Math 1312 Section 5.3 Proving Triangles Similar

Postulate:

If three angles of one triangle are congruent to the three angles of a second triangle, then the triangles are similar (**AAA**).

The following corollaries of AAA Postulate are can be applied to help determine if two given triangles are similar:

Corollary 1 (AA):

If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

Example 1:

Given: $\angle A \cong \angle P$, $\angle C \cong \angle R$

Conclusion:

Corollary 2 (SSS):

If each side of one triangle and the corresponding side of another triangle are proportional, then the triangles are similar.

Given: $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$

Conclusion:

Corollary 3 (SAS):

If the measures of two sides of one triangle are proportional to the corresponding sides of another triangle AND the included angles are congruent, then the triangles are similar.

Example 3:

Example 4:

In the figure below, $AB \parallel DE$, DA = 2, CA = 8, and CE = 3. Find CB.

Example 5:

In the figure below, $\overline{FG} \cong \overline{EG}$, BE = 15, CF = 20, AE = 9, DF = 12. Determine which triangles in the figure are similar.

Example 6:

Determine whether each pair of triangles is similar. If so, write a mathematical sentence and give a reason that justifies your decision.

CSSTP: Corresponding sides of similar triangles are proportional.

CASTC: Corresponding angles of similar triangles are congruent.

Theorem:

The lengths of the corresponding altitudes of similar triangles have the same ratio as the lengths of any pair of corresponding sides.

Rules:

- 1. If two triangles are similar, then the **perimeters are proportional** to the measures of corresponding sides.
- 2. If two triangles are similar, then the measures of the corresponding **altitudes** (form 90°) **are proportional** to the measures of the corresponding sides.
- 3. If two triangles are similar, then the measures of the **corresponding angle bisectors** of the triangles **are proportional** to the measures of the corresponding sides.
- 4. If two triangles are similar, then the measures of the corresponding **medians are proportional** to the measures of the corresponding sides.

Example 7:

 $\Delta ABD \sim \Delta ADC$. If AD = 16, AC = 32, and DC = 23 find the perimeter of ΔABD .

Example 8:

 Δ PQR ~ Δ TUV. IF QO is an altitude of Δ PQR, and US is an altitude of Δ TUV, then complete the following:

Lemma:

If a line segment divides two sides of a triangle proportionally, then the line segment is parallel to the third side of the triangle.

Converse:

If we are given $\triangle ABC$ and $\triangle DEC$, where $DE \parallel AB$.

Because DE || AB, we can conclude that $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$ (corresponding angles are congruent).

This makes $\triangle ABC \sim \triangle DEC$ by the AA similarity property.

