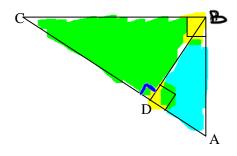
Math 1312
Section 5.4Hath 1312
Section 5.4The Pythagorean TheoremQ =
$$3^2$$

Review of radicalsExample 1: Simplify $\sqrt{80}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{16} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{16} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{16} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{16} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{16} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{16} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{16} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{16} = 4\sqrt{5}$ $= \sqrt{16 \cdot 5$

Theorem 1: The altitude drawn to the hypotenuse of a right triangle separates the triangle into two right triangles that are similar to each other and to the original triangle.



Example 3: Name the similar triangles in the figure above.

ACBA~ACDB~ABDA

Definition: The geometric mean between two positive numbers, a and b, is the positive number, x,

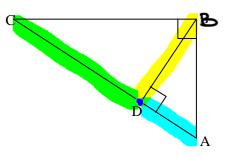
where:
$$\frac{a}{x} \times \frac{x}{b}$$
 (x² = ab x = ab 5, 7 5+7 = 6
5, 7 5+7 = 6

Theorem 2: The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of hypotenuse.

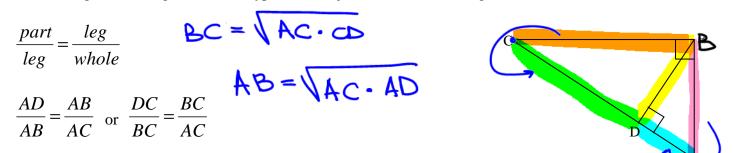
$$\frac{part}{altitude} = \frac{altitude}{PART}$$

$$BD = \sqrt{CD \cdot DA}$$

$$\frac{AD}{BD} = \frac{BD}{DC}$$



Theorem 3: The length of each leg of a right triangle is the geometric mean of the length of the hypothenuse and the length of the segment of the hypotenuse adjacent (next) to that leg.



Pythagorean Theorem: The square of the length of the hypotenuse of a right triangle is equal to the sum of the squares of the lengths of the legs.

$$a^2 + b^2 = c^2$$

Question 1: What does it mean when $a^2 + b^2 > c^2$?

Question 2: What does it mean when $a^2 + b^2 < c^2$?

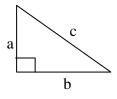
Example 4: Determine the type of triangle if the lengths of its sides are:

a)
$$4,3,5$$

(2) $4^{1}+3^{2}=5^{2}$ right
(1) $4+3>5^{3}$
(2) $4^{2}+5^{2}>6^{2}$
(3) $4+5>6^{3}$
(4) $4,5,7$
(1) $4+5>7$
(2) $4^{2}+5^{2}>6^{2}$
(4) $4,5,7$
(2) $4^{2}+5^{2}>6^{2}$
(3) $4,9$
(4) $4,5,7$
(1) $4+5>7$
(2) $4^{2}+5^{2}<7^{2}$ obtuse

41

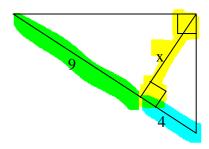
< 49

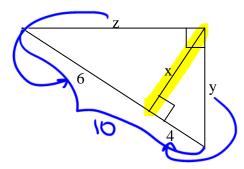


Example 5: Find the geometric mean between 4 and 18.

$$x = \sqrt{4.18} = \sqrt{72} = \sqrt{9.8} = \sqrt{9.8} = 3\sqrt{8}$$
$$= 3\sqrt{4.2} = 3\sqrt{4.$$

$$X = \sqrt{q \cdot 4} = \sqrt{36} = 6$$





$$x = \sqrt{6.4} = \sqrt{6.54} = 2\sqrt{6}$$

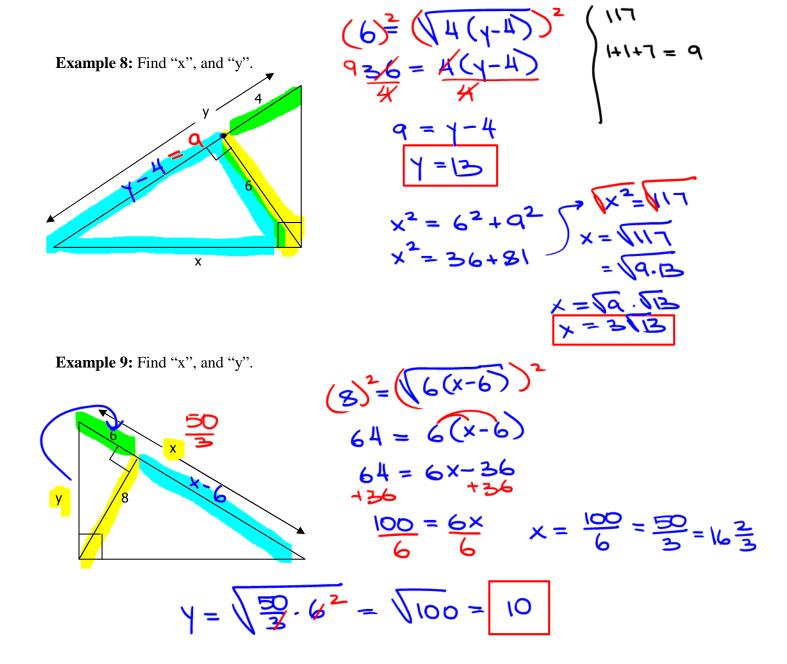
$$y = \sqrt{10.4} = \sqrt{10.54} = 2\sqrt{0}$$

$$x = \sqrt{10.6} = \sqrt{60} = \sqrt{4.15}$$

$$= \sqrt{4.15}$$

$$= \sqrt{4.15}$$

$$= 2\sqrt{15}$$



Example 10: Find the "missing" length.

