
Math 1312 Section 5.5 Special Right Triangles

Note: Triangles in this section are always right triangles!

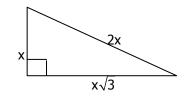
45-45-90 Triangles

Theorem 1: In a triangle whose angles measure 45° , 45° , and 90° , the hypotenuse has a length equal to the product of $\sqrt{2}$ and the length of either leg.

The ratio of the sides of a 45-45-90 triangle are: $x: x: x\sqrt{2}$.

45-45-90

if this measure is given:	and you want this measure:	then do this:
the leg	hypotenuse	multiply the leg by $\sqrt{2}$
hypotenuse	the leg	divide hypotenuse by $\sqrt{2}$


Note: The legs of a 45-45-90 are the same measure!

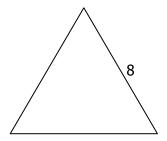
$$leg = \frac{hypotenuse}{\sqrt{2}} \qquad hypotenuse = leg\sqrt{2}$$

30-60-90 Triangles

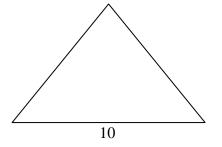
Theorem 2: In a triangle whose angles measure 30° , 60° , and 90° , the hypotenuse has a length equal to twice the length of the shorter leg, and the length of the longer leg is the product of $\sqrt{3}$ And the length of the shorter leg.

The ratio of the sides of a 30-60-90 triangle are: $x: x\sqrt{3}: 2x$.

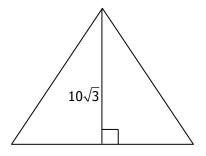
Note: The short leg is always opposite the 30° angle!

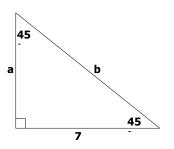

It is best to find the measure of the short leg first (that is if it is not given).

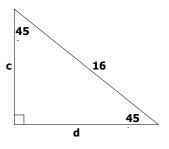
30-60-90		
if this measure is given:	and you want this measure:	then do this:
short leg	hypotenuse	multiply short leg by 2
short leg	long leg	multiply short leg by $\sqrt{3}$
long leg	short leg	divide long leg by $\sqrt{3}$
hypotenuse	short leg	divide hypotenuse by 2


$$short_leg = \frac{hypotenuse}{2}$$
 $short_leg = \frac{long_leg}{\sqrt{3}}$

$$hypotenuse = 2(short_leg) \qquad long_leg = \sqrt{3}(short_leg)$$


Example 1: Find the altitude of the following equilateral triangle.


Example 2: Find the altitude of the following equilateral triangle.


Example 3: Find the length of the side of the following equilateral triangle.

Example 4: Find a and b.

Example 5: Find c and d.

