
Math 1312 Section 5.4 The Pythagorean Theorem

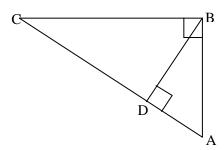
Review of radicals

Example 1: Simplify $\sqrt{80}$

Example 2: Simplify
$$\sqrt{\frac{7}{2}}$$

Theorem 1: The altitude drawn to the hypotenuse of a right triangle separates the triangle into two right triangles that are similar to each other and to the original triangle.

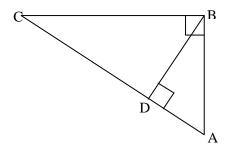
Example 3: Name the similar triangles in the figure above.


Definition: The geometric mean between two positive numbers, a and b, is the positive number, x,

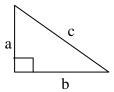
where:
$$\frac{a}{x} = \frac{x}{b}$$

Theorem 2: The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of hypotenuse.

$$\frac{part}{altitude} = \frac{altitude}{PART}$$


$$\frac{AD}{BD} = \frac{BD}{DC}$$

Theorem 3: The length of each leg of a right triangle is the geometric mean of the length of the hypothenuse and the length of the segment of the hypotenuse adjacent (next) to that leg.


$$\frac{part}{leg} = \frac{leg}{whole}$$

$$\frac{AD}{AB} = \frac{AB}{AC}$$
 or $\frac{DC}{BC} = \frac{BC}{AC}$

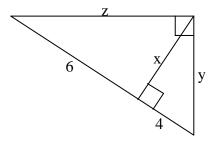
Pythagorean Theorem: The square of the length of the hypotenuse of a right triangle is equal to the sum of the squares of the lengths of the legs.

$$a^2 + b^2 = c^2$$

Question 1: What does it mean when $a^2 + b^2 > c^2$?

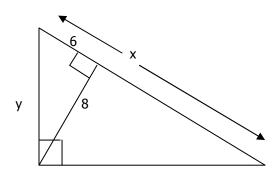
Question 2: What does it mean when $a^2 + b^2 < c^2$?

Example 4: Determine the type of triangle if the lengths of its sides are:

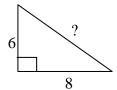

- a) 4, 3, 5
- b) 4, 5, 6
- c) 3, 4, 9
- d) 4, 5, 7

Example 5: Find the geometric mean between 4 and 18.

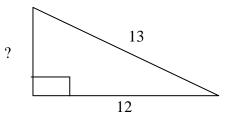
Example 6: Find "x".


Example 7: Find "x", "y", and "z".

Example 8: Find "x", and "y".



Example 9: Find "x", and "y".



Example 10: Find the "missing" length.

b)

