm}}$$

Example 6:

 $\bar{\text{Complete}}$ each statement - ABCDE~RSTUV

1. The scale factor of ABCDE to RSTUV is _____.

35

6.	y =	
----	-----	--

8.
$$UV = 20$$
, $DE = _____$

Example 7:

 $\Delta ABC \sim \Delta DEF.$ The scale factor of ΔABC to ΔDEF is $\frac{3}{7}$. Draw a picture and then complete each statement.

Example 8:

In order to find the distance AB across a lake, a surveyor constructed ΔOCD similar to ΔOBA . He measured OB (36m), OC (20m), and CD (150m) directly to obtain the lengths shown. Find the length of AB.

Example 9: $\Delta RST \sim \Delta RUV$ find x and y

