Definitions:

A **circle** (symbol O) is the set of all points in a plane that are at a fixed distance from a given point known as the **center** of the circle.

A radius is a segment that joins the center of the circle to a point on the circle.

A **chord** is a segment that joins two points of the circle.

A **diameter** of a circle is a chord that contains the center of the circle.

Facts:

- > All radii of a circle are congruent.
- ightharpoonup In a circle, the length of a diameter (d) is twice that of a radius (r). $(d = 2r, r = \frac{d}{2})$

Definitions:

Congruent Circles are two or more circles with congruent radii.

Concentric Circles are coplanar circles that share a common center.

Example 1:

Which circles are congruent?

Example 2:

Congruent or concentric?

Example3:

For the given circle name:

- a) Center
- b) Diameters

- c) Chords
- d) Radii

Theorem:

A radius that is perpendicular to a chord bisects that chord.

Example 4:

More Definitions:

A **central angle** of a circle is an angle whose vertex is the center of the circle and whose sides are radii of the circle.

An **arc** (symbol) consists of two points on a circle and all points that needed to connect them by a single path.

A **minor arc** is an arc with a measure less than 180° .

A **major arc** is an arc with a measure more than 180° .

A **semicircle** is an arc whose endpoints are the endpoints of a diameter.

Facts:

 \triangleright A semicircle measures 180° .

 \triangleright The sum of the measures of the consecutive arcs that form a circle is 360°

> The measure of a minor arc is equal to the measure of its central angle.

Example 5:

In circle Q, \overline{AC} is a diameter and $m\angle CQD = 40^{\circ}$. Find the following:

a) mCD =

b) mCAD =

c) mAD =

d) mDCA =

Definitions ... again:

An **intercepted arc** is an arc whose endpoints are the two points of intersection of an angle with the circle and all points that lie within the angle.

An **inscribed angle** of a circle is an angle whose vertex is on the circle (but not in the center of the circle) and whose sides are chords of the circle.

Facts:

> The measure of an inscribed angle is equal to half the measure of its intercepted arc.

 \triangleright An angle inscribed in a semicircle is a right angle (measures 90°).

> If two inscribed angles intercept the same arc, then these angles are congruent.

Example 6: If $mAB = 40^{\circ}$, then find $m \angle ACB$.

Example 7: In the circle below, \overline{AC} is a diameter, mCD = 68, and mBE = 96.

Find:

- a) *m∠ABC*
- b) *m∠BDE*
- c) *m∠CED*
- d) mAD

Example 8: Find the value of "x".

Example 9: In circle P, mEN = 66, $m\angle GPM = 89$, and \overline{GN} is a diameter.

Find:

- a) *m∠MPN*
- b) mGE
- c) *m*∠*GNE*

d) *m∠MEN*

e) *m∠MGE*