Math 1312 Section 6.2 More Angle Measures in Circle

Definitions:

A tangent is a line that intersects a circle at exactly one point (point of contact or point of tangency).

A **secant** is a line (or a segment or ray) that intersects a circle at exactly two points.

Example 1:

Theorem 1:

The radius drawn to a tangent at the point of tangency is perpendicular to the tangent at that point.

Example 2:

Note: Because $\angle TCA$ is a right angle then ΔTCA is a right triangle. Therefore, you could use the Pythagorean theorem to find the measure of a missing side.

Theorem 2 (converse of Theorem 1):

If a line is perpendicular to a radius then the line is a tangent of the circle.

Example 3:

Theorem 3:

The measure of an angle formed by two chords (two secants) that intersect within a circle is one-half the sum of the measures of the arcs intercepted by the angle and its vertical angle.

Example 4:

$$m\angle 1 = m\angle 3$$
 and $m\angle 2 = m\angle 4$

$$m\angle 1 = \frac{1}{2}(mRU + mST)$$

$$m\angle 2 = \frac{1}{2}(mRS + mTU)$$

Theorem 4:

The measure of an angle formed by a tangent and a chord drawn to the point of tangency (a tangent and a secant) is one-half the measure of the intercepted arc.

Example 5:

$$m \angle TCA = \frac{1}{2}mCA$$

Theorem 5:

If two secants, a secant and a tangent, or two tangents intersect in the exterior of a circle, then the measure of the angle formed is one-half the positive difference of the measures of the intercepted arcs.

Example 6:

There are three possible cases:

In Summary:

If the lines intersect **ON** the circle use: angle = $\frac{1}{2}$ (arc)

If the lines intersect **IN** the circle use: angle = $\frac{1}{2}$ (arc + arc)

If the lines intersect **OUT** of the circle use: $angle = \frac{1}{2}(big \ arc - little \ arc)$

Theorem 6:

If two parallel lines intersect a circle, the intercepted arcs between those lines are congruent.

Example 7:

Example 8:

In circle K, $mOB = 98^{\circ}$, $mOY = 28^{\circ}$, $mYD = 62^{\circ}$, and $mDA = 38^{\circ}$. Find each measure.

a) mAB

c) *m*∠2

d) *m*∠3

e) *m*∠4

Example 9: Find the value of "x".

Example 10: Refer to the circle below, find:

- a) *x*
- b) *m∠AET*

